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TODAY’S LECTURE

Modern Latent 
Variable Models and 
Variational Inference

Latent variable models provide a powerful 
and flexible framework for generative 
modelling. After introducing this framework 
along with the concept of inference, which is 
central to it, this lecture will focus on two 
types of modern latent variable models: 
invertible models and intractable models. 
Special emphasis will be placed on 
understanding variational inference as a key 
to training intractable latent variable models.
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1 Generative 
Modelling



What are generative models?

● Generative models are probabilistic models of high-dimensional data
○ Describe the probabilistic process of generating an observation
○ The emphasis is on capturing the dependence between the dimensions
○ Provide a way of generating new datapoints

● Historically, generative modelling was considered to be a subfield of 
unsupervised learning (i.e. learning with no labels).
○ Conditional generative models make the boundary between supervised 

and unsupervised learning blurry.

● Generative models can be used for essentially any kind of data:
○ Text, images, audio, biological sequences, etc.



Uses of generative models

● Density estimation and outlier detection

● Data compression

● Mapping from one domain to another
○ Language translation, text-to-speech

● Planning in model-based reinforcement learning

● Representation learning

● Understanding the data



Progress in generative models

Samples from 2014:

Deep AutoRegressive Networks, Gregor et al.



Progress in generative models

Samples from 2015:

DRAW: A Recurrent Neural Network For Image Generation, Gregor et al.



Progress in generative models

Samples from 2019:

Hierarchical Autoregressive Image Models with Auxiliary Decoders, De  Fauw et al.



Types of generative models

Generative models used in deep learning:

● Autoregressive models
○ RNN & Transformer language models, NADE, PixelCNN, WaveNet

● Latent variable models
○ Tractable: e.g. Invertible / flow-based models (RealNVP, Glow, etc.)
○ Intractable: e.g. Variational Autoencoders

● Implicit models
○ Generative Adversarial Networks (GANs) and variants



Autoregressive models

● Model the 1-dimensional conditional distributions instead of modelling 
the joint distribution directly:
○ Based on the chain rule:
○ Trained with maximum likelihood

● Pros
○ 1-dimensional distributions are easy to model
○ Simple and efficient training
○ No sampling at training time

● Cons
○ Slow, sequential generation — one dimension at a time
○ Usually much better at modelling local structure than global structure



Latent variable models

● Specify the generative process in terms of unobserved/latent 
variables and the transformation that maps them to the observation.
○ Trained with maximum likelihood (usually with some approximations)

● Pros
○ Powerful and well-understood framework
○ Easy to incorporate prior knowledge / structure into models

■ Well-suited for representation learning / interpretability
○ Fast generation

● Cons
○ Conceptually more complex than fully observed models
○ Need to use approximate inference or restricted models



Generative Adversarial Networks

● Model: A neural net that maps noise vectors to observations

● Training: use the learning signal from a classifier trained to discriminate 
between samples from the model and the training data

● Pros
○ Can generate very realistic images
○ Conceptually simple implementation
○ Fast generation

● Cons
○ Cannot be used to compute probability of observations
○ "Mode collapse": Models ignore regions of the data distribution
○ Training can be unstable and requires many tricks to work well



2 Latent Variable 
Models & 
Inference



Latent variable models

● A latent variable model (LVM) defines a distribution 
over observations     by using a (vector) latent 
variable    and specifying:
○ The prior distribution          for the latent variable
○ The likelihood              that connects the latent 

variable to the observation

● The prior and the likelihood define the joint 
distribution

● We will be interested in computing the marginal 
likelihood          and the posterior distribution            .



Latent variable models

● We can think of the latent variable value as an 
explanation for the observation.

● To generate an observation from the model, we 
sample as follows:

● Much of this lecture will be concerned with the 
inverse process, going from observations to latent 
values, which is called inference.



Inference

● Inference refers to computing the posterior distribution for the given 
observation:

● This requires solving the important sub-problem of computing the 
marginal likelihood of the observation:



Inference is the inverse of generation

● We can generate           pairs from the model in two ways:

● Since                                                       , the joint distribution of these 
pairs is exactly the same, no matter how they were generated. 

● We can think of inference / computing            as inverting     
probabilistically.



Why is inference important?

● Explaining the observation: Inferring the posterior distribution for a 
datapoint allows us to determine which latent configurations could 
have plausibly generated it.

● Learning: training latent variable models requires performing inference 
in the inner loop, as we will see later.



Inference for a mixture of Gaussians

● Model specification:

● Marginal likelihood:

● Posterior distribution:



Maximum likelihood learning

● Maximum Likelihood is the dominant estimation principle for 
probabilistic models.

