
In this lecture series, leading research scientists
from leading AI research lab, DeepMind, will give
12 lectures on an exciting selection of topics
in Deep Learning, ranging from the fundamentals
of training neural networks via advanced ideas around 
memory, attention, and generative modelling to the 
important topic of responsible innovation.
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TODAY’S SPEAKER

James Martens
James Martens is a research scientist at DeepMind 
working on the fundamentals of deep learning 
including optimization, initialization, and regularization. 
Before that he received his BMath from the University 
of Waterloo, and did his Masters and PhD at University 
of Toronto, co advised by Geoff Hinton and Rich Zemel. 
During his PhD he helped revive interest in deep neural 
network training by showing how deep networks could 
be effectively trained using pure optimization methods 
(which has now become the standard approach).



TODAY’S LECTURE

Optimization for 
Machine Learning

Optimization methods are the engines 
underlying neural networks that enable them 
to learn from data. In this lecture I will cover 
the fundamentals of gradient-based 
optimization methods, and their application 
to training neural networks. Major topics 
include gradient descent, momentum 
methods, 2nd-order methods, and 
stochastic methods. I will analyze these 
methods through the interpretive framework 
of local 2nd-order approximations.
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2
Gradient descent

5
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Momentum methods
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2nd-order methods
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Motivation

● Optimization algorithms are the basic engine behind deep learning methods that 
enable models to learn from data by adapting their parameters

● They solve the problem of the minimization of an objective function that measures 
the mistakes made by the model

○ e.g. prediction error (classification), negative reward (reinforcement learning)

● Work by making a sequence of small incremental changes to model parameters 
that are each guaranteed to reduce the objective by some small amount



● Parameters: 

● Real-valued objective function :     

● Goal of optimization: 

Basic notation

1D example objective function
dimension



Example: neural network training objective

● The standard neural network training objective is 
given by:

        where:
   is a loss function measuring 

disagreement between    and 
and

    is a neural network function taking 
input    and outputing some prediction  



Gradient 
descent2



Gradient descent: definition

● Basic gradient descent iteration:

Learning rate:
(aka “step size”)

Gradient:  



Intuition: gradient descent is “steepest descent”

● Gradient direction              gives 
greatest reduction in          per unit of 
change* in    .

● If          is “sufficiently smooth”, and 
learning rate small, gradient will keep 
pointing down-hill over the region in 
which we take our step

High 
smoothness

Low 
smoothness



Intuition: gradient descent is minimizing a local 
approximation

● 1st-order Taylor series for           around current     is:

● For small enough     this will be a reasonable 
approximation

● Gradient update computed by minimizing this 
within a sphere of radius    : 

where 



The problem with gradient descent visualized: 
the 2D “narrow valley” example

Large learning rate (   ) Small learning rate

No good choice !



●         has Lipschitz continuous derivatives (i.e. is “Lipschitz smooth”):
                     

   

●          is strongly convex (perhaps only near minimum):
                     

● And for now: Gradients are computed exactly (i.e. not stochastic)

Convergence theory: technical assumptions

       (a lower bound on the curvature)

       (an upper bound on the curvature)



Convergence theory: upper bounds

If previous conditions hold and we take                        :

where                       .

Number of iterations to achieve                                  is

minimizer



Convergence theory: useful in practice?

● Issues with bounds such as this one:

○ too pessimistic (they must cover worst-case examples)

○ some assumptions too strong (e.g. convexity)

○ other assumptions too weak (real problems have additional useful structure)

○ rely on crude measures of objective (e.g. condition numbers)

○ usually focused on asymptotic behavior

● The design/choice of an optimizer should always be informed by practice more 
than anything else.  But theory can help guide the way and build intuitions. 



Momentum methods3



The momentum method

● Motivation: 

○ the gradient has a tendency to flip back and forth as we take steps when 
the learning rate is large

○ e.g. the narrow valley example

● The key idea: 

○ accelerate movement along directions that point consistently down-hill 
across many consecutive iterations (i.e. have low curvature)

● How? 
○ treat current solution for     like a “ball” rolling along a “surface” whose 

height is given by          ,  subject the force of gravity



Credit: Devinsupertramp via youtube.com



Defining equations for momentum

● Classical Momentum:

● Nesterov’s variant:

Learning rate: 

Momentum constant: 



 

Narrow 2D valley example revisited

Gradient descent with small 
learning rate

Momentum methodGradient descent with large 
learning rate



Upper bounds for Nesterov’s momentum 
variant

Given objective          satisfying same technical conditions as before, and 
careful choice of        and       , Nesterov’s momentum method satisfies:

Number of iterations to achieve                                   :



Convergence theory: 1st-order methods and 
lower bounds

● A first-order method is one where updates are linear combinations of 
observed gradients. i.e.:

● Included:
○ gradient descent
○ momentum methods
○ conjugate gradients (CG)

● Not included:
○ preconditioned gradient descent / 2nd-order methods



Lower bounds (cont.)

