
In this lecture series, leading research scientists 
from leading AI research lab, DeepMind, will give
12 lectures on an exciting selection of topics
in Deep Learning, ranging from the fundamentals 
of training neural networks via advanced ideas 
around memory, attention, and generative 
modelling to the important topic of responsible 
innovation.

Please join us for a deep dive lecture series
into Deep Learning!

#UCLxDeepMind
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TODAY’S SPEAKER

Wojciech Czarnecki
Wojciech Czarnecki is a Research Scientist
at DeepMind. He obtained his phd from the 
Jagiellonian University in Cracow, during which
he worked on the intersection of machine learning, 
information theory and cheminformatics. Since joining 
DeepMind in 2016, Wojciech has been mainly working 
on deep reinforcement learning, with a focus on 
multi-agent systems, such as recent Capture the Flag 
project or AlphaStar, the first AI to reach the highest 
league of human players in a widespread professional 
esport without simplification of the game.



TODAY’S LECTURE

Neural Networks 
Foundations

Neural networks are the models responsible 
for the deep learning revolution since 2006, 
but their foundations go back as far as to the 
1960s. In this lecture we will go through the 
basics of how these models operate, learn 
and solve problems. We will also set various 
terminology/naming conventions to prepare 
attendees for further, more advanced talks. 
Finally, we will briefly touch upon more 
research oriented directions of neural 
network design and development.
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Private & ConfidentialPlan for this Lecture

01
Overview

02
Neural Networks

05
Practical issues

03
Learning

04
Pieces of the puzzle

06
Bonus: 
Multiplicative interactions

Content
High level plan of the lecture

Goal
Prepare people for the overall structure, make 
sure that they know what to expect



Private & ConfidentialWhat is not covered in this lecture

01
“Old school”

- (Restricted) 
Boltzmann 
Machines

- Deep 
Belief
Networks

- Hopfield Networks
- Self Organising 

Maps

02
Biologically plausible

- Spiking networks
- Physical Simulators

03
Other

- Capsules
- Graph networks
- Neural

Differential 
Equations

- Convolutional 
Networks

- Recurrent
Neural
Networks

Content
Neural networks in the wild

Goal
Provide people with slightly broader perspective, 
and also sneak peek into future lectures



1 Overview

Extra notes/ideas
I removed most of the “explicit” branding, only first slide 
has DeepMind name on it, everything else - a small logo 
in the corner. Also no “confidential” info



Content
Various successes

Goal
Provides a bit of extra excitement, and makes 
sure people see applications before getting into 
technicalities

Computer Vision



Computer Vision Text and Speech

Content
Various successes

Goal
Provides a bit of extra excitement, and makes 
sure people see applications before getting into 
technicalities



Computer Vision Text and Speech Control

Content
Various successes

Goal
Provides a bit of extra excitement, and makes 
sure people see applications before getting into 
technicalities



Compute

Content
3 factors behind DL revolution

Goal
Establish elements that we will be refering to 
throughout the talk, so people see the 
connection between these, and neural networks



Compute Data

Content
3 factors behind DL revolution

Goal
Establish elements that we will be refering to 
throughout the talk, so people see the 
connection between these, and neural networks



Compute Data Modularity

Content
3 factors behind DL revolution

Goal
Establish elements that we will be refering to 
throughout the talk, so people see the 
connection between these, and neural networks



The deep learning puzzle

Content
High level, modular vision. Composable blocks, 
with some dynamical system (often in the form 
of gradient descent). Mention differentiability.

Goal
Get intuition of where we are going, before 
getting into details

Loss

TargetData

Node Node Node

Node Node Node

Extra notes/ideas
We will use this “puzzle idea” throughout the deck, and 
keep going back to it. Eventually it will evolve to 
computational graphs.



The deep learning puzzle

Content
High level, modular vision. Composable blocks, 
with some dynamical system (often in the form 
of gradient descent). Mention differentiability.

Goal
Get intuition of where we are going, before 
getting into details

Loss

TargetData

Node Node Node

Node Node Node

What to output?

How to adjust 
this input, if my 

output needs to 
change?

Node



The deep learning puzzle

Content
High level, modular vision. Composable blocks, 
with some dynamical system (often in the form 
of gradient descent). Mention differentiability.

