WELCOME TO THE

UCL x DeepMind
lecture series

In this lecture series, leading research scientists
from leading Al research lab, DeepMind, will give
12 lectures on an exciting selection of topics

in Deep Learning, ranging from the fundamentals
of training neural networks via advanced ideas
around memory, attention, and generative
modelling to the important topic of responsible
innovation.

Please join us for a deep dive lecture series
into Deep Learning!

#UCLxDeepMind
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TODAY'S SPEAKER

Wojciech Czarneeki

Wojciech Czarnecki is a Research Scientist

at DeepMind. He obtained his phd from the
Jagiellonian University in Cracow, during which

he worked on the intersection of machine learning,
information theory and cheminformatics. Since joining
DeepMind in 2016, Wojciech has been mainly working
on deep reinforcement learning, with a focus on
multi-agent systems, such as recent Capture the Flag
project or AlphaStar, the first Al to reach the highest
league of human players in a widespread professional
esport without simplification of the game.
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TODAY'S LECTURE

Neural Networks
Foundations

Neural networks are the models responsible
for the deep learning revolution since 2006,
but their foundations go back as far as to the
1960s. In this lecture we will go through the
basics of how these models operate, learn
and solve problems. We will also set various
terminology/naming conventions to prepare
attendees for further, more advanced talks.
Finally, we will briefly touch upon more
research oriented directions of neural
network design and development.
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Plan for this Lecture

01

Overview

04

Pieces of the puzzle

02

Neural Networks

05

Practical issues

Private & Confidential

03

Learning

06

Bonus:
Multiplicative interactions
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What is not covered in this lecture

01

“Old school”

=

0O

(Restricted)
Boltzmann
Machines

Deep

Belief

Networks

Hopfield Networks
Self Organising
Maps

02

Biologically plausible

© Spiking networks
© Physical Simulators

Private & Confidential

03

Other

Capsules
Graph networks
Neural
Differential
Equations
Convolutional
Networks
Recurrent
Neural
Networks
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In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even
more surprising to the researchers was the fact that the unicorns
spoke perfect English.

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science

Now, after almost two centuries, the mystery of what sparked this
odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of
La Paz, and several companions, were exploring the Andes Mountains
when they found a small valley, with no other animals or humans.
Pérez noticed that the valley had what appeared to be a natural
fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By
the time we reached the top of one peak, the water looked blue,
with some crystals on top,” said Pérez.

Text and Speech
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The deep learning puzzle
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” Yann LeCun

Some folks still seem confused about what deep
learning is. Here is a definition:

DL is constructing networks of parameterized
functional modules & training them from
examples using gradient-based optimization....
facebook.com/722677142/post...

3:32 PM 24,20

Dec

Danilo J. Rezende
fy @DeepSpiker

Rephrasing @ylecun with my own words: DL is a
collection of tools to build complex modular
differentiable functions. These tools are devoid
of meaning, it is pointless to discuss what DL
can or cannot do. What gives meaning to it is
how it is trained and how the data is fed to it



The deep learning puzzle

How to adjust Node
this input, if my
output needs to
change?

>

What to output?

' Yann LeCun

Some folks still seem confused about what deep
learning is. Here is a definition:

DL is constructing networks of parameterized
functional modules & training them from
examples using gradient-based optimization....
facebook.com/722677142/post...

3:32 PM - Dec 24, 2019 - Fac

517 Retweets 1.9K Likes

o Q L 4 &

Q Danilo J. Rezende
fy @DeepSpiker

Rephrasing @ylecun with my own words: DL is a
collection of tools to build complex modular
differentiable functions. These tools are devoid
of meaning, it is pointless to discuss what DL
can or cannot do. What gives meaning to it is
how it is trained and how the data is fed to it

3:43 PM - Dec 25, 2019 - Twitter for iPhone




The deep learning puzzle

Differentiable
wrt. inputs

Node

>

What to output?