● We look for the parameter values that maximize the probability the 
training set under the model:

● For latent variable models, this optimization problem does not have a 
closed-form solution, so iterative algorithms are used.



The gradient of the marginal log-likelihood

Let's compute the gradient of the marginal log-likelihood for a single 
datapoint:

● We need to compute the posterior distribution to compute the 
gradient! 

● Inference performs credit assignment over latent configurations.

Using the identity



Exact inference is hard

● As a rule, exact inference is hard.
○ Inference for continuous latent variables involves computing 

high-dimensional integrals of complicated functions.
○ Inference for discrete latent variables involves summing over exponentially 

many latent configurations.

● Exceptions: Some models with tractable inference
○ Mixture models
○ Linear-Gaussian models
○ Invertible models



Avoiding intractable inference

Strategies for avoiding intractable inference:

1. Designing models for which inference is tractable
○ Simpler training but less expressive models

2. Using approximate inference
○ More involved, but also more flexible — can use more expressive models



3 Invertible Models 
& Exact Inference



Invertible models

● Invertible models (also known as normalizing flows) are a class of 
tractable yet powerful generative models.

● Key idea: approximate the data distribution by transforming the prior 
distribution using an invertible function.
○ This can be done jointly for all dimensions or autoregressively, one 

dimension at a time.

● Inference and maximum likelihood learning are tractable in these 
models.



Invertible models

● Invertible models generate observations by applying an invertible and 
differentiable transformation          to samples from the prior:

● Since          is invertible, there is a one-to-one correspondence 
between observations and latent configurations, and inference is easy:

● How can we compute the marginal likelihood?



Invertible models

● We can relate the densities of     and    as follows:

● The determinant of the Jacobian takes into account the local change 
in volume due to applying          .

● For maximum likelihood learning we need the mapping            , the 
determinant of its Jacobian, as well as their gradients to be efficiently 
computable.

Since 

Change of variables 



Independent Component Analysis

● ICA is probably the simplest and oldest invertible model.

● It uses a factorial prior and a linear mapping (a square matrix):

● Inference is just matrix inversion: 

● Inference in a trained ICA model allows us to recover independent 
sources that explain the data linearly.

● To recover independent sources, the prior has to be non-Gaussian.
○ Usually, heavy-tailed distributions such as Cauchy or Logistic are used



Constructing invertible models

● General strategy: construct complex models by chaining simple 
invertible functions.
○ Composition of invertible functions is invertible
○ Can parameterize either the forward mapping          or the backward            

mapping

● Functions that can be inverted only numerically with iterative 
algorithms can also be an option.

● A growing list of invertible building blocks:
○ Linear layers, autoregressive / coupling layers, Sylvester flows, residual 

layers



Limitations of invertible models

● Invertible models are appealing because they provide a rare 
combination of tractability and high expressive power.

● They do have a number of limitations:
○ The latent space and data space dimensionality must be the same
○ The latent variables have to be continuous
○ Observations have to be continuous or quantized
○ Expressive models require a lot of layers, parameters, and thus memory
○ Hard to incorporate structure: lack of flexibility in model design

● Due to their tractability, invertible model are also useful as 
components for larger latent variable models.



4 Variational 
Inference



The appeal of intractable models

● Do you want the wrong answer to the right question or the right 
answer to the wrong question? --David Blei

● In many cases, a model is more than just a black box that generates 
samples or makes predictions.
○ We might want latent variables to be interpretable or related to each other 

in a specific way.
○ We might want to structure of the model in a particular way, e.g. based on 

our knowledge of the process being modelled.

● Almost all such models will be intractable and thus will require 
approximate inference.



Example: ICA variations

● We saw that the ICA model with the same number of latent 
dimensions as data dimensions is tractable.

● What happens if we change the model slightly?
○ Introduce an observation noise model in the likelihood
○ Use more latent dimensions than data dimensions
○ Use fewer latent dimensions than data dimensions

● Any one of these changes makes the model intractable.       



Approximate inference

Two classes of approaches to approximate inference:

● Markov Chain Monte Carlo: generate samples from the exact 
posterior using a Markov Chain
○ Very general; exact in the limit of infinite time / computation
○ Computationally expensive; convergence is hard to diagnose

● Variational inference: approximate the posterior with a tractable 
distribution, e.g. fully factorized or autoregressive
○ Fairly efficient, as inference is reduced to optimization w.r.t. the 

distribution parameters
○ Cannot trade computation for accuracy easily



Variational inference

● Variational inference (VI) turns the task of finding the posterior 
distribution into an optimization problem.

● We approximate the exact posterior              with a variational 
posterior             .