Goal
Get intuition of where we are going, before 
getting into details

Loss

TargetData

Node Node Node

Node Node Node

What to output?

Differentiable 
wrt. inputs

Node
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Neural 
networks



Real neuron

Content
How do real networks work, or rather a super 
simplified picture from 50s (?).

Goal
This is how things started, and it is also a good 
place to show that ANNs are inspired by reality, 
but not trying to reproduce it. 

- Connected to others
Represents simple 
computation
Has inhibition and 
excitation 
connections

- Has a state
- Outputs spikes

Want to learn more?
Hodgkin AL, Huxley AF A quantitative 
description of membrane current and 
its application to conduction and 
excitation in nerve. The Journal of 
Physiology. 117 (4): 500–44. (1952) 

Soma

  Axon

 Dendrite

Human brain is estimated to contain around 
86,000,000,000 of such neurons. 

Each is connected to thousands of other neurons.



Artificial neuron

Content
Basic structure and equations for 1 neuron.

Goal
Starting to get technical. 

- Easy to compose
Represents simple 
computation
Has inhibition and 
excitation 
connections

- Is stateless wrt. time
- Outputs real values

Want to learn more?
McCulloch, Warren S.; Pitts, Walter
A logical calculus of the ideas 
immanent in nervous activity
Bulletin of Mathematical Biophysics. 5 (4): 
115–133. (1943)

“Soma”

“Axon”

“Dendrite”

The goal of simple artificial neurons models is to reflect 
some neurophysiological observations, not to reproduce 

their dynamics.

Extra notes/ideas
We introduce a unified visualisation scheme, that we will 
reuse many times. We have a main box, “take home 
message box”, list of key observations, and some 
link/reference for more in-depth.
We also decide to color code things in equations and all 
plots:

- Parameters will be red
- Inputs will be blue



Artificial neuron

Content
Basic structure and equations for 1 neuron.

Goal
Starting to get technical. 

- Easy to compose
Represents simple 
computation
Has inhibition and 
excitation 
connections

- Is stateless wrt. time
- Outputs real values

Want to learn more?
McCulloch, Warren S.; Pitts, Walter
A logical calculus of the ideas 
immanent in nervous activity
Bulletin of Mathematical Biophysics. 5 (4): 
115–133. (1943)

The goal of simple artificial neurons models is to reflect 
some neurophysiological observations, not to reproduce 

their dynamics.

Extra notes/ideas
We introduce a unified visualisation scheme, that we will 
reuse many times. We have a main box, “take home 
message box”, list of key observations, and some 
link/reference for more in-depth.
We also decide to color code things in equations and all 
plots:

- Parameters will be red
- Inputs will be blue



- Easy to compose

Collection of artificial 
neurons
Can be efficiently 
vectorised
Fits highly optimised 
hardware (GPU/TPU)

Linear layer

Content
Composing these into a layer, a main building 
block. Visual + equations + vectorisation.

Goal
To get into “modular” thinking, and also provide 
some nuances about efficiency of vectorisation.

Want to learn more?
Jouppi, Norman P. et al. In-Datacenter 
Performance Analysis of a Tensor 
Processing Unit™ 44th International 
Symposium on Computer Architecture 
(ISCA) (2017)

In Machine Learning linear really means affine.
Neurons in a layer are often called units.

Parameters are often called weights.

Extra notes/ideas
As a high level idea for this talk, all the modules accept 
parameters as inputs, so we unify weights and inputs to 
neural networks, which will make switch to computational 
graph easy, and in the end - this is how things are 
actually implemented these days



Isn’t this
just linear

regression?

Content
Sth among the lines of “isn’t this just basic 
statistics?”

Goal
To raise interest, and also show that we build a 
new perspective of known things, so we can use 
them differently than people did before. 



Loss

TargetData

Node Node Node

Node Node Node

Content
Remind the puzzle view

Goal
Address why this view is important

Extra notes/ideas
Note that we stick to color coding, blue inputs, 
black/dark blue nodes. Losses related things will be 
orange.



