WELCOME TO THE

UCL x DeepMind
lecture series

In this lecture series, leading research scientists

from leading Al research lab, DeepMind, will give

12 lectures on an exciting selection of topics

in Deep Learning, ranging from the fundamentals

of training neural networks via advanced ideas around
memory, attention, and generative modelling to the
important topic of responsible innovation.

Please join us for a deep dive lecture series into
Deep Learning!

#UCLxDeepMind
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At the back, the way you came in
Wifi:

UCL guest

O



TODAY'S SPEAKER

Sander Dielema

Sander Dieleman is a Research Scientist at DeepMind

in London, UK, where he he has worked on the development

of AlphaGo and WaveNet. He was previously a PhD student at
Ghent University, where he conducted research on feature
learning and deep learning techniques for learning hierarchical
representations of musical audio signals. During his PhD he also
developed the deep learning library Lasagne and won solo and
team gold medals respectively in Kaggle's "Galaxy Zoo"
competition and the first National Data Science Bowl. In the
summer of 2014, he interned at Spotify in New York, where he
worked on implementing audio-based music recommendation
using deep learning on an industrial scale.
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TODAY'S LECTURE

Convolutional
Neural Networks
for Image
Recognition

In the past decade, convolutional neural
networks have revolutionised computer
vision. In this lecture, we will take a closer
look at convolutional network architectures
through several case studies, ranging from

the early 90's to the current state of the art.

We will review some of the building blocks
that are in common use today, discuss the
challenges of training deep models, and

strategies for finding effective architectures,

with a focus on image recognition.
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Last week:
neural networks

O



N:
A

Sigmoid

>

(

Linear Softmax

O



How can we feed
images to a neural
network?
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Neural networks for images

A digital image is a 2D grid of pixels.
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Neural networks for images

A neural network expects a vector of numbers as input.

A digital image is a 2D grid of pixels.
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Neural networks for images

A neural network expects a vector of numbers as input.

A digital image is a 2D grid of pixels.
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Locality and translation invariance

Locality: nearby pixels are more strongly correlated

Translation invariance: meaningful patterns can occur anywhere in the image
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Taking advantage of topological structure
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Weight sharing: use the same network parameters to
detect local patterns at many locations in the image
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Weight sharing: use the same network parameters to
detect local patterns at many locations in the image

Hierarchy: local low-level features are
composed into larger, more abstract features

edges and textures object parts objects
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The ImageNet challenge

= Major computer vision
benchmark

= Ran from 2010 to 2017
1.4M images, 1000 classes

N2

= Image classification

Want to learn more?

h Russakovsky, Olga et al. ImageNet Large Scale Visual
Recognition Challenge International Journal of
Computer Vision 115.3 (2015)
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2013

Top-5 classification error rate of
the competition winners

2014 2015 2016 2017
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Traditional computer vision techniques

2013 2014 2015 2016 2017
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From fully connected to locally connected
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From fully connected to locally connected
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From fully connected to locally connected

:ig\ N\ AN \\
=
fully-connected unit
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From fully connected to locally connected

Y = Z wW;X; + b

1€E3X3

locally-connected units
3 X 3 receptive field
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From locally connected to convolutional

Yy=W*xX+b

convolutional units
3 X 3 receptive field
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From locally connected to convolutional

Receptive field

Feature map
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Implementation: the convolution operation

The kernel slides across the image and
produces an output value at each position

O



Implementation: the convolution operation

The kernel slides across the image and
produces an output value at each position

O



Implementation: the convolution operation

The kernel slides across the image and
produces an output value at each position

O



Implementation: the convolution operation

The kernel slides across the image and
produces an output value at each position

O



Implementation: the convolution operation

The kernel slides across the image and
produces an output value at each position

O



Implementation: the convolution operation

e

The kernel slides across the image and
produces an output value at each position

O



Implementation: the convolution operation
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The kernel slides across the image and

produces an output value at each position
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Implementation: the convolution operation

We convolve multiple kernels and obtain
multiple feature maps or channels
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Inputs and outputs are tensors
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Inputs and outputs are tensors

channels

height
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Inputs and outputs are tensors

height

channels

width
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Variants of the convolution operation

i

Valid convolution: output size = input size - kernel size + 1
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Variants of the convolution operation
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Full convolution: output size = input size + kernel size -1

O



Variants of the convolution operation
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Same convolution: output size = input size
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Variants of the convolution operation
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Strided convolution: kernel slides along the image with a step > 1
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Variants of the convolution operation
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Strided convolution: kernel slides along the image with a step > 1
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Variants of the convolution operation
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Dilated convolution: kernel is spread out, step > 1 between kernel elements
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Variants of the convolution operation

Dilated convolution: kernel is spread out, step > 1 between kernel elements
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Variants of the convolution operation