●   are the variational parameters which we will optimize over to fit the 
variational posterior to the exact posterior.

● We can use any distribution for             as long as 
1. We can sample from it  

2. We can compute                     and its gradient w.r.t     .

● A fully factorized distribution                                   is often used. 



Training with variational inference

● What do we use as the training objective if the marginal log-likelihood 
is intractable?

● The variational posterior induces a variational lower bound              on 
the marginal log-likelihood.

● We train a model with VI by maximizing               with respect to both 
the model parameters     and the variational parameters   . 



Bounding the marginal log-likelihood

● For any density          (as long as                whenever               ) we have:

● Therefore                                                                     for any such 

Using the Jensen’s inequality:



Variational lower bounds

● In this lecture, we will focus on the Evidence Lower Bound (ELBO), 
which is obtained by using the variational posterior             as         : 

● ELBO is the simplest and by far the most widely variational lower 
bound.

● Another option: The Importance-Weighted Bound (a.k.a. IWAE)
● A multi-sample generalization of ELBO
● Allows trading off additional computation for better approximation of the 

marginal likelihood



Review: Kullback–Leibler divergence

● Kullback–Leibler divergence provides a way of quantifying the 
difference between two distributions.

● KL divergence is defined as                                              

● KL divergence is

○ Non-negative:                                 for any        and        ;  

○                                if and only if                    almost everywhere;

○ Not symmetric: in general,                                                     . 



Fitting the variational posterior

● What happens when we maximize the ELBO w.r.t. the variational 
parameters?

● Rewriting the ELBO:

● This means maximizing                w.r.t.     is equivalent to minimizing 

                                 , as                does not depend on    .

●                                  is known as the variational gap, because it is the 
difference between                 and the variational bound              .  



Fitting the variational posterior

● Maximizing the ELBO w.r.t.     fits the variational posterior to the exact 
posterior by minimizing                                  .

● This is remarkable because we cannot compute                                  or 
even             !

● Since                                                                    , the ELBO is the 
difference between two intractable quantities, which happens to be 
tractable.

● If the variational distribution family is expressive enough, the ELBO is 
maximized w.r.t.     when the variational posterior is equal to the exact 
posterior (and the variational gap is zero).

       



Training the model

● What happens when we update the model parameters to increase the 
ELBO?

● The decomposition                                                                    tells us that:
1.               will increase and/or

2. The variational gap                                 will decrease.

● Increasing                is good — this is exactly what maximum likelihood 
learning does.

● What about decreasing the variational gap?



Training the model

● Decreasing the variational gap by updating the variational parameters, 
makes the variational distribution closer the true posterior.
● Improves the variational approximation without affecting the model

● Decreasing the variational gap by updating the model parameters, 
makes the exact posterior closer to the variational posterior.
● Makes variational inference in the model more accurate
● But it often does so by making the model fit the data less well.

● To mitigate this effect and make learning with VI as close as possible 
to maximizing likelihood, we should use the most expressive 
variational posterior we can.



Variational pruning

● The pressure from VI to make the exact posterior be closer to the 
variational posterior often results in some of the latent variables not 
being used by the model.
● For these variables, the posterior will be identical to the prior.

● This effect is called variational pruning.
● In the context of variational autoencoders, this is also known as posterior 

collapse.

● Variational pruning can be a good thing or a bad thing:
+ It automatically chooses the dimensionality for the latent space.
− It prevents us from fitting the data arbitrarily well even if we use an 

arbitrarily high dimensional latent space.



Choosing the form of the variational posterior

● The default choice is a fully factorized distribution
○ In classic VI, this is known as the mean field approximation.

● Several options for more expressive posteriors:
○ Mixture distributions
○ Gaussian with a non-diagonal covariance matrix
○ Autoregressive
○ Flow-based

● Trade-off: speed of training vs. quality of the variational approximation



Amortized variational inference

● The posterior distribution is different for each observation    .

● In classic variational inference, we learn a different set of variational 
parameters     for each datapoint using iterative optimization.

● Amortized inference: Instead performing such per-datapoint 
optimization, train a neural net, called the inference network, to 
predict the variational parameters from the observation.
○     in               now refers to the inference network parameters.
○ Introduced in the context of Helmholtz Machines and popularised by 

Variational Autoencoders.

● The inference network in trained jointly with the model by maximizing 
the ELBO.



Variational vs. exact inference

● What did we gain by using variational inference?
○ Can now train and perform inference in models with intractable posteriors 

in an efficient and principled way.
■ Freedom in model design

○ Inference is fast compared to MCMC methods.

● What did we lose?
○ VI can make the model effectively less expressive and thus lead to 

suboptimal performance.