Assume number of steps is greater than the dimension     (it usually is). 
Then, there is example objective satisfying previous conditions for which:

Number of iterations to achieve                                   :



Comparison of iteration counts

To achieve                                  the number of iterations     satisfies:

● (Worst-case) lower bound for 1st-order methods:

● Upper bound for gradient descent:

● Upper bound for GD w/ Nesterov’s momentum:



2nd-order 
methods4



The problem with 1st-order methods

● For any 1st-order method, the number of steps needed to converge 
grows with “condition number”:

● This will be very large for some problems (e.g. certain deep 
architectures)

● 2nd-order methods can improve (or even eliminate) this dependency

Max curvature

Min curvature



Derivation of Newton’s method

● Approximate          by its 2nd-order Taylor 
series around current    :

● Minimize this local approximation to obtain:

● Update current iterate with this:



The 2D narrow valley example revisited (again)

 

Gradient descent Momentum method 2nd-order method



Comparison to gradient descent

● Maximum allowable global learning rate for GD to avoid divergence:

● Gradient descent implicitly minimizes a bad approximation of 2nd-order 
Taylor series:

●       is too pessimistic / conservative an approximation of          ! Treats all 
directions as having max curvature.

       is maximum curvature 
aka “Lipschitz constant”



● Quadratic approximation of objective is only trustworthy in a 
local region around current 

● Gradient descent (implicitly) approximates the curvature 
everywhere by its global max (and so doesn’t have this 
problem)

● Newton’s method uses          , which may become an 
underestimate in the region we are taking our update step  

Solution: Constrain update     to lie in a “trust region”      around, 
where approximation remains “good enough”

Breakdown of local quadratic approximation 
and how to deal with it



Trust-regions and “damping”

● If we take                                       then computing

is often equivalent to
                        
     
        for some    .

●    depends on     in a complicated way, but we can just work with     
directly



          does not necessarily give the best quadratic approximation for 
optimization.  Different replacements for           could produce:

Alternative curvature matrices

A more conservative 
approximation

A more global approximation



Alternative curvature matrices (cont.)

● The most important family of related examples includes:

○ Generalized Gauss-Newton matrix (GGN)

○ Fisher information matrix

○ “Empirical Fisher”

● Nice properties:

○ always positive semi-definite (i.e. no negative curvature)

○ give parameterization invariant updates in small learning rate limit (unlike 
Newton’s method!)

○ work much better in practice for neural net optimization



Barrier to application of 2nd-order methods for 
neural networks

● For neural networks,                   can have 10s of millions of dimensions

● We simply cannot compute and store an               matrix, let alone invert 
it!  

● To use 2nd-order methods, we must simplify the curvature matrix’s
○ computation, 
○ storage,
○ and inversion

This is typically done by approximating the matrix with a simpler form.



Diagonal approximations

The simplest approximation: include only the diagonal 
entries of curvature matrix   (setting the rest to zero)

Properties:

● Inversion and storage cost:

● Computational costs depends on form of original 
matrix (ranges from easy to hard)

● Unlikely to be accurate, but can compensate for basic scaling differences 
between parameters

Used (with a square root) in RMS-prop and Adam methods to approximate 
Empirical Fisher matrix



Block-diagonal approximations

Another option is to take only include certain diagonal blocks. 

For neural nets, a block could correspond to:
● weights on connections going into a given unit
● weights on connections going out of a given unit
● all the weights for a given layer

Properties:
● Storage cost:                 (assuming            block size)
● Inversion cost:              
● Similar difficulty to computing diagonal
● Can only be realistically applied for small block sizes

Well-known example developed for neural nets: TONGA



● Block-diagonal approximation of GGN/Fisher where blocks correspond to 
network layers

● Approximate each block as Kronecker product of two small matrices:

● Storage and computation cost:            *

● Cost to apply inverse:                        (uses                                               )

● Used in current most powerful neural net optimizer (K-FAC)

Kronecker-product approximations



Stochastic 
methods5



Motivation for stochastic methods

● Typical objectives in machine learning are an average over training cases of 
case-specific losses:

●      can be very big, and so computing the gradient gets expensive:



Mini-batching

● Fortunately there is often significant statistical overlap between           ’s

● Early in learning, when “coarse” features of the data are still being learned, 
most              ‘ s will look similar

● Idea: