WELCOME TO THE

UCL x DeepMind
lecture series

In this lecture series, leading research scientists

from leading Al research lab, DeepMind, will give

12 lectures on an exciting selection of topics

in Deep Learning, ranging from the fundamentals

of training neural networks via advanced ideas around
memory, attention, and generative modelling to the
important topic of responsible innovation.

Please join us for a deep dive lecture series into
Deep Learning!

#UCLxDeepMind
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General
information

Exits:

At the back, the way you came in
Wifi:

UCL guest
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TODAY'S SPEAKER

Viorica Patrauce

Viorica is a research scientist at DeepMind, working
mainly on Computer Vision related problems, with
focus on video processing. She did her PhD in
Toulouse, France, on statistical models for image
understanding, and then focused on 3D shape- and
video-analysis during her postdoctoral work in Paris
and Cambridge. Her dream is to contribute to creating
a computational model for the human visual system.
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TODAY'S LECTURE

Vision beyond
classification:
advanced models
for Computer
Vision

We will cover computer vision tasks beyond
image classification (object detection, semantic
segmentation, instance segmentation) and
associated models for each.

Then we will talk about the benefits of using
more than single images as inputs to neural
networks (pairs of images, videos) and the tasks
that become available (optical flow estimation,
action recognition).

In the third part, we will discuss settings that
do not require strong supervision, in particular
metric learning.

The talk will end with a brief discussion around
open questions in computer vision.
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Vision beyond
classification

Advanced models for Computer Vision

Viorica Patraucean, Researc h Scientist
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66

A picture
is worth
a thousand

words

Classification models learn
only a few

Resnet-50: bicycle, garden




Holy grail
a model that achieves
human level
scene understanding
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Motor areas:
Primary motor cortex
Motor association area
Frontal eye field

Sensory areas and related
association areas:

Primary somatosensory cortex
Sensory association area
Wernicke’s area

Prefrontal cortex:
Broca’s area

General interpretation area
Primary visual cortex

Visual association area
Primary auditory cortex

‘\/ _ Auditory association area






Beyond supervised image classification

1 2

Supervised image elassification Supervised image classification

3 4

Supervised image classification Open questions

o



The deep learning puzzle

By the end of this lecture,
you will know how to
redefine these building

blocks to perform different
visual tasks, using different
inputs, and different forms
of supervision.

O
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DeepMind

Tasks beyond
classification
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Tasks beyond classification

Task definitions Train and eval Tricks of the trade
Object detection Models and losses Hard negative mining
Semantic segmentation Metrics and benchmarks Transfer learning

O



Important tasks not covered

Generated Caption: two beach chairs under an umbrella on the beach

Image captioning Pose estimation

Image Captioning: Transforming Objects into Words, Herdade et al, 2019 bl’
Towards Accurate Multi-person Pose Estimation in the Wild, Papandreou et al, 2017



Tasks - Increasing granularity

classification

_person;, sheep, dog

semantic segmentation

A Aw

Figures from Microsoft COCO: Common Objects in Context, Lin et al, 2014




DeepMind

Task 1
Object detection

O



Object detection

Multi-task problem

Classification and localisation

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014




Inputs Targets

= RGBimage S Class label

‘ Object bounding box
(wC) yCa h7 ’U))

for all the objects present in the scene




Object detection

Inputs and targets

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014




Object detection

Dataset

N trains Niest samples

{’image’ : p € [0,1], H x W x 3,
‘objects’ :

[

{"label’ : one hot(N),1 x N,

{"label’ : one hot(N),1 x N,

I}

bbox” : (z¢, Ye, h, w) € R, 1 x 4},

bbox” : (e, Yo, hyw) € R,1 x4}

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014




Object detection

Dataset

N trains Niest samples

{’image’ : p € [0,1], H x W x 3,
‘objects’ :

[

{"label’ : one hot(N),1 x N,
'bbox’: (ze, Ye, hyw) € R, 1 X 4},
{"label’ : one hot(N),1 x N,
bbox” : (e, Yo, hyw) € R,1 x4}

I}

How to learn to predict bbox

coordinates?