5 Gradient 
Estimation in 
Variational 
Inference



Maximizing the ELBO

● To train a model with VI, we need to maximize the ELBO

        w.r.t. the model parameters     and variational parameters   .

● How do we compute the required gradients?

● In modern variational inference, we estimate gradients using Monte 
Carlo sampling.
○ We trade deterministic gradient estimation of classic variational inference 

for much broader applicability.



Gradient w.r.t. the model parameters

● Estimating the gradient for the model parameters is easy using Monte 
Carlo sampling from the variational posterior:

● We simply generate one or more samples from the variational 
posterior and average the resulting gradients of the log-joint.

Since             does
not depend on 



Gradient w.r.t. the variational parameters

● Estimating the gradient w.r.t. the variational parameters is more 
involved.
○ Want to estimate it using samples from the variational posterior               

which depends on    .
○ Need to take this dependence into account somehow:

● Thankfully, estimating gradients of expectations of this form is a 
well-studied problem.



Gradients of expectations

Two major types of gradient estimators for                       :

●  REINFORCE / likelihood-ratio estimator
○ Very general

■ Applicable to both discrete and continuous latent variables
■ Can handle non-differentiable functions

○ Tends to have relatively high variance: needs variance reduction.
● Reparameterization / pathwise estimator

○ Less general
■ Applicable only to continuous latent variables
■ Requires          to be differentiable

○ Tends to have relatively low variance



Reparameterization trick

● The reparameterization trick provides an effective way of computing 
gradients of the form                       for many common densities         .

● We reparameterize a sample from          by expressing it as a function 
of a sample    from some fixed distribution        :

● As long as            is differentiable w.r.t.    ,

Since         does 
not depend on

Using the
Chain Rule



Reparameterization trick

● The reparameterization trick essentially moves the dependence on the 
distribution parameters inside the expectation.
○ This can be seen as propagating gradients through    .
○ To get the correct gradients, the function mapping     to     has to be 

differentiable w.r.t. the distribution parameters    . 

● Reparameterizing a Gaussian variable                        :

○ Note that this mapping from    to    is differentiable w.r.t. both parameters 
of the distribution, as required.



Reparameterizing distributions

● Any distribution in the scale-location family (Laplace, Cauchy, 
Student’s t, etc.) can be reparameterized in the same way.

● Distributions like Gamma and Dirichlet can be parameterized using 
implicit reparameterization.

● Not every distribution can be reparameterized in a differentiable way.
○ For example, discrete variables are not reparameterizable in this way.

● Deep learning frameworks such as TensorFlow and PyTorch support 
reparameterization for many continuous distributions, making it easy 
to propagate gradients through samples.



6 Variational 
Autoencoders



Variational autoencoders

● A VAE is a generative model with continuous latent variables:

○ The likelihood             and the variational posterior             are 
parameterized with neural networks.

○ Both the prior and the variational posterior are usually fully factorized 
Gaussians.

○ VAEs are trained using amortized variational inference, taking advantage of 
the reparameterization trick.

● The introduction of VAEs in 2014 was a breakthrough in generative 
modelling due to their power and scalability.



Variational autoencoders

● Prior: 
● Likelihood / decoder:

○ For binary data:

○ For real-valued data:

● Variational posterior / encoder:

● Can also use other types of neural nets (e.g. ConvNets) instead of 
fully-connected neural networks.



ELBO decomposition for VAEs

● VAEs are trained by maximizing the ELBO, which usually written as

● The first term measures how well the model predicts / reconstructs an 
observation from a sample from the variational posterior.
○ Known as the negative reconstruction error.

● The second term acts as a regularizer, pushing the variational posterior 
towards the prior.
○ It measures the amount of information about the observation in the 

latents.
○ Often computed analytically.



The VAE framework

● VAE is now more of a framework than a specific model
○ Can refer to any continuous latent variable model trained using amortized 

variational inference and the reparameterization trick.

● VAEs have been improved and extended in many ways:
○ Multiple latent layers
○ Non-Gaussian latent variables
○ More expressive priors and posteriors

■ Mixtures, autoregressive, flow-based, implicit, etc.
○ More expressive decoders

■ ResNet, autoregressive (e.g. RNN, PixelCNN)
○ Improved amortized inference (e.g. iterative, variance reduction)



Conclusion

● Invertible models and intractable latent variable models provide two 
powerful approaches to likelihood-based generative modelling.

● They make different tradeoffs between ease of inference and 
modelling flexibility / power.

● Models of different types can be combined to take advantage of their 
complementary strengths.

● This research area is developing rapidly and there are still many 
contributions to be made.



Thank you
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