” Yann LeCun

Some folks still seem confused about what deep
learning is. Here is a definition:

DL is constructing networks of parameterized
functional modules & training them from
examples using gradient-based optimization....
facebook.com/722677142/post...

3:32 PM

Dec 24, 20

Danilo J. Rezende
fy @DeepSpiker

Rephrasing @ylecun with my own words: DL is a
collection of tools to build complex modular
differentiable functions. These tools are devoid
of meaning, it is pointless to discuss what DL
can or cannot do. What gives meaning to it is
how it is trained and how the data is fed to it
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Real neuron

Want to learn more?
Hodgkin AL, Huxley AF A quantitative

A description of membrane current and
its application to conduction and
excitation in nerve. The Journal of

Physiology. 117 (4): 500-44. (1952)

Connected to others
Represents simple
computation

Has inhibition and
excitation
connections

Dendrite

Has a state
Outputs spikes

Human brain is estimated to contain around

86,000,000,000 of such neurons.
Each is connected to thousands of other neurons.
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Artificial neuron
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“Dendrite”

The goal of simple artificial neurons models is to reflect

some neurophysiological observations, not to reproduce
their dynamics.

Want to learn more?

McCulloch, Warren S.; Pitts, Walter

h A logical calculus of the ideas
immanent in nervous activity
Bulletin of Mathematical Biophysics. 5 (4):

115-133. (1943)

Easy to compose
Represents simple
computation

Has inhibition and
excitation
connections

9 s stateless wrt. time
9 Outputs real values

O



Artificial neuron

Want to learn more?

McCulloch, Warren S.; Pitts, Walter

3 2 a1 o0 1 2 3 a A A logical calculus of the ideas
immanent in nervous activity
Bulletin of Mathematical Biophysics. 5 (4):

115-133. (1943)

Easy to compose
Represents simple
- computation
Has inhibition and
excitation
connections

Is stateless wrt. time
Outputs real values

The goal of simple artificial neurons models is to reflect

0O

some neurophysiological observations, not to reproduce
their dynamics.




Linear layer

Want to learn more?
Jouppi, Norman P. et al. In-Datacenter
h b . b | h Performance Analysis of a Tensor
X 9 W 9 - W 9 X —|_ Processing Unit™ 44th International
Symposium on Computer Architecture
(ISCA) (2017)

fhnear(X, W, b) =Wx+b Easy to compose

Collection of artificial
neurons

Can be efficiently
vectorised

Fits highly optimised
In Machine Learning linear really means affine. hardware (GPU/TPU)

Neurons in a layer are often called units.
Parameters are often called weights.
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Single layer
neural networks
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Sigmoid activation function

fo(x)

10 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

-100 -75 -50 -25 00 25 50 75 100
X

Activation functions are often called non-linearities.

Activation functions are applied point-wise.

Want to learn more?

Hinton G. Deep belief networks.

|E Scholarpedia. 4 (5): 5947. (2009)

Introduces non-linear
behaviour

Produces probability
estimate

Has simple derivatives

Saturates
Derivatives vanish

0 O O ©
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Cross entropy

Lee(x, 1)

T T T T T T T T - T T T T T T T T
-4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4

lce(p,t) = —[tlogp + (1 — t)log(1 — p)]

Cross entropy loss is also called

negative log likelihood or logistic loss.

Want to learn more?

Murphy, Kevin Machine Learning: A

|E Probabilistic Perspective (2012)

9O Encodes negation of
logarithm of
probability of correct
classification

9O Composable with
sigmoid

9 Numerically unstable

O



The simplest “neural” classifier

> > entropy >
A A

Leg(p, t) = — Z[t(i) log p'¥ + (1— t(i)) log(1 — p(i))]

1=1

Cross entropy loss is also called

negative log likelihood or logistic loss.
Being additive over samples allows for efficient learning.

Want to learn more?

