
In this lecture series, leading research scientists
from leading AI research lab, DeepMind, will give
12 lectures on an exciting selection of topics
in Deep Learning, ranging from the fundamentals
of training neural networks via advanced ideas around 
memory, attention, and generative modelling to the 
important topic of responsible innovation.

Please join us for a deep dive lecture series into
Deep Learning!

#UCLxDeepMind
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TODAY’S SPEAKER

Viorica Patraucean
Viorica is a research scientist at DeepMind, working 
mainly on Computer Vision related problems, with 
focus on video processing. She did her PhD in 
Toulouse, France, on statistical models for image 
understanding, and then focused on 3D shape- and 
video-analysis during her postdoctoral work in Paris 
and Cambridge. Her dream is to contribute to creating 
a computational model for the human visual system.



TODAY’S LECTURE

Vision beyond 
classification: 
advanced models 
for Computer 
Vision

We will cover computer vision tasks beyond
image classification (object detection, semantic 
segmentation, instance segmentation) and 
associated models for each.

Then we will talk about the benefits of using
more than single images as inputs to neural 
networks (pairs of images, videos) and the tasks 
that become available (optical flow estimation, 
action recognition). 

In the third part, we will discuss settings that
do not require strong supervision, in particular 
metric learning.

The talk will end with a brief discussion around 
open questions in computer vision.



Viorica Pătrăucean, Research Scientist

Vision beyond 
classification

Advanced models for Computer Vision



“ A picture
is worth
a thousand
words
Classification models learn
only a few

'A Walk On The Bike' By Alexandr Vlasyuk

Resnet-50: bicycle, garden



Holy grail 
a model that achieves

human level
scene understanding





inputs

outputs

end-to-end priors

tasks

order

accuracy

efficiency

Sees-it-all model



Supervised image classification

Supervised image classification

Beyond supervised image classification

1

3

2

4

Supervised image classification

Open questions



The deep learning puzzle

By the end of this lecture, 
you will know how to 
redefine these building 
blocks to perform different 
visual tasks, using different 
inputs, and different forms 
of supervision.

Loss

TargetData

Node Node Node

Node Node Node



1 Tasks beyond 
classification



Tasks beyond classification

Task definitions

Object detection

Semantic segmentation

Train and eval

Models and losses

Metrics and benchmarks

Tricks of the trade

Hard negative mining

Transfer learning



Image captioning

Important tasks not covered

Image Captioning: Transforming Objects into Words, Herdade et al, 2019
Towards Accurate Multi-person Pose Estimation in the Wild, Papandreou et al, 2017

Pose estimation

Generated Caption: two beach chairs under an umbrella on the beach



Tasks - Increasing granularity

Figures from Microsoft COCO: Common Objects in Context, Lin et al, 2014

classification object detection

semantic segmentation instance segmentation



Task 1
Object detection



Object detection

Multi-task problem

Classification and localisation

sheep

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014



Object detection

Inputs

RGB image

Targets

Class label

Object bounding box

for all the objects present in the scene



Object detection

Inputs and targets

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014

sheepsheep sheep sheep sheep

dog

person



Object detection

Dataset

sheepsheep sheep sheep sheep

dog

person

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014



Object detection

How to learn to predict bbox 
coordinates?

Dataset

sheepsheep sheep sheep sheep

dog

person

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014



Recap: Softmax + cross entropy for classification
Linear

Assign data points to categories; output is discrete.



Bounding box prediction
Linear

Classification

Ground truth

Prediction

Mistakes are not quantifiable in classification; the data is not ordered.



Bounding box prediction
Linear

In classification, the output is discrete*, in regression the output is continuous.

*in classification the output is continuous too, but it represents the probability distribution over the possible classes

Classification Regression

Ground truth

Prediction



Linear

Ground truth

Prediction

Minimise the mean squared error over samples.

Quadratic loss for regression



Summary: classification vs regression

Property Classification Regression

Basic map inputs to predefined classes map inputs to continuous values

Output discrete values continuous values

Nature of the data unordered data ordered data

Algorithms logistic regression, decision trees, 
neural networks

linear regression, neural networks



Linear

Ground truth 1

Prediction

Quadratic loss for regression

How to deal with multiple targets?

Ground truth 2



Linear

Ground truth 1

Prediction

Quadratic loss for regression

Ground truth 2

Convert regression into classification, by discretising the output values, and then refine 
through regression.



Classification then regression

0 3.78

0 10 0 0 0 0 0 0

one_hot label

value

Convert regression into classification, by discretising the output values, and then refine 
through regression.



Classification then regression

0 3.78

0 00 0 0 0 1 0 0

6.12

value

one_hot label

Convert regression into classification, by discretising the output values, and then refine 
through regression.



Two-stage detector

Identify good candidate bboxes

Classify and refine 

Case study 1: Faster R-CNN

Figure from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al, 2016



Case study 1: Faster R-CNN

Identify good candidate bboxes 

anchor points

Discretise bbox space

      anchor points for  

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014



Case study 1: Faster R-CNN

Discretise bbox space

      anchor points for
      scales and ratios for   

Identify good candidate bboxes 

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014



Case study 1: Faster R-CNN

Discretise bbox space

      anchor points for
      scales and ratios for   

n candidates per anchor

predict objectness score 
for each bbox

sort and keep top K

Identify good candidate bboxes 

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014



Case study 1: Faster R-CNN

Discretise bbox space

      anchor points for
      scales and ratios for   

n candidates per anchor

predict objectness score 
for each bbox

sort and keep top K

Identify good candidate bboxes 

Refine through regression MLP(4)

Figure from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al, 2016



Case study 1: Faster R-CNN

Discretise bbox space

      anchor points for
      scales and ratios for   

n candidates per anchor

predict objectness score 
for each bbox

sort and keep top K

Identify good candidate bboxes 

Refine through regression MLP(4)

Figure from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al, 2016

Good accuracy @ ~5fps speed



Case study 1: Faster R-CNN

Discretise bbox space

      anchor points for
      scales and ratios for   

n candidates per anchor

predict objectness score 
for each bbox

sort and keep top K

Identify good candidate bboxes 

Refine through regression MLP(4)

Figure from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al, 2016

Good accuracy @ ~5fps speed

no gradients

Want to learn more?

Jaderberg et al Spatial 
Transformer Networks (2015)



Case study 2: RetinaNet - one-stage detector

Figure from Focal Loss for Dense Object Detection, Lin et al, 2017 



Case study 2: RetinaNet - one-stage detector

Figure from Focal Loss for Dense Object Detection, Lin et al, 2017 

Most of the candidate bboxes are easy negatives: poor learning signal.



Issue with one-stage detectors

Most of the candidate bboxes are 
background, easy to classify.

The accumulated loss of the many 
easy examples overwhelms the loss of 
rare useful examples well-classified examples



Issue with one-stage detectors

Most of the candidate bboxes are 
background, easy to classify.

The accumulated loss of the many 
easy examples overwhelms the loss of 
rare useful examples 

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard 
negative mining heuristics. 

well-classified examples



Hard negative mining

Most of the candidate bboxes are 
background, easy to classify.

The accumulated loss of the many 
easy examples overwhelms the loss of 
rare useful examples 

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard 
negative mining heuristics. 

Hard negative mining for person detector

1. Get set of positive examples
2. Get a random subset of negative 

examples (full set is too big)
3. Train detector
4. Test on unseen images
5. Identify false positive examples (a 

person was detected where there was 
none) = hard negatives; add them to 
the training set

6. Repeat from 3.



Hard negative mining

Most of the candidate bboxes are 
background, easy to classify.

The accumulated loss of the many 
easy examples overwhelms the loss of 
rare useful examples 

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard 
negative mining heuristics. 