\

Dilated convolution: kernel is spread out, step > 1 between kernel elements
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Variants of the convolution operation

Depthwise convolution: each output channel is connected only to one input channel

O



Pooling

Pooling: compute mean or max over small windows to reduce resolution
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Pooling

Pooling: compute mean or max over small windows to reduce resolution
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Convolutional
neural networks
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Stacking the building blocks

N2

CNNs or “convnets”
Up to 100s of layers

Alternate convolutions and
pooling to create a hierarchy




Recap: neural networks as computational graphs
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Simplified diagram: implicit parameters and loss
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Simplified diagram: implicit parameters and loss
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Computational building blocks of convnets

ESeesrfesssesss

. fully connected
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Going deeper:
Case studies
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LeNet-5 (1998)

Architecture of LeNet-5, a convnet
for handwritten digit recognition
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Want to learn more?

A Lecun, Y.; Bottou, L; Bengio, Y.; Haffner, P.
Gradient-based learning applied to document recognition
Proceedings of the IEEE 86(11) (1998)
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LeNet-5 (1998)
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AlexNet (2012)

N >
3 T
192 128 2048 7048 \dense
13
3 \
224 3 oo R A
\ = ' 13 dense | |dense
1000
: 192 192 128 Max N ]
: 2048 204
Stride Max 128 Max pooling 048
Uof 4 pooling pooling
3 48

Figure from Krizhevsky et al. (2012)

Want to learn more?

a Krizhevsky, A.; Sutskever, |.; Hinton, G.E.
ImageNet classification with deep
convolutional neural networks

Neural Iformation Processing Systems (2012) Infrastructure: large dataset, trained 6 days on 2 GPUs

Architecture: 8 layers, ReLU, dropout, weight decay




AlexNet (2012)

224 5 i

155

Strid Max

Uof 4 pooling
3 48

Figure from Krizhevsky et al. (2012)
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AlexNet (2012)

Input image:
— 224 X224X3

O



AlexNet (2012)

Layer 1 convolution:
kernel 11X11, 96 channels, stride 4
— 56 X56X96

o



AlexNet (2012)

 msmsssses
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AlexNet (2012)

Max-pooling:
window 22X 2
— 28X28X96
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AlexNet (2012)

Layer 8 fully connected:
— 1000
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AlexNet (2012)
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AlexNet (2012)




Deeper is better

> Each layer is a linear
classifier by itself

= More layers — more
nonlinearities

S What limits the number
of layers in convnets?




VGGNet (2014): building very deep convnets

Want to learn more?
Simonyan, K.; Zisserman, A.

A
Very deep convolutional networks for
large-scale image recognition International

Conference on Learning Representations (2015)

Stack many convolutional layers before pooling
Use “same” convolutions to avoid resolution reduction




VGGNet (2014): stacking 3 X 3 kernels

Ist 3X3 conv. layer

2nd 3 X3 conv. layer

Architecture: up to 19 layers, 3 X 3 kernels only, “same” convolutions

Infrastructure: trained for 2-3 weeks on 4 GPUs (data parallelism)




VGGNet (2014): error plateaus after 16 layers

11 layers 13 layers 16 layers

19 layers

O



Challenges of depth

= Computational
complexity

= Optimisation difficulties




Improving optimisation

Careful initialisation
Sophisticated optimisers

Normalisation layers

N 2N N2

Network design




Googl.eNet (2014)

Figure from Szegedy et al. (2015)

Want to learn more?

a Szegedy, C. et al.

Going deeper with convolutions |EEE

. conference on computer vision and pattern
recognition (2015)
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Batch normalisation

Input: Values of z over a mini-batch: B = {z1_,, };
Parameters to be learned: v, 3
Output: {y; = BN, s(z;)}

1 m
UB — — Z b /I mini-batch mean
m
i=1
1 m
0% — — Z(ml — pug)? // mini-batch variance
m
§=1
T; +— ' 3 // normalize
VoL +e
Y; < YZ; + 8 = BN, s(x;) /1 scale and shift

Figure from loffe et al. (2015)

Want to learn more?

loffe, S.; Szegedy, C.

Reduces sensitivity to initialisation

h Batch normalization: Accelerating deep
netwc{rk trail:'ingbyrec{ucinginternal L. .
L P e Introduces stochasticity and acts as a regulariser

machine learning (2015)




Batch normalisation
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Figure from loffe et al. (2015)



ResNet (2015): residual connections

VL

1"

residual connection

Want to learn more?