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014




Recap: Softmax + cross entropy for classification

Assign data points to categories; output is discrete.




Bounding box prediction

Ground truth

Prediction

Classification

Mistakes are not quantifiable in classification; the data is not ordered.




Bounding box prediction

Ground truth

Prediction

Classification Regression

In classification, the output is discrete*, in regression the output is continuous.

*in classification the output is continuous too, but it represents the probability distribution over the possible classes

O



Quadratic loss for regression

Ground truth

ba(x,t) = ||t — x]|*

Prediction

Minimise the mean squared error over samples.




Summary: classification vs regression

Property Classification Regression
Basic map inputs to predefined classes map inputs to continuous values
Output discrete values continuous values

Nature of the data

unordered data

ordered data

Algorithms

logistic regression, decision trees,
neural networks

linear regression, neural networks

o



Quadratic loss for regression

Ground truth 1

Prediction

lo(x,t) = ||t — x| =1L
|

Ground truth 2

How to deal with multiple targets?

O



Quadratic loss for regression

Ground truth 1

Prediction

lo(x,t) = ||t — x| =1l
|

Ground truth 2

Convert regression into classification, by discretising the output values, and then refine
through regression.




Classification then regression

value
| i >
0] 3.78
e
- ae——
0] 0] O 1 0 0] 0] 0] 0]

one_hot label

Convert regression into classification, by discretising the output values, and then refine
through regression.




Classification then regression

value
| I I >
0] 3.78 6.12
N\
e —
0] 0] O O 0 0] 1 0] O

one_hot label

Convert regression into classification, by discretising the output values, and then refine
through regression.




Case study 1: Faster R-CNN

classifier

Two-stage detector

O Identify good candidate bboxes pmpoy /

O Classify and refine Region Proposal Networka

Rol pooling

feature maps

conv layers /

Figure from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al, 2016
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Case study 1: Faster R-CNN

|dentify good candidate bboxes

O Discretise bbox space
(sz Ye, ha ’w)

© anchor points for (¢, Yc)

anchor points

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014




Case study 1: Faster R-CNN

|dentify good candidate bboxes

O Discretise bbox space
Le, Ye, hv w)

© anchor points for (¢, yc)
© scales and ratios for (h, w)

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014
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Case study 1: Faster R-CNN

|dentify good candidate bboxes

O Discretise bbox space
Le, Ye, ha ’w)

© anchor points for (¢, yc)
© scales and ratios for (h, w)

O candidates per anchor

© predict objectness score
for each bbox

O sort and keep top K

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014




Case study 1: Faster R-CNN

|dentify good candidate bboxes

O Discretise bbox space
(Ze, Yo, b, w)

anchor points for (z¢, yc)
scales and ratios for (h, w)

O 1 candidates per anchor

® predict objectness score
for each bbox

O sort and keep top K

Refine through regression MLP(4)

o classifier

Rol pooling

N
propoy : /
S

Region Proposal Network

feature maps

conv layers I

T e N

Figure from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al, 2016
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Case study 1: Faster R-CNN

|dentify good candidate bboxes

O Discretise bbox space
(Ze, Yo, b, w)

anchor points for (z¢, yc)
scales and ratios for (h, w)

O 1 candidates per anchor

® predict objectness score
for each bbox

O sort and keep top K

Refine through regression MLP(4)

P Rol pooling

proposals i/
/ / // / /

Region Proposal Network

feature maps

L)

conv layers I

—rr - T

e

Good accuracy @ ~5fps speed

Figure from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al, 2016
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Case study 1: Faster R-CNN

|dentify good candidate bboxes

O Discretise bbox space
(Ze, Yo, b, w)

anchor points for (z¢, yc)
scales and ratios for (h, w)

O 1 candidates per anchor

® predict objectness score
for each bbox

O sort and keep top K

Refine through regression MLP(4)

Want to learn more?