Cramer, J. S. The origins of logistic

h regression (Technical report). 119.
Tinbergen Institute. pp. 167-178 (2002)

Encodes negation of
logarithm of
probability of entirely
correct classification
Equivalent to logistic
regression model

9 Numerically unstable
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Softmax

X Want to learn more?

Goodfellow, lan; Bengio, Yoshua; Courville,

f S1m (X) — k |E Aaron Softmax Units for Multinoulli

Output Distributions. Deep Learning. MIT
Press. pp. 180-184. (2016)

fsm([2,0]) =

o
&
+
m
]
o
&
+
o
o
()

Multi-dimensional
generalisation of

= |fo(2),1 = fo(z)] sigmoid

Produces probability
estimate

Has simple derivatives

Saturates
Derivatives vanish

Softmax is the most commonly used final activation in

0 O ©

classification.
It can also be used to have a smooth version of maximum.




Softmax + Cross entropy

Widely used not only in classification but also in RL.
Cannot represent sparse outputs (sparsemax).
Does not scale too well with k.

Want to learn more?

Martins, Andre, and Ramon Astudillo.

A From softmax to sparsemax: A sparse
model of attention and multi-label
classification. International Conference

on Machine Learning. (2016)

Encodes negation of
logarithm of
probability of entirely
correct classification
Equivalent to
multinomial logistic
regression model

Numerically stable
combination

O
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... and limitations
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... and limitations
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Two layer
neural networks
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Hidden neuron 2

-5
Linear neuron 2
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1-hidden layer network vs XOR

10.0

75

5.0

25

-10.0

Linear Sigmoid Linear Softmax Cross
> > > Entropy >
A A

xS (-1 1 -4
iy &' W_{l —1] b_[—zl]

-10.0 -75 -50 -25 00 25 50 75 100

Hidden layer provides non-linear input space

transformation so that final linear layer can classify.

Want to learn more?

L

Blum, E. K. Approximation of Boolean
functions by sigmoidal networks: Part I:
XOR and other two-variable functions
Neural computation 1.4 532-540. (1989)

With just 2 hidden
neurons we solve XOR
Hidden layer allows us
to bent and twist
input space

We use linear model
on top, to do the
classification

O



http://playground.tensorflow.org/ by Daniel Smilkov and Shan Carter

N

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
—e

Noise: 0

Batch size: 10

—0

REGENERATE

4|

Epoch

000,000

FEATURES

Which properties do
you want to feed in?

XX
sin(X,)

sin(X,)

Learning rate

0.03 >

Activation

Sigmoid

Regularization

v None

1 HIDDEN LAYER

+ -

6 neurons

wom

This is the output
from one neuron
Hover to see it
larger.

Regularization rate

0

OUTPUT

Test loss 0.514
Training loss 0.531

Problem type

Classification

Colors shows

data, neuron and r: !

weight values.

[J Show test data

[] Discretize output

1


http://playground.tensorflow.org/

http://playground.tensorflow.org/ by Daniel Smilkov and Shan Carter

) i

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%

e

Noise: 0

[ —

Batch size: 10

_.—

REGENERATE

Epoch

000,218 003

Learning rate Activation Regularization

Sigmoid v None

4

FEATURES + — 1 HIDDEN LAYER

Which properties do
you want to feed in?
B =

6 neurons

Regularization rate

0

'~
N, [] /0

sin(X,) < This is the output
from one neuron.
Hover to see it
larger.

OUTPUT

Test loss 0.049
Training loss 0.036

Colors shows
data, neuron and
weight values.

[J Show test data

Problem type

Classification v

— | —

[] Discretize output


http://playground.tensorflow.org/

Universal Approximation Theorem

For any continuous function from a hypercube
[0,1]9 to real numbers, and every positive epsilon,
there exists a sigmoid based, 1-hidden layer

neural network that obtains at most epsilon error
in functional space.

Big enough network can approximate,
but not represent any smooth function.

The math trick is to show that networks
are dense in the space of target functions.

Want to learn more?