IEEE conference on computer vision and
pattern recognition (2016)

|ﬁ Doep resicual learning for image recognition Residual connections facilitate training deeper networks




ResNet (2015): different flavours

REEssaos.w
Eoeecssocs. e

Want to learn more?
A Heketal ResNet V2 (bottom) avoids all
Identity mappings in deep residual networks . o, . .
|. European conference on computer vision n0n|lnearltles N the I’eSIdua| pathway

(2016)




ResNet (2015): up to 152 layers

layer name | output size 18-layer ‘ 34-layer 50-layer 101-layer 152-layer
convl 112x112 7Tx7, 64, stride 2
33 max pool, stride 2
I1x1,64 ]| 1x1,64 ] I1x1,64 ]
RO | SRR [ gi; gj }x2 { gzg gj j|><3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
’ : | 1%L, 256 | | 11,256 | | 1x1,256
s e 2 E [ 1x1,128 ] [ 1%1, 128 | [ 1x1,128 ]
conv3d.x | 28x28 gi;gg x2 gig gg x4 | | 3x3,128 | x4 3x3, 128 | x4 3x3,128 |x8
L ) : L : . | T, 519 | | 1581, 51 || | 138,512 |
. : - 4 1x1,256 | 1x1,256 ] 1x1,256 |
convdx | 14x14 ;i;ggg X2 iii 522 x6 | | 3x3.256 |x6 || 3x3.256 |x23 || 3x3.256 |x36
L . : L ' . | 1x1,1023 | 1x1,1024 | 1x1,1024 |
. . : 4 [ 1x1.512 T 1x1,512 1x1,512
convs_x Ix7 giigg X2 ziggg x3 | | 3x3.512 |x3 3%3,512 | x3 3x3,512 | x3
L ’ : . ) . | 1x1,2048 | 1x1, 2048 1x1,2048
Ix1 average pool, 1000-d fc, softmax
FLOPs 1.8x 109 3.6x10° 3.8x10° 7.6x10° 11.3%10°

Table from He et al. (2015)
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DenseNet (2016): connect layers to all previous layers

puf Xo 275

—A— ResNets
—&— DenseNets-BC

‘AResNet-34

26.5¢

%)

(
O3
(&) (32

N
w
[3)

validation error

DenseNet-264
1 2 3 4 5 6 7 8
#parameters

Want to learn more?

Huang, G. et al.

A
Densely connected convolutional networks
IEEE conference on computer vision and

pattern recognition (2017)

Figures from Huang et al. (2015) ‘G‘



Squeeze-and-excitation networks (2017)

MIUDE—>€X( )_

X U y
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Figure from Hu et al. (2018)

Want to learn more?

|ﬁ Sauecse-and-excitation networks IECE Features can incorporate global context

conference on computer vision and pattern
recognition (2018)




AmoebaNet (2018): neural architecture search
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Figure from Real et al. (2019)

Want to learn more? . .
Architecture found by evolution

Real, E. et al.

i Regularized evolution for image classifier
architecture search AAAI conference on . .
L artficial nteligence (2019) Search acyclic graphs composed of predefined layers




Reducing complexity

N2

Depthwise convolutions
Separable convolutions

Inverted bottlenecks
(MobileNetV2, MNasNet,
EfficientNet)
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Data augmentation

By design, convnets are only robust against translation

Data augmentation makes them robust against other

transformations: rotation, scaling, shearing, warping, ...




Visualising what a convnet learns

Figures from Zeiler et al. (2014)

Want to learn more?

A Zeiler, M.D;; Fergus, R.
Visualizing and understanding convolutional
networks European conference on computer

vision (2014)




Visualising what a convnet learns

dumbbell

bell pepper lemon
Figure from Simonyan et al. (2013)

dalmatian

husky

O



Visualising what a convnet learns

volcano

Figure from Nguyen et al. (2016)
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https:/distill.oub/2017/feature-visualization/ by Chris Olah, Alexander Mordvintsev and Ludwig Schubert

Feature Visualization

How neural networks build up their understanding of images

O L Y B A & W

Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c)

Feature visualization allows us to see how GoogLeNet[1], trained on the ImageNet (2] dataset, builds up its understanding
of images over many layers. Visualizations of all channels are available in the appendix.

AUTHORS AFFILIATIONS PUBLISHED DO
Chris Olah Google Brain Team Nov. 7, 2017 10.23915/distill.00007
Alexander Mordvintsev Google Research

Ludwig Schubert Google Brain Team


https://distill.pub/2017/feature-visualization/

Other topics to explore

= Pre-training and fine-tuning
= Group equivariant convnets:
invariance to e.g. rotation

= Recurrence and attention:
other building blocks to
exploit topological structure
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Beyond image
recognition
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What else can we do
with convnets?

O



person, sheep

i 2485, i

Figures from Lin et al. (2015)



Generative models of images

= Generative adversarial nets
= Variational autoencoders

= Autoregressive models
(PixelCNN)




More convnets

= Representation learning and
self-supervised learning

=  Convnets for video, audio,
text, graphs, ...




Convolutional neural networks
replaced handcrafted features
With handcrafted architectures.

Prior knowledge is not obsolete: it is merely
incorporated at a higher level of abstraction.
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