Single layer
neural networks



Loss

TargetData

NodeLinear

Content
Puzzle view of a single layer network

Goal
Exemplification + reason to go for the next piece 
of the puzzle - sigmoid [next slide]

Extra notes/ideas
Grey boxes will be used to indicate that we are “missing” 
something at this point, and next slide will fill in the 
missing piece



Loss

TargetData

NodeLinear

Content
Puzzle view of a single layer network

Goal
Exemplification + reason to go for the next piece 
of the puzzle - sigmoid [next slide]

Extra notes/ideas
Grey boxes will be used to indicate that we are “missing” 
something at this point, and next slide will fill in the 
missing piece



- Introduces non-linear 
behaviour

- Produces probability 
estimate

- Has simple derivatives

- Saturates
- Derivatives vanish

Sigmoid activation function

Content
First non-linear model. Sigmoid. What we can do. 
Use with cross entropy.

Goal
Technical content

Want to learn more?
Hinton G. Deep belief networks. 
Scholarpedia. 4 (5): 5947.  (2009)

Activation functions are often called non-linearities.
Activation functions are applied point-wise.

Extra notes/ideas
We just keep reusing the color scheme and layout



Loss

TargetData

SigmoidLinear

Content
Puzzle view of a single layer network

Goal
Exemplification + reason to go for the next piece 
of the puzzle - sigmoid [next slide]

Extra notes/ideas
Grey boxes will be used to indicate that we are “missing” 
something at this point, and next slide will fill in the 
missing piece



Cross entropy

Content
Cross entropy

Goal
Technical content

- Encodes negation of 
logarithm of 
probability of correct 
classification
Composable with 
sigmoid

- Numerically unstable

Want to learn more?
Murphy, Kevin Machine Learning: A 
Probabilistic Perspective (2012)

Cross entropy loss is also called
negative log likelihood or logistic loss.



The simplest “neural” classifier

Content
Logistic regression. 

Goal
Technical content

Encodes negation of 
logarithm of 
probability of entirely 
correct classification
Equivalent to logistic 
regression model

Numerically unstable

Want to learn more?
Cramer, J. S. The origins of logistic 
regression (Technical report). 119. 
Tinbergen Institute. pp. 167–178 (2002)

Cross entropy loss is also called
negative log likelihood or logistic loss.

Being additive over samples allows for efficient learning.

Cross 
entropy

TargetData

Linear Sigmoid



- Multi-dimensional 
generalisation of 
sigmoid

- Produces probability 
estimate

- Has simple derivatives

- Saturates
- Derivatives vanish

Softmax

Want to learn more?
Goodfellow, Ian; Bengio, Yoshua; Courville, 
Aaron Softmax Units for Multinoulli 
Output Distributions. Deep Learning. MIT 
Press. pp. 180–184. (2016)

Softmax is the most commonly used final activation in 
classification.

It can also be used to have a smooth version of maximum.

Content
Softmax as a generalisation of sigmoid as well as 
trainable version of a max operator.

Goal
Technical content



Softmax + Cross entropy

Encodes negation of 
logarithm of 
probability of entirely 
correct classification
Equivalent to 
multinomial logistic 
regression model

Numerically stable 
combination

Want to learn more?
Martins, Andre, and Ramon Astudillo. 
From softmax to sparsemax: A sparse 
model of attention and multi-label 
classification. International Conference 
on Machine Learning. (2016)

Widely used not only in classification but also in RL.
Cannot represent sparse outputs (sparsemax).

Does not scale too well with k.

Cross 
entropy

TargetData

Linear Softmax

Content
Combining sm + ce to have a multi-class 
classifier.

Goal
Technical content



Handwritten digits 
recognition at 92% level.

Highly dimensional spaces
are surprisingly easy to
shatter with hyperplanes.

Widely used in commercial applications. 

For a long time a crucial model for Natural Language Processing under the name of 
MaxEnt (Maximum Entropy Classifier).

Uses

Content
What linear models are good for

Goal
Shows that even at this stage we have something 
surprisingly useful.



... and limitations

Content
What they are not good for - complex things like 
Go or Chess

Goal
Justifies deep learning. Provides us with long 
term goal.



... and limitations

Content
… also - XOR.

Goal
Gives us a simple failure mode example to focus 
on.



Two layer
neural networks



LossLinear Node
Cross 
entropy

Target

Linear Softmax

Data

Linear Sigmoid



Target

Cross 
entropy

Linear Softmax

Data

Linear Sigmoid Cross 
Entropy

Data Target

Extra notes/ideas
We will go step by step through the xor solution with a 
simple neural net, we don’t need any text for that.