Hard negative mining for person detector

1. Get set of positive examples
2. Get a random subset of negative 

examples (full set is too big)
3. Train detector
4. Test on unseen images
5. Identify false positive examples (a 

person was detected where there was 
none) = hard negatives; add them to 
the training set

6. Repeat from 3.

Want to learn more?

Sung and Poggio Learning and 
Example Selection for Object 
and Pattern Detection (1994)



RetinaNet solution

Most of the candidate bboxes are 
background, easy to classify.

The accumulated loss of the many 
easy examples overwhelms the loss of 
rare useful examples 

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard 
negative mining heuristics. 

RetinaNet uses Focal Loss (FL).



RetinaNet solution

Most of the candidate bboxes are 
background, easy to classify.

The accumulated loss of the many 
easy examples overwhelms the loss of 
rare useful examples 

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard 
negative mining heuristics. 

RetinaNet uses Focal Loss (FL).

Good accuracy @ ~8fps speed



Task 2
Semantic segmentation



Semantic segmentation

person

Bounding boxes are not good 
representations for certain 
types of objects.

We need more refined 
representations.

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014



Semantic segmentation

Inputs

RGB image

Targets

Class label for every pixel



Semantic segmentation

Inputs

RGB image

Targets

Class label for every pixel

Dense prediction problem - how to generate an output at the same resolution as the input?



Recap: Pooling

Pooling: compute mean or max over small windows to reduce resolution.



Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.



Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.



Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.



Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.



Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.



Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.



Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.



Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.

Other upsampling methods

unpooling with indices SegNet

Deconvolutions DeconvNet

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, Badrinarayanan et al, 2016
DeconvNet: Learning Deconvolution Network for Semantic Segmentation, Noh et al, 2015



Case study: U-NET

Encoder - decoder 
model

Skip connections to 
preserve details

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger et al, 2015

https://arxiv.org/search/cs?searchtype=author&query=Ronneberger%2C+O


Case study: U-NET

         Output 

         Loss: pixel-wise cross entropy

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger et al, 2015

https://arxiv.org/search/cs?searchtype=author&query=Ronneberger%2C+O


Recall RetinaNet - same U shape

Figure from Focal Loss for Dense Object Detection, Lin et al, 2017 



Bonus: Instance segmentation

Semantic segmentation Instance segmentation

Want to learn more?

He et al. Mask R-CNN (2018)

Object detection + segmentation

Figures from Microsoft COCO: Common Objects in Context, Lin et al, 2014

Pixel-wise labels can be 
confusing for overlapping 
objects in the same 
category.



Metrics
and benchmarks



Evaluation metrics

Classification

Accuracy: percentage of 
correct predictions

Top-1: top prediction is the correct class

Top-5: correct class is in top-5 
predictions

Object detection and segmentation

intersection-over-union (IoU)

non-differentiable: used only 
for evaluation

Want to learn more?
Berman et al. The Lovasz-Softmax 
loss: A tractable surrogate for the 
optimization of the 
intersection-over-union measure 
in neural networks (2018)



Similar to Imagenet for various 
tasks

Public platforms for model 
evaluation

Maintain a leaderboard to track 
state-of-the-art models

Benchmarks



Tricks of the trade



Transfer learning

Let                                                              be a domain and                                                      a task defined on this 
domain.

Given a source domain and task           and a target domain and task           , reuse knowledge learnt by      in 

Intuition: features are shared across tasks and datasets. Reuse knowledge.



Transfer learning across different tasks

computation
input(s)/target(s)

loss
parameters

    fine-tuned

    trained from scratch

w’1-4

w’5-6

w1

w2

w3

w4

w5

w’1

w’2

w’3

w’4

w’5

w’6

image classifier

object detector



Want to learn more?
Zamir et al. Taskonomy: Disentangling 
Task Transfer Learning (2018)

Figure from Taskonomy: Disentangling Task Transfer Learning, Zamir et al, 2018



Transfer learning across different domains

Sim2Real

Train in simulation using RL - 

Use Automatic Domain Randomization: 

data augmentation + hard negative mining

Test in real world - 

Solving Rubik’s Cube with a Robot Hand, OpenAI, 2019



Supervised image 
classification

Beyond supervised image classification

01

03

02

04 Open questions

Supervised image 
classification

Supervised image 
classification



2 Beyond single 
image input



Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009

Experiment



Experiment

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



Experiment

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



Experiment

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



Experiment

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



Motion helps object 
recognition when 

learning to see.