O Jaderberg et al Spatial
Transformer Networks (2015)

classifier

P Rol pooling
no gradients _

proposals
//(

Region Proposal Network

ﬂ

feature maps

L)

conv layers I

AMJQ__AJ£’*

e
2

e — e R

Good accuracy @ ~5fps speed

Figure from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al, 2016
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Case study 2: RetinaNet - one-stage detector

,
e

class+box P

subnets , class v

pid subnet
WxH .. .2

class+box %256 | x4 >

subnets

¥

class+box N
subnets X

<

\

(a) ResNet

I
I
I
I
I
I
I
L
I
\ |
I
I
I
I
I
I
I
I
I
I
I

\ WxH Jo-.2
\\ box X256 X4)
N subnet /
(b) feature pyramid net (c) class subnet (top)

Figure from Focal Loss for Dense Object Detection, Lin et al, 2017

N\
N\

Y

AN
N

(d) box subnet (bottom)
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Case study 2: RetinaNet - one-stage detector

class+box P ’
subnets ’ class v p 7
/7
P subnet WxH
WxH J..-2 WxH L5 X
class+box x256 | X4 i X256
subnets

class+box N
subnets X

\

|
1
1
1
1
1
1
|
1
|
\ |
|
|
|
|
|
|
|
1
1
1

A\
AN

\ WxH .- > WxH
% box X256 X4) %256 x4A
N subnet / / /
L SRR ... AP, o ORI - SR,
(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Most of the candidate bboxes are easy negatives: poor learning signal.

Figure from Focal Loss for Dense Object Detection, Lin et al, 2017
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Issue with one-stage detectors

Most of the candidate bboxes are
background, easy to classify.

The accumulated loss of the many
easy examples overwhelms the loss of
rare useful examples (cg(p > .5) >0

0.0 02 04 0.6 038 10
probability of ground truth class

O



Issue with one-stage detectors

Most of the candidate bboxes are
background, easy to classify.

The accumulated loss of the many
easy examples overwhelms the loss of
rare useful examples (ce(p > .5) > 0

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard
negative mining heuristics.

0.0 02 04 0.6 038 10
probability of ground truth class
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Hard negative mining

Most of the candidate bboxes are
background, easy to classify.

The accumulated loss of the many
easy examples overwhelms the loss of
rare useful examples (cg(p > .5) >0

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard
negative mining heuristics.

Hard negative mining for person detector

Get set of positive examples

Get a random subset of negative
examples (full set is too big)
Train detector

Test on unseen images

Identify false positive examples (a
person was detected where there was
none) = hard negatives; add them to
the training set

Repeat from 3.

O



Hard negative mining

Most of the candidate bboxes are
background, easy to classify.

The accumulated loss of the many
easy examples overwhelms the loss of
rare useful examples (cg(p > .5) >0

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard
negative mining heuristics.

Want to learn more?

O Sung and Poggio Learning and
Example Selection for Object
and Pattern Detection (1994)

Hard negative mining for person detector

Get set of positive examples

Get a random subset of negative
examples (full set is too big)
Train detector

Test on unseen images

Identify false positive examples (a
person was detected where there was
none) = hard negatives; add them to
the training set

Repeat from 3.

O



RetinaNet solution

Most of the candidate bboxes are
background, easy to classify.

The accumulated loss of the many
easy examples overwhelms the loss of
rare useful examples (ce(p > .5) > 0

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard
negative mining heuristics.

RetinaNet uses Focal Loss (FL).

lee(p) = —log(pe) =

CrL(pt) = —(1 — pt)7 log(pr)

[C I N )
wn

Y
Y
) ¢
Y
Y

0.0

02 04 0.6 038 10
probability of ground truth class
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RetinaNet solution

Most of the candidate bboxes are
background, easy to classify.