Target

Cross 
entropy

Linear Softmax

Data

Linear Sigmoid Cross 
Entropy

Data Target

Extra notes/ideas
Introducing extra colors for simpler visual identification 
of projections. Lines are hidden neurons.



Target

Cross 
entropy

Linear Softmax

Data

Linear Sigmoid Cross 
Entropy

Data Target

Extra notes/ideas
Introducing extra colors for simpler visual identification 
of projections. Lines are hidden neurons.



Target

Cross 
entropy

Linear Softmax

Data

Linear Sigmoid Cross 
Entropy

Data Target

Extra notes/ideas
We add projections



Target

Cross 
entropy

Linear Softmax

Data

Linear Sigmoid Cross 
Entropy

Data Target

Extra notes/ideas
Bend the space with sigmoids



Target

Cross 
entropy

Linear Softmax

Data

Linear Sigmoid Cross 
Entropy

Data Target

Extra notes/ideas
And separate linearly now. Done!



Target

Cross 
entropy

Linear Softmax

Data

Linear Sigmoid Cross 
Entropy

Data Target

Extra notes/ideas
And separate linearly now. Done!



1-hidden layer network vs XOR

With just 2 hidden 
neurons we solve XOR
Hidden layer allows us 
to bent and twist 
input space
We use linear model 
on top, to do the 
classification

Want to learn more?
Blum, E. K. Approximation of Boolean 
functions by sigmoidal networks: Part I: 
XOR and other two-variable functions 
Neural computation 1.4  532-540. (1989)

Target

Cross 
entropy

Linear Softmax

Data

Linear Sigmoid Cross 
Entropy

TargetData

Hidden layer provides non-linear input space 
transformation so that final linear layer can classify.

Extra notes/ideas
We keep the layout, and use color coding for weights. We 
also keep the puzzle analogy around.



http://playground.tensorflow.org/ by Daniel Smilkov and Shan Carter

Extra notes/ideas
External resource, to show a more complex example and 
encourage people to have fun exploring.

http://playground.tensorflow.org/


http://playground.tensorflow.org/ by Daniel Smilkov and Shan Carter

http://playground.tensorflow.org/


- One of the most 
important theoretical 
results for Neural 
Networks

- Shows, that they are 
extremely expressive

- Tells us nothing about 
learning

- Size of network grows 
exponentially

Universal Approximation Theorem

For any continuous function from a hypercube 
[0,1]d to real numbers, and every positive epsilon, 

there exists a sigmoid based, 1-hidden layer 
neural network that obtains at most epsilon error 

in functional space.

Want to learn more?
Cybenko., G. Approximations by 
superpositions of sigmoidal functions, 
Mathematics of Control, Signals, and 
Systems, 2 (4), 303-314 (1989)

Big enough network can approximate, 
but not represent any smooth function.
The math trick is to show that networks

are dense in the space of target functions.

Content
Introduce the notion of universal approximation.
Define what it is, what it guarantees. Talk about 
Cybenko’s view of magic of sigmoids.

Goal
Technical content

Extra notes/ideas
For the “theorems” (rephrased and simplified) we use 
similar style as before, just make it a bit more vivid.



Universal Approximation Theorem

For any continuous function from a hypercube 
[0,1]d to real numbers, non-constant, bounded 

and continuous activation function f, and every 
positive epsilon, there exists a 1-hidden layer 
neural network using f that obtains at most 

epsilon error in functional space.

Want to learn more?
Kurt Hornik Approximation Capabilities 
of Multilayer Feedforward Networks, 
Neural Networks, 4(2), 251–25 (1991)

- One of the most 
important theoretical 
results for Neural 
Networks

- Shows, that they are 
extremely expressive

- Tells us nothing about 
learning

- Size of network grows 
exponentially

Big enough network can approximate, 
but not represent any smooth function.
The math trick is to show that networks

are dense in the space of target functions.

Content
Extension by Hornik, showing that this is neural 
networks structure that gives UAT, not sigmoids.

Goal
Technical content



Universal Approximation Theorem Intuition

Content
Building 1D UAT visual intuition.

Goal
Make people “feel” what UAT really says, without 
going into technicalities of the proof itself.



Universal Approximation Theorem Intuition

Content
Building 1D UAT visual intuition.

Goal
Make people “feel” what UAT really says, without 
going into technicalities of the proof itself.