Experiment

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



The Development of Invariant Object Recognition Requires Visual Experience With Temporally Smooth Objects, Wood and Wood, 2018

Experiment

Motion helps object 
recognition when 

learning to see.



Videos

CATER: A diagnostic dataset for Compositional Actions and Temporal Reasoning, Girdhar and Ramanan, 2019 

Motion - cues for object 
recognition during learning

Natural data augmentation: 
translation, scale, 3D 
rotation, camera motion, 
light changes



Beyond single image input

Inputs

Pairs of images

Videos

Task definitions

Optical flow estimation

Action recognition

Models

Image-based models

3D convnets

Recurrent (not covered)

Challenges

Obtaining labels

A note on efficiency



Pairs of images input



Optical flow estimation

Inputs

Pair of RGB images

Targets

Dense flow map (real values)

2D translation displacements 

0. +1.



Case study - FlowNet

Encoder-decoder architecture 
similar to U-NET

Supervised training

Loss: Euclidean distance

Flying chairs dataset

FlowNet: Learning optical flow with convolutional networks, Fischer et al, 2015



Case study - FlowNet

Encoder-decoder architecture 
similar to U-NET

Supervised training

Loss: Euclidean distance

Flying chairs dataset

Sim2Real transfer

FlowNet: Learning optical flow with convolutional networks, Fischer et al, 2015



Video input



Video models from image models

Improving Semantic Segmentation via Video Propagation and Label Relaxation, Zhu et al, 2019

Cityscapes

https://nv-adlr.github.io/publication/2018-Segmentation


Video as a volume

        stack frames T x H x W x 3

        apply 3D convolutions

Video models using 3D convolutions

H

W

T



Recap: 2D convolution operation

The kernel slides across spatial dimensions.



3D convolution operation

The kernel slides across space and time to generate 
spatio-temporal feature maps.



3D convolution operation

The kernel slides across space and time to generate 
spatio-temporal feature maps.



3D convolution operation

The kernel slides across space and time to generate 
spatio-temporal feature maps.



3D convolution operation

The kernel slides across space and time to generate 
spatio-temporal feature maps.



3D convolution operation

The kernel slides across space and time to generate 
spatio-temporal feature maps.



Properties of 3D convolutions

Strided, dilated, padded, […] convolutions apply in 3D as well.

      3D convolutions are
      non-causal
      masked 3D convolutions
      are causal



Action recognition

Inputs

RGB video T x H x W x 3

(optional) flow map T x H x W x 2

Targets

action label one_hot 1 x Nclasses

e.g. cricket shot

Video from Kinetics dataset, Carreira et al, 2017

Kinetics600 dataset 

- 600k training videos, 600 classes
- Curated Youtube videos
- Each video: 250 frames (~ 10 sec.)
- Current accuracy: 81.8 % top-1



Case study: SlowFast

Figure from SlowFast Networks for Video Recognition, Feichtenhofer et al, 2019



Transfer learning returns

 

Intuition: a tiled image is a video of a static scene, filmed with a fixed camera.