The accumulated loss of the many
easy examples overwhelms the loss of
rare useful examples (ce(p > .5) > 0

Faster R-CNN prunes these in stage 1.

One-stage detectors employ hard
negative mining heuristics.

RetinaNet uses Focal Loss (FL).

lee(p:) = —log(py) e
N e

CrL(pt) = —(1 — pt)7 log(pr)

N OO
(5]

Y
Y
e
Y
Y

0.0 02 0.4 0.6 08 10
probability of ground truth class

Good accuracy @ ~8fps speed

O



DeepMind

Task 2
Semantic segmentation

O



Semantic segmentation

Bounding boxes are not good
representations for certain
types of objects.

We need more refined
representations.

a
&

Sauti? T

Image from COCO dataset - Microsoft COCO: Common Objects in Context, Lin et al, 2014

S #

o ST




Semantic segmentation

Inputs

= RGBimage

Targets

= Class label for every pixel

LY .

O



Semantic segmentation

Inputs Targets

= RGBimage = Class label for every pixel

LY N

Dense prediction problem - how to generate an output at the same resolution as the input?




Recap: Pooling

Pooling: compute mean or max over small windows to reduce resolution.




Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.




Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.




Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.




Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.




Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.




Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.




Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.




Unpooling

Other upsampling methods

9 unpooling with indices SegNet

© Deconvolutions DeconvNet

Unpooling: upsample to increase resolution; here 2x2 kernel.

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, Badrinarayanan et al, 2016 bl’
DeconvNet: Learning Deconvolution Network for Semantic Segmentation, Noh et al, 2015



Case study: U-NET

64 64
128 64 64 2
input out
i >l put
Imat?lg i i 2 =™ ': segmentation
3 2 map
Encoder - decoder b| 5| & 5 2
model 51518
'128 128
256 128
Skip connections to
preserve details 1T s Ll

12 256 t

b
“g—I'EI'ZI =» conv 3x3, ReLU
TS S copy and crop

1024 512
g - § max pool 2x2
< &N
1024 ® W 4 up-conv 2x2
?‘3 =» conv 1x1
[aV]

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger et al, 2015 “’


https://arxiv.org/search/cs?searchtype=author&query=Ronneberger%2C+O

Case study: U-NET

64 64
128 64 64 2
input
i >la ‘ output
|matgi;|: i i 2 =™ ': segmentation
= & map
= Output H X W X N jasses e i o o
' 128 128
256 128
— Loss: pixel-wise cross entropy
HW Nelasses slall s % §'§ ‘%

lcE(p; t) Z Z t;jlog p;; t
1= 512 256

“g[l"l"l =»conv 3x3, ReLU

copy and crop
1024 512
:«gE-»-—- ¥ max pool 2x2
1024 b B 4 up-conv 2x2
> M % =» conv 1x1
N

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger et al, 2015 “’


https://arxiv.org/search/cs?searchtype=author&query=Ronneberger%2C+O

Recall RetinaNet - same U shape

v
e

class+box P

subnets , class v

7 subnet
WxH .. .2

class+box %256 | x4 >

subnets

(a) ResNet

e
&8
&
~

@Q

\ WxH Jo-.2
\\ box X256 X4)
N subnet /
(b) feature pyramid net (c) class subnet (top)

Figure from Focal Loss for Dense Object Detection, Lin et al, 2017

N\
™\

Y

AN

(d) box subnet (bottom)
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Want to learn more?
Bonus: Instance segmentation D
He et al. Mask R-CNN (2018)

Semantic segmentation Instance segmentation

= Object detection + segmentation

LY\

Pixel-wise labels can be
confusing for overlapping

objects in the same

category. q
g y Figures from Microsoft COCO: Common Objects in Context, Lin et al, 2014




DeepMind

Metrics
and benchmarks

O



Evaluation metrics

Classification

=  Accuracy: percentage of
correct predictions

Top-1: top prediction is the correct class

Top-5: correct class is in top-5
predictions

Want to learn more?