Universal Approximation Theorem Intuition

Content
Building 1D UAT visual intuition.

Goal
Make people “feel” what UAT really says, without 
going into technicalities of the proof itself.



Universal Approximation Theorem Intuition

Content
Building 1D UAT visual intuition.

Goal
Make people “feel” what UAT really says, without 
going into technicalities of the proof itself.



Universal Approximation Theorem Intuition

Content
Building 1D UAT visual intuition.

Goal
Make people “feel” what UAT really says, without 
going into technicalities of the proof itself.



Universal Approximation Theorem Intuition

Content
Building 1D UAT visual intuition.

Goal
Make people “feel” what UAT really says, without 
going into technicalities of the proof itself.



Universal Approximation Theorem

For any continuous function from a 
hypercube [0,1]d to real numbers, 
non-constant, bounded and continuous 
activation function f, and every positive 
epsilon, there exists a 1-hidden layer 
neural network using f that obtains at 
most epsilon error in functional space.

Want to learn more?
Kurt Hornik Approximation Capabilities 
of Multilayer Feedforward Networks, 
Neural Networks, 4(2), 251–25 (1991)

- One of the most 
important theoretical 
results for Neural 
Networks

- Shows, that they are 
extremely expressive

- Tells us nothing about 
learning

- Size of network grows 
exponentially

Big enough network can approximate, 
but not represent any smooth funciton.
The math trick is to show that networks

are dense in the space of target functions.

http://playground.tensorflow.org/ by Daniel Smilkov and Shan Carter

Content
A 2D building block “bump”.

Goal
Make people see it generalises

Extra notes/ideas
We reuse slide/object introduced before, so people 
make connections. 

http://playground.tensorflow.org/


Deep neural 
networks



Linear NodeLinear Node

Data

Linear Node Loss

Target

Linear Node



- Introduces non-linear 
behaviour

- Creates piecewise 
linear functions

- Derivatives do not 
vanish

- Dead neurons can 
occur

- Technically not 
differentiable
at 0

Rectified Linear Unit (ReLU)

Want to learn more?
Hahnloser, R.; Sarpeshkar, R.; Mahowald, M. 
A.; Douglas, R. J.; Seung, H. S. Digital 
selection and analogue amplification 
coexist in a cortex-inspired silicon 
circuit. Nature. 405: 947–951  (2000)

One of the most commonly used activation functions.
Made math analysis of networks much simpler.

Content
ReLU, why, how and whatnot

Goal
Technical content



Lines/corners
detection

Shapes 
detection

Object 
detection

Class 
detection

Linear ReLULinear ReLU

Data

Linear ReLU Loss

Target

Linear Softmax

Content
The “old school” view/premise of DL, hierarchical 
representations.

Goal
Technical content



- Expressing 
symmetries and 
regularities is much 
easier with deep 
model than wide one.

Deep model means 
many non-linear 
composition and thus 
harder learning

Depth

Want to learn more?
Guido Montúfar, Razvan Pascanu, 
Kyunghyun Cho, Yoshua Bengio. On the 
Number of Linear Regions of Deep 
Neural Networks Arxiv  (2014)

Content
Visual intuition about folding space (Pascanu et 
al.), building classes of abstraction and structure.

Goal
To get better intuition for what depth does 
mathematically.

Number of linear regions grows exponentially with depth,
and polynomially with width.

Data



Neural networks as computational graphs

Content
Showing the language of modern DN. Boxes that 
talk to each other.

Goal
Introduce a toolbox we are all working with.

Linear ReLULinear ReLU

Data

Linear ReLU Cross 
Entropy

Target

Linear Sotfmax

Extra notes/ideas
We keep the color coding, computational nodes have 
exactly the same semantics as equations and puzzles 
from previous slides



Neural networks as computational graphs

Content
Showing the language of modern DN. Boxes that 
talk to each other.

Goal
Introduce a toolbox we are all working with.



Neural networks as computational graphs

Content
Show things can get messy/non-linear

Goal
Make people understand flexibility



Neural networks as computational graphs

Content
Show things we can have many losses [deep 
supervision, aux]

Goal
Make people understand flexibility



Neural networks as computational graphs

Content
Show losses don’t have to be end nodes 
[sobolev, aux]

Goal
Make people understand flexibility



Neural networks as computational graphs

Content
Show weights can be shared [convnet, rnn]

Goal
Make people understand flexibility
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Learning



Linear algebra recap

Content
Gradient, Jacobian, Notation

Goal
Fix notation, prepare for basic maths.

Gradient Jacobian



- Works for any 
“smooth enough” 
function

- Can be used on 
non-smooth targets 
but with less 
guarantees

- Converges to local 
optimum

Gradient descent recap

Want to learn more?
Kingma, Diederik P., and Jimmy Ba. Adam: 
A method for stochastic optimization 
arXiv preprint arXiv:1412.6980 (2014).

Choice of learning rate is critical.
Main learning algorithm behind deep learning.

Many modifications: Adam, RMSProp, ...

Content
Gradient descent reminder.

Goal
Technical content

Extra notes/ideas
Again we keep the color coding, hopefully will make it 
easy to notice relation between theta and W,b etc. Also 
the animation uses red color because we are moving 
through parameter space.



Neural networks as computational graphs - API

Content
API of a computational node.

Goal
Show how generic and simple it is.

Forward pass

Backward pass



Neural networks as computational graphs - API

Forward pass

Backward pass

Content
API of a computational node.

Goal
Show how generic and simple it is.



Gradient descent and computational graph

Want to learn more?
Abadi, Martín, et al. Tensorflow: A system 
for large-scale machine learning. 12th 
Symposium on Operating Systems Design 
and Implementation  (2016)

Content
GD + computational graph

Goal
Technical content



Gradient descent and computational graph

Want to learn more?
Abadi, Martín, et al. Tensorflow: A system 
for large-scale machine learning. 12th 
Symposium on Operating Systems Design 
and Implementation  (2016)

Content
GD + computational graph, explicitely placing 
theta somewhere

Goal
Technical content



Chain rule, backprop and automatic differentiation

Content
Chainrule in graphs

Goal
Technical content



Chain rule, backprop and automatic differentiation

Content
Showing forward pass

Goal
Technical content



Chain rule, backprop and automatic differentiation

Content
Showing one-path backwards pass

Goal
Technical content



Chain rule, backprop and automatic differentiation

Content
Showing multiple paths backwards

Goal
Technical content



Chain rule, backprop and automatic differentiation

Content
Showing multiple paths backwards

Goal
Technical content



Linear layer as a computational graph

dot

b

W +

x

Content
Linear layer as CG

Goal
Technical content.

y

Note that backward pass is a 
computational graph itself.

Symmetry 
between 
weights 

and inputs

Biases are adjusted 
proportional to error

Extra notes/ideas
For the computational nodes, we introduce a bit 
different layout, that we will reuse a lot now (adjusted for 
kind of content we need).

Orange things are related to losses, as in previous 
visualisations



ReLU as a computational graph

relux

Content
Relu as CG

Goal
Technical content.

y

We usually put “gradient” at zero
to be equal to zero.

Can be seen as gating the incoming 
gradients. The ones going through 
neurons that were active are passed 
through, and the rest zeroed.



Softmax as a computational graph

expx

Content
Sm as CG

Goal
Technical content.

y

Since exponents of big numbers will 
cause overflow, it is rarely explicitly 

written like this.

Backwards pass is essentially 
a difference between incoming gradient 
and our output.

sum div



Cross entropy as a computational graph

logp

Content
CE as CG

Goal
Technical content.

L

Even though it is a loss, we could 
still multiply its backwards by 

another incoming errors.

Dividing by p can be 
numerically unstable

t dot neg

We can also backprop 
into labels themselves



Cross entropy with logits as a computational graph

log

Content
Combined ce + sm as cg

Goal
Technical content.

L

For numerical stability it is usually 
a single operation in 

a computational graph.

Simplifies extremely!
t dot neg

We can also backprop 
into labels themselves

expx

sum div



Example - 3 layer MLP with ReLU activations

Content
Work through 3-layer MLP with softmax and XE.

Goal
Technical content

log

L
t dot neg

exp

sum div

dot

b3W3

+dot

b2W2

+ reludot

b1W1

+x relu out



Example - 3 layer MLP with ReLU activations

Content
Work through 3-layer MLP with softmax and XE.

Goal
Technical content

log

L
t dot neg

exp

sum div

dot

b3W3

+dot

b2W2

+ reludot

b1
slice

+x relu out

θ

slice slice slice slice slice



Example - 3 layer MLP with ReLU activations

Content
Work through 3-layer MLP with softmax and XE.