L

Cybenko., G. Approximations by
superpositions of sigmoidal functions,
Mathematics of Control, Signals, and
Systems, 2 (4), 303-314 (1989)

O One of the most
important theoretical
results for Neural
Networks

o Shows, that they are
extremely expressive

© Tells us nothing about
learning

9 Size of network grows
exponentially

O



Universal Approximation Theorem

For any continuous function from a hypercube
[0,]1]¢ to real numbers, non-constant, bounded
and continuous activation function f, and every

positive epsilon, there exists a 1-hidden layer
neural network using f that obtains at most
epsilon error in functional space.

Big enough network can approximate,
but not represent any smooth function.

The math trick is to show that networks
are dense in the space of target functions.

Want to learn more?

L

Kurt Hornik Approximation Capabilities
of Multilayer Feedforward Networks,
Neural Networks, 4(2), 251-25 (1991)

O One of the most
important theoretical
results for Neural
Networks

o Shows, that they are
extremely expressive

© Tells us nothing about
learning

9 Size of network grows
exponentially

O



Universal Approximation Fheoeremt Intuition
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Universal Approximation Fheoeremt Intuition
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Universal Approximation Fheerent Intuition
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Universal Approximation Fheerent Intuition
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Universal Approximation Fheerent Intuition
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Universal Approximation Fheerent Intuition

10 -

/ ~
] J
04
02
/
-
[ 4
0 75 10,

0.0 -

-10.0 15 -5.0 Zo% 0.0 25 B 0



http://playground.tensorflow.org/ by Daniel Smilkov and Shan Carter

) i

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%

e

Noise: 0

[ —

Batch size: 10

_.—

REGENERATE

Epoch

000,218 003

Learning rate Activation Regularization

Sigmoid v None

4

FEATURES + — 1 HIDDEN LAYER

Which properties do
you want to feed in?
B =

6 neurons

Regularization rate

0

'~
N, [] /0

sin(X,) < This is the output
from one neuron.
Hover to see it
larger.

OUTPUT

Test loss 0.049
Training loss 0.036

Colors shows
data, neuron and
weight values.

[J Show test data

Problem type

Classification v

— | —

[] Discretize output
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Deep neural
networks
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Rectified Linear Unit (ReLU)

10 1

2

04

—16.0 —7l.5 -5.0 -2‘.5 0.‘0 2.|5 5.|0 7.I5 1OI.O

One of the most commonly used activation functions.

Made math analysis of networks much simpler.

Want to learn more?

L

© O 0 O O

Hahnloser, R.; Sarpeshkar, R.; Mahowald, M.
A.; Douglas, R. J; Seung, H. S. Digital
selection and analogue amplification
coexist in a cortex-inspired silicon
circuit. Nature. 405: 947-951 (2000)

Introduces non-linear
behaviour
Creates piecewise
linear functions
Derivatives do not
vanish

Dead neurons can
occur

Technically not
differentiable

atO
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Lines/corners Shapes Object Class
detection detection detection detection
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Depth

Want to learn more?

Guido Montufar, Razvan Pascanu,

h Kyunghyun Cho, Yoshua Bengio. On the
Number of Linear Regions of Deep
Neural Networks Arxiv (2014)

Figure 3: Space folding of 2-D space in a non-trivial way. Note how the folding can potentially a Exp ressing

identify symmetries in the boundary that it needs to learn. symmetrie s and
regularities is much
easier with deep
model than wide one.

© Deep model means

: : : : many non-linear
Number of linear regions grows exponentially with depth, composition and thus

and polynomially with width. harder learning
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Neural networks as computational graphs
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Linear algebra recap

Gradient Jacobian
y=f(x):R* > R YZf(X):Rd‘—HR{’C
Oy of of [Br oo 2o
— =V, = |—, ..., — 0 L d
ox f(X) [8X1 aXd] 8_2,( = Jxf(x) = : . :
Ofr Ofk
| Ox1 0xg




Gradient descent recap

Want to learn more?