a Berman et al. The Lovasz-Softmax
loss: A tractable surrogate for the
. optimization of the
intersection-over-union measure
in neural networks (2018)

Object detection and segmentation
=  intersection-over-union (loU)

non-differentiable: used only
for evaluation

7,1 - 7T

O



c ITYSCAPES News Overview ~ Examples ~
DATASET i

ik

Benchmarks

The Cityscapes Dataset

5000 images with high quality annotations - 20000 images \f\}ith coarse annotations

Dataset Overview

Similar to Imagenet for various
tasks

Public platforms for model
evaluation

Maintain a leaderboard to track
state-of-the-art models

info@cocodataset.org

Common Objects in Context Home People Dataset- Evaluate-

COCO 2019 Object Detection Task




DeepMind

Tricks of the trade




Transfer learning

Let D ={X,P(X)},X = {z1,...,2,} € X beadomainand T = {V, f(:)}, flz;) = 4;,y; € Y a task defined on this
domain.

Given a source domain and task (17)%5) and a target domain and task (17);) reuse knowledge learnt by fsin fr

Intuition: features are shared across tasks and datasets. Reuse knowledge.




Transfer learning across different tasks

image classifierfs

object detectorfr

B input(s)/target(s)
. computation ©) wi, fine-tuned

B ocrameters
B oss &) Wis trained from scratch @




Want to learn more?

h Zamir et al. Taskonomy: Disentangling
. Task Transfer Learning (2018)
encoding

A tCa‘os\e, o P
D Keyﬁ%nts ing Pts.
™ Cam. Pose

~<{ (nonﬁx)

N@}ls

Col‘& )
Egomo
Scene Clw

—}‘lusion Edges

Object Class. S
v O
2.5DIRandom Proj.

Segm. Cu&@ure

Figure from Taskonomy: Disentangling Task Transfer Learning, Zamir et al, 2018 b’



Transfer learning across different domains

Sim2Real
& Trainin simulation using RL - Dg

- Use Automatic Domain Randomization:

data augmentation + hard negative mining

=  Testinreal world - Dr

Solving Rubik’s Cube with a Robot Hand, OpenAl, 2019

O



Beyond supervised image classification

Supervised image Supervised-image-
01 _— O classification
03 Supervised image 04 Open questions

classification

o
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Beyond single
image input

o



Experiment

o ® -
SRCACICICIE:

z \Z ’I/\
4z !
| Howmany | How many | How many How many |Which object | Trace the How many
J objects? objects? objects? objects? isin front? | long curve objects?

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



Experiment

®
o0/ @ % 4 4%

» |
How many | How many | How many How many |Which object | Trace the How many
objects? objects? objects? objects? isin front? | long curve objects?

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



Experiment

® ﬁ\h_»
O0®1 % 4w 4w |35 ™
|

How many | How many | How many

How many |Which object | Trace the How many
objects? objects? objects?

objects? isin front? | long curve objects?

100—

Control
Group

B«
[ [N
-

50—

Performance (% correct)

PRnp—— NA NA NA NA

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



Experiment

(A) ® -
jOD% 4w | 4w 5 W

| Howmany | How many | How many How many |Which object | Trace the How many
J objects? objects? objects? objects? isin front? | long curve objects?

100 — Control
L ] Group

L ‘ » B«
- B [ [N
50— ' B

Performance (% correct)

0 | — NA NA NA NA i

A 6 CJ ® (EJ @ ®

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009



Experiment

o)
Q
c
@
=
—
o
o

o

How many
objects?

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009

4
R .

How many
objects?

e Y il
S

-, 1/
- I~
’ \
=Lz

Name the
object

Name the
object

O



Experiment

o)
Q
c
@
=
—
o
o

o

s
B«
B
. P.B.

How many
objects?

.

How many
objects?

T e
~YX1 4
7 \
=Lz

Name the
object

Name the
object

Visual Parsing After Recovery From Blindness, Ostrovsky et al, 2009

Motion helps object

recognition when
learning to see.

O



Experiment

(B) Object 1: Temporally Smooth

4

13
Object 1: Temporally Non-Smooth

T T

L L L JL

4 [

Motion helps object

recognition when
learning to see.

Object 2: Temporally Smooth

hihIhild

Object 2: Temporally Non-Smooth

[e]v|v][s][es]¢

2 [\ ¢
Y,

NN
Ao
AV GRS

i
4

,
¥4
<
A
Y

The Development of Invariant Object Recognition Requires Visual Experience With Temporally Smooth Objects, Wood and Wood, 2018 b’



Videos

=  Motion - cues for object
recognition during learning

—  Natural data augmentation:
translation, scale, 3D
rotation, camera motion,
light changes

CATER: A diagnostic dataset for Compositional Actions and Temporal Reasoning, Girdhar and Ramanan, 2019 b’



Beyond single image input

Inputs

Task definitions

Models

Challenges

Pairs of images

Videos

Optical flow estimation

Action recognition

Image-based models
3D convnets

Recurrent (not covered)

Obtaining labels

A note on efficiency

o



DeepMind

Pairs of images input

O



Optical flow estimation

Inputs

= Pair of RGB images

I

I

Targets

= Dense flow map (real values)

= 2D translation displacements

dx
HEEEEEEEN
HEEEE EER
HEEE .=

|

dy

+1.

O



Case study - FlowNet

Encoder-decoder architecture
similar to U-NET

Supervised training

Loss: Euclidean distance

Flying chairs dataset

convolutional
network

FlowNet: Learning optical flow with convolutional networks, Fischer et al, 2015

O



Case study - FlowNet

Encoder-decoder architecture
similar to U-NET

Supervised training
Loss: Euclidean distance
Flying chairs dataset

Sim2Real transfer

FlowNet: Learning optical flow with convolutional networks, Fischer et al, 2015
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Video input




Video models from image models

Cityscapes

Improving Semantic Segmentation via Video Propagation and Label Relaxation, Zhu et al, 2019

O


https://nv-adlr.github.io/publication/2018-Segmentation

Video models using 3D convolutions

Video as a volume

O stack frames Tx Hx W x 3

D apply 3D convolutions

e e
]

Yy = Z Wixi—f—b

1E€3X3X3

O



Recap: 2D convolution operation

The kernel slides across spatial dimensions.

O



3D convolution operation

NN N NN NNN

AN I NN ENENENEN

The kernel slides across space and time to generate

spatio-temporal feature maps.

O



3D convolution operation

NN N NN NNN

AN I NN ENENENEN

NN N N NN
NN N NN

The kernel slides across space and time to generate

spatio-temporal feature maps.

O



3D convolution operation

NN N NN NNN

AN I NN ENENENEN

NN N N NN
NN N NN

The kernel slides across space and time to generate

spatio-temporal feature maps.

O



3D convolution operation

NN N NN NNN

AN I NN ENENENEN

NN N N NN
NN N NN

S/ /
r//

The kernel slides across space and time to generate

spatio-temporal feature maps.

O



3D convolution operation

SNCSNCNC N
NN N NN

The kernel slides across space and time to generate

spatio-temporal feature maps.

O



Properties of 3D convolutions

S 3D convolutions are
| non-causal
S masked 3D convolutions

are causal
|
|
)Xt/t;l H tt+1
e Ly t—1

Strided, dilated, padded, [...] convolutions apply in 3D as well.




Action recognition

Inputs Targets
=~ RGBvideoTxHxWx3 = action label one_hot 1xN___
= (optional) flowmap Tx Hx W x 2 e.g. cricket shot

Yo

Kinetics600 dataset

- 600k training videos, 600 classes
- Curated Youtube videos

- Each video: 250 frames (~ 10 sec.)
- Current accuracy: 81.8 % top-1

Video from Kinetics dataset, Carreira et al, 2017

O



Case study: SlowFast

idda

Low frame rate

High frame rate

s 7

/

S

HW

g

uonorpaxd

oT

oT 5C

pC

Figure from SlowFast Networks for Video Recognition, Feichtenhofer et al, 2019

O



Want to learn more?

A Carreira and Zisserman. Quo Vadis,
Action Recognition? A New Model
and the Kinetics Dataset (2017)

Transfer learning returns

Inflating 2D kernels into 3D

2D image Tile along ¢ _
classifier filters

3D action
classifier filters

Intuition: a tiled image is a video of a static scene, filmed with a fixed camera.

o
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Challenges




Challenges in video processing

Difficult to obtain labels
Large memory requirements
High latency

High energy consumption

T B

| 2

[ n
4

- e | =
: :

Tema



Improve efficiency of video models

S Inspira on

© Maximise parallelism duce latency [1, 2]

rugal m de[s [3]

a Exploit redundancie

0.

o
)
v

Massively parallel video networks, Carréiré, Patraucean et al, 2018
Sideways: depth-parallel training of video models, Malinowski, Swirszcz, Carreira, Patraucean, 2020 .
Blink and you won't miss it: video processing without temporal redundancies, Patraucean et al, 2020
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Beyond supervised image classification

Supervised image Supervised-#rage-
01 _— O classification
03 Supervised image 04 Open questions

classification
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Labelling is tedious - Research topic in itself

PD[YHDHRN N++

Interactive Object Annotation with Polygons
NOTE: If inference is slow due to heavy traffic (benchmark is 0.3 seconds per interaction), please consider trying our demo locally using our available code
For sponsorship/donation to help develop this web tool, please contact polyrnn@cs.toronto.edu
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Al Assistance (a)

Use fine polygon

©
Backend:

Cityscapes 2
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Self-supervision - Metric learning

Face recognition: same person or not 1
personl

person2

v

embedding

By

Standard losses (e.g. cross-entropy, mean square error)

S learn mapping between input(s) and output distribution / value(s)

Metric learning

O learn to predict distances between inputs given some similarity measure (e.g. same person or not)

Images from VGGFace2: A dataset for recognising faces across pose and age, Cao et al, 2018 b’



Self-supervision - Metric learning

Metric learning

- Contrastive loss
> Triplet loss

- State-of-the-art on representation
learning
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Look, listen and learn, Arandjelovic and Zisserman, 2017
Learning to Learn from Web Data through Deep Semantic Embeddings, Gomez et al, 2018
VGGFace2: A dataset for recognising faces across pose and age, Cao et al, 2018

Applications

=S (Multimodal) self-supervised
representations, e.g. image+sound [1]

- Information retrieval [2]

- Low-shot face recognition [3]
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Metric learning

Contrastive loss (margin loss)

Dataset: ‘
(7’01 1Y) y=1, if (ry, rl) same-person \\\\

y =0, otherwise N\
fro.r1.y) = yd(ro, 1) + (1 — y)(max(0, m — d(rp, r1)))?

d(-.-) - Euclidean distance

Dimensionality reduction by learning an invariant mapping, Hadsell et al, 2006
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https://ieeexplore.ieee.org/abstract/document/1640964/

Metric learning

Contrastive loss (margin loss) 40
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Dimensionality reduction by learning an invariant mapping, Hadsell et al, 2006


https://ieeexplore.ieee.org/abstract/document/1640964/

Metric learning

Contrastive loss (margin loss) 40
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Difficult to choose m

Dimensionality reduction by learning an invariant mapping, Hadsell et al, 2006


https://ieeexplore.ieee.org/abstract/document/1640964/

Metric learning

Triplet loss

Dataset:

oty {Cr) sl
(ra,7n)  dissimilar

E(ra. rp.Tn) = max(0, m + d(r,, 7*,,)2 —d(rq, 1‘,,)2)

— better than contrastive loss

— relative distances more
meaningful than a fixed margin

reject
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Metric learning

Triplet loss

Dataset:

(Tas T'ps Tn) (7a,7p)  similar
artprtn L
(ra,7n)  dissimilar

y ‘ o
E(ra. rp.1n) = max(0, m+ d(rq.rp)°

— better than contrastive loss

- relative distances more

meaningful than a fixed margin

— hard negative mining to select

informative triplets

— d(rq, 72)?)