Goal
Technical content

log

L
t dot neg

exp

sum div

dot

b3W3

+dot

b2W2

+ reludot

b1
slice

+x relu out

θ

slice slice slice slice slice



4
UCL x DeepMind Lectures

Pieces of the 
puzzle

Content
Various extra operations, that were not covered, 
introduced. TBD

Goal
Technical content



Max as a computational graph

maxx
y

Used in max pooling.

Gradients only flow through the selected 
element. Consequently we are not 
learning how to select.



Conditional execution as a computational graph

mul

x
y

Let’s assume p is probability 
distribution (e.g. one hot).

Backwards pass is 
gated in the same 

way forward one is

p

We can learn 
conditionals 

themselves too, 
just use softmax.



Quadratic loss as a computational graph

-

x

L

Typical loss for all regression 
problems (e.g. Value function fitting)

Backwards pass is 
just a difference in 

predictions

t

Learning 
targets is 

analogous

sqr sum
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Practical 
issues



Overfitting and regularisation

Content
Basics + double descent.

Goal
Technical content

Classical results from statistics and Statistical Learning 
Theory which analyses the worst case scenario.

Want to learn more?
Vapnik, Vladimir. The nature of statistical 
learning theory. Springer science & 
business media, (2013)

- As your model gets 
more powerful, it can 
create extremely 
complex hypotheses, 
even if they are not 
needed
Keeping things simple 
guarantees that if the 
training error is small, 
so will the test be.

Figure from Belkin et al. (2019)

Lp regularisation

Dropout

Noising data

Early stopping

Batch/Layer norm



Overfitting and regularisation

Content
Basics + double descent.

Goal
Technical content

New results, that take into consideration learning effects.

Want to learn more?
Belkin, Mikhail, et al. Reconciling modern 
machine-learning practice and the 
classical bias–variance trade-off. 
Proceedings of the National Academy of 
Sciences 116.32 (2019)

- As models grow, their 
learning dynamics 
changes, and they 
become less prone to 
overfitting.

- New, exciting 
theoretical results, 
also mapping these 
huge networks onto 
Gaussian Processes.

Figure from Belkin et al. (2019)



Overfitting and regularisation

Content
Basics + double descent.

Goal
Technical content

Model complexity is not as simple as 
number of parameters.

Want to learn more?
Nakkiran, Preetum, et al. Deep double 
descent: Where bigger models and 
more data hurt. arXiv preprint 
arXiv:1912.02292 (2019)

- Even big models still 
need (can benefit 
from) regularisation 
techniques.

We need new notions 
of effective 
complexity of our 
hypotheses classes.

Figure from Prettum et al. (2019)



Content
Basically Karpathy et al.

Goal
Technical content

Diagnosing and debugging
Want to learn more?

Karpathy A. A Recipe for Training Neural 
Networks 
http://karpathy.github.io/2019/04/25/reci
pe/ (2019)

It is always worth 
spending time on 
verifying correctness.

Be suspicious of good 
results more than bad 
ones.

Experience is key, just 
keep trying!

- Initialisation matters

- Overfit small sample

- Monitor training loss

- Monitor weights norms and NaNs

- Add shape asserts

- Start with Adam

- Change one thing at the time

http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/
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Bonus:
Multiplicative 
interactions



What
MLPs

cannot do?



What
MLPs

cannot do?
f(x,z) = 〈x,z〉 



Multiplicative interactions
Want to learn more?

Siddhant M. Jayakumar et al. 
Multiplicative Interactions and Where 
to Find Them Proceedings of 
International Conference on Learning 
Representations (2019)

Being able to approximate something is not the same as 
represent it.

Multiplicative units 
unify attention, metric 
learning and many 
others

They enrich the 
hypothesis space of 
regular neural 
networks in a 
meaningful way

Content
Multiplicative interactions play

Goal
Technical content



If you want to do research in fundamental building 
blocks of Neural Networks, do not seek to 
marginally improve the way they behave by finding 
new activation function. 

Ask yourself what current modules cannot 
represent or guarantee right now,

and propose a module that can.

Content
A take home, final thought, message.

Goal
Something to keep people thinking as they leave 
the lecture. 



Thank you



Questions