Kingma, Diederik P, and Jimmy Ba. Adam:

A A method for stochastic optimization
arXiv preprint arXiv:1412.6980 (2014).

9t+1 = Ot — O(tVQL(Ot)

Vo(0) = V0 X lox?00.4) ~
i =N A ‘ P
= 3" Vollg(x?,00),60) L o Works o any
i “smooth enough”
function

9 Canbeusedon
non-smooth targets
but with less

guarantees
Choice of learning rate is critical. o Cor?verges to local
Main learning algorithm behind deep learning. optimum

Many modifications: Adam, RMSProp, ...




Neural networks as computational graphs - API

f (X) Forward pass

fo (X) Backward pass

O



Neural networks as computational graphs - API
f (X) Forward pass

)L
i)v fo(X) Backward pass

O



Gradient descent and computational graph

9t+1 = gt — OétVQL(Ht)

VeL(6:)

V@ Z g X(Z gt

nge (x@,0,),t

Want to learn more?

L

Abadi, Martin, et al. Tensorflow: A system
for large-scale machine learning. 12th

Symposium on Operating Systems Design

and Implementation (2016)
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Gradient descent and computational graph

9t—|—1 = gt — OétVQL(Ht)
VoL(6,) v(,zg (xD,8,),t nge (x,6,),£0)

Want to learn more?

Abadi, Martin, et al. Tensorflow: A system

A for large-scale machine learning. 12th
Symposium on Operating Systems Design
and Implementation (2016)
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Chain rule, backprop and automatic differentiation
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Chain rule, backprop and automatic differentiation
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Chain rule, backprop and automatic differentiation
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Linear layer as a computational graph

Note that backward pass is a
computational graph itself.

flinear(xa W, b) =Wx+b

oL 0L
= ="w
25 ay Symmetry
between
‘ T —
oL _ % x T weights
OW  \ Jy and inputs
oL _ oL Biases are adjusted
ob  Jy proportional to error

O



Rel.U as a computational graph

frel(x) = max(0, x)

B8

oL

Jy

We usually put “gradient” at zero

to be equal to zero.

oL L

9~ _Z o1
Ox (’)y® vt

Can be seen as gating the incoming
gradients. The ones going through
neurons that were active are passed
through, and the rest zeroed.

O



Softmax as a computational graph

oL
y

Since exponents of big numbers will

cause overflow, it is rarely explicitly
written like this.

eX

Zf:l ™

fsm(x) —

g_i;- — Z:ri (())3{ YZ((S - Yj)
_ )L 0L
Z)y y ZZ— (()y,,;

Backwards pass is essentially
a difference between incoming gradient
and our output.

O



Cross entropy as a computational graph

Even though it is a loss, we could

still multiply its backwards by
another incoming errors.

lce(p, t) = —tlog p

8_L — _top Dividing by p can be
op ‘ numerically unstable
oL We can also backprop
9t = —logp - into labels themselves

O



Cross entropy with logits as a computational graph

For numerical stability it is usually
a single operation in
a computational graph.

oL

8_X =t—xX — Simplifies extremely!
0L _ We can also backprop
E — — 108 fsm(X) into labels themselves

O



Example - 3 layer MLP with ReLU activations

X dot + relu dot : + relu dot

O



Example - 3 layer MLP with ReLU activations
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Example - 3 layer MLP with ReLU activations

9t—|—1 = Ot — at-z v@f(g(x(z)7 975)9 t(Z))

o
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Pieces of the
puzzle
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Max as a computational graph

fmax(X) = max X;

B0
oL

Jy

Used in max pooling.

oL _ 0L .
ox Oy < TImes®

Gradients only flow through the selected
element. Consequently we are not
learning how to select.

O



Conditional execution as a computational graph

Let's assume p is probability

distribution (e.g. one hot).

fcond(X> p) =X0OPp

oL oL . Backwards pass is
—=—0Pp gated in the same
ox  Jy way forward one is
oL OL T We can learn
% = E ©X conditionals

themselves too,
just use softmax.