Want to learn more?

A Wyetal Sampling Matters in
| Deep Embedding Learning (2018)

reject
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New state-of-the-art in representation learning

Same data, different augmentations

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Figure from A Simple Framework for Contrastive Learning of Visual Representations, Chen et al, 2020
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New state-of-the-art in representation learning

XSupervised . % SimCLR (4x)
Composition of data S &} . *SimCLR (2x)
augmentations § . eCPCV2-L
S 70F MoCo (4x
= *SimCLR oCMC ¢ /.( )
. Q oPIRL-c2x
Learnable non-linear < 9 MoCo (2x) AMDIM
. ~ 65F oVIOL O (£X
transformation N QCPCVZ PIRL-ens.
2 TARL oBigBIGAN
- @ 6ok QMoCo 9
Larger mini-batches and < LA
longer training &
£ 554 eRotation
e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Figure from A Simple Framework for Contrastive Learning of Visual Representations, Chen et al, 2020



Beyond supervised image classification

Supervised image Supervised-#rage-
Ol _— O classification
03 Supervised image 04 Open questions

classification
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Open questions

9

Is vision solved? What does it mean to solve vision?

How to scale systems up?

What are good visual representations for action?
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Learning to see from static images might make things harder
than they should be.

Rethink vision models design and training from the
perspective of moving pictures and with the end-goal in mind:

intelligent agents that interact with the real world in real time.
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OpenPose

OpenPose represents the first real-time
multi-person system to jointly detect
human body, hand, and facial keypoints
(in total 130 keypoints) on single
images.

Screenshot from modelzoo.co

Model Zoo

Discover open source deep learning code and pretrained models.

Browse Frameworks Browse Categories

Mask R-CNN

This is an implementation of Mask R-
CNN on Python 3, Keras, and
TensorFlow. The model generates
bounding boxes and segmentation
masks for each instance of an object in
the image. It's based on Feature
Pyramid Network (FPN) and a
ResNet101 backbone.

FastPhotoStyle

A Closed-form Solution to Photorealistic
Image Stylization

O



A2 Allen Institute for Al

@ Computer Vision Explorer

W} Recognition A
Classification | CIaSSIﬁcatlon
Image classification is the task of assigning an input image, a single label drawn from a fixed set of categories. Image
Detection classification models are trained and evaluated on large classification datasets such as ImageNet that has 1000 image
categories.

Segmentation
TRY IT FOR YOURSELF
@© Visionand Language v
1. Choose an Image

Human Centric Vision

e

Pose Estimation
Image:

1z, Scene Geometry -~
Depth
. Upload an Image
Surface Normals

© About

2. Run a model



Synthetic datasets for Computer Vision

HOME BLOG DOCUMENTATION GITHUB ABOUT

CARLA

Open-source simulator for autonomous driving research.

SRS ARTED SceneNet RGB-D: 5M Photorealistic Images of Synthetic Indoor
Trajectories with Ground Truth

John McCormac Ankur Handa Stefan Leutenegger Andrew J. Davison

Dyson Robotics Lab at Imperial College, Department of Computing, Imperial Collge London

https://www.datasetlist.com/



https://www.datasetlist.com/

Transporter architecture
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PointNet (PNet) [Jakab, Gupta et al.]
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Figure from Unsupervised Learning of Object Keypoints for Perception and Control, Kulkarni, Gupta et al, 2019
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