Tile along t

Want to learn more?
Carreira and Zisserman. Quo Vadis, 
Action Recognition? A New Model 
and the Kinetics Dataset (2017)

Inflating 2D kernels into 3D

2D image 
classifier filters

3D action 
classifier filters



Challenges



Challenges in video processing

Difficult to obtain labels

Large memory requirements

High latency

High energy consumption



Improve efficiency of video models

Inspiration from biological systems

Maximise parallelism to increase throughput and reduce latency [1, 2]

Exploit redundancies in the visual data to obtain frugal models [3]

[ 1] Massively parallel video networks, Carreira, Patraucean et al, 2018
[2] Sideways: depth-parallel training of video models, Malinowski, Swirszcz, Carreira, Patraucean, 2020
[3] Blink and you won’t miss it: video processing without temporal redundancies, Patraucean et al, 2020



Supervised image 
classification

Beyond supervised image classification

01

03

02

04 Open questions

Supervised image 
classification

Supervised image 
classification



3 Beyond strong 
supervision



Labelling is tedious - Research topic in itself



Self-supervision - Metric learning

Face recognition: same person or not

        

person1

person2

Standard losses (e.g. cross-entropy, mean square error)

        learn mapping between input(s) and output distribution / value(s)

   Metric learning

        learn to predict distances between inputs given some similarity measure (e.g. same person or not)

        Images from VGGFace2: A dataset for recognising faces across pose and age, Cao et al, 2018

embedding



Self-supervision - Metric learning

Metric learning

Contrastive loss

Triplet loss

State-of-the-art on representation 
learning

Applications

(Multimodal) self-supervised 
representations, e.g. image+sound [1]

Information retrieval [2]

Low-shot face recognition [3]

[ 1] Look, listen and learn, Arandjelovic and Zisserman, 2017
[2] Learning to Learn from Web Data through Deep Semantic Embeddings, Gomez et al, 2018
[3] VGGFace2: A dataset for recognising faces across pose and age, Cao et al, 2018



Metric learning

Contrastive loss (margin loss)

Dataset:

         - Euclidean distance

attract

reject

Dimensionality reduction by learning an invariant mapping, Hadsell et al, 2006

https://ieeexplore.ieee.org/abstract/document/1640964/


Metric learning

Contrastive loss (margin loss)

Dataset:

         - Euclidean distance

Dimensionality reduction by learning an invariant mapping, Hadsell et al, 2006

margin m=1.25

https://ieeexplore.ieee.org/abstract/document/1640964/


Metric learning

Contrastive loss (margin loss)

Dataset:

         - Euclidean distance

Difficult to choose m 

Dimensionality reduction by learning an invariant mapping, Hadsell et al, 2006

margin m=1.25

https://ieeexplore.ieee.org/abstract/document/1640964/


Triplet loss

Dataset:

better than contrastive loss

relative distances more 
meaningful than a fixed margin

Metric learning

attract

reject



Metric learning

Triplet loss

Dataset:

better than contrastive loss

relative distances more 
meaningful than a fixed margin

hard negative mining to select 
informative triplets

Want to learn more?
Wu et al. Sampling Matters in 
Deep Embedding Learning (2018)

attract

reject



New state-of-the-art in representation learning

Figure from A Simple Framework for Contrastive Learning of Visual Representations, Chen et al, 2020

Same data, different augmentations



New state-of-the-art in representation learning

Figure from A Simple Framework for Contrastive Learning of Visual Representations, Chen et al, 2020

Composition of data 
augmentations

Learnable non-linear 
transformation

Larger mini-batches and 
longer training



Supervised image 
classification

Beyond supervised image classification

01

03

02

04 Open questions

Supervised image 
classification

Supervised image 
classification



4 Open 
questions



Open questions

Is vision solved? What does it mean to solve vision? 

How to scale systems up? 

What are good visual representations for action? 

Unsupervised Learning of Object Keypoints for Perception and Control, Kulkarni, Gupta et al, 2019

model parallelism, better hardware, less supervision - more common sense

human level scene understanding - what benchmarks?



Learning to see from static images might make things harder 
than they should be. 

Rethink vision models design and training from the 
perspective of moving pictures and with the end-goal in mind:
intelligent agents that interact with the real world in real time.



Thank you



Questions



Useful 
resources



Screenshot from modelzoo.co





Synthetic datasets for Computer Vision

https://www.datasetlist.com/

https://www.datasetlist.com/


Transporter architecture

Figure from Unsupervised Learning of Object Keypoints for Perception and Control, Kulkarni, Gupta et al, 2019