O



Quadratic loss as a computational graph

Typical loss for all regression

problems (e.g. Value function fitting)

ba(x,t) = ||t — x||*

O_L
ox

OL
ot

Backwards pass is
Q(X _ t)T < just a difference in
predictions

Learning
targets is
analogous

=2(t —x)*

O



Practical
issues
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Overfitting and regularisation

Want to learn more?

Vapnik, Vladimir. The nature of statistical

" under—fitting : over—fitting Lp regU|arisati0n D learning theory. Springer science &
' business media, (2013)
. Test risk
A : Dropout
£ '
' Noising data
N
~ o ‘Training risk | : O Asyour model gets
sweet spot_ T ~ _ _ Early stopping more powerful, it can
;. create extremely
Capacity ok i Batch/Layer norm complex hypotheses
Figure from Belkin et al. (2019) f th t !
even | ey are no
needed

© Keeping things simple
guarantees that if the
training error is small,
so will the test be.

Classical results from statistics and Statistical Learning

Theory which analyses the worst case scenario.

O



Overfitting and regularisation

Want to learn more?

. Belkin, Mikhail, et al. Reconciling modern
ove r-parameterlz ed h machine-learning practice and the
classical bias—variance trade-off.
Proceedings of the National Academy of
Sciences 116.32 (2019)

under-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

Risk

- Training risk: © As models grow, their
T~ _ _ . nterpolation threshold learning dynamics
Capacity of H changes, and they
become less prone to
overfitting.
O New, exciting
theoretical results,
also mapping these

New results, that take into consideration learning effects. huge networks onto
Gaussian Processes.

-~

Figure from Belkin et al. (2019)

O



Overfitting and regularisation

Want to learn more?

Nakkiran, Preetum, et al. Deep double

h descent: Where bigger models and
0.6/ 1 25/ ] more data hurt. arXiv preprint
! —— No Regularization arXiv:1912.02292 (2019)
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ol >~ © Even big models still

Figure from Prettum et al. (2019) A it Parameter need (Can beneﬁt
from) regularisation
techniques.

S We need new notions
of effective

Model lexitv i - complexity of our
odel complexity is not as simple as hypotheses classes.

number of parameters.
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Diagnosing and debugging

O O O O 0 ©

Initialisation matters

Overfit small sample

Monitor training loss

Monitor weights norms and NaNs
Add shape asserts

Start with Adam

Change one thing at the time

Want to learn more?

L

Karpathy A. A Recipe for Training Neural
Networks
http://karpathy.github.io/2019/04/25/reci
pe/ (2019)

It is always worth
spending time on
verifying correctness.

Be suspicious of good
results more than bad
ones.

Experience is key, just
keep trying!

O


http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/

Bonus:
Multiplicative
interactions

UCL x DeepMind Lectures
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What

MIL.Ps
cannot do?
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What

MIL.Ps
cannot do?

f(x,z) = (X,Z)

O



Multiplicative interactions

Want to learn more?

— aI"
: x Wy
= - o
v |ﬁ S T
L2000 to Find Them Proceedings of
=] International Conference on Learning
: 1500 Representations (2019)
£
E 1000
(5]
Q 5o
e
o o & S
. D_ - . . . .
2 & & = = = & & = = = © Multiplicative units
Input Dimensionality (d) Input Dimensionality (d) unify attention, metric
T T learning and many
f(x,z2z, W, U, V,b)=xWz+z U+ Vx+b others

O They enrich the
hypothesis space of
regular neural
networks in a
meaningful way

Being able to approximate something is not the same as

represent it.




If you want to do research in fundamental building
blocks of Neural Networks, do not seek to
marginally improve the way they behave by finding
new activation function.

Ask yourself what current modules cannot
represent or guarantee right now,
and propose a module that can.

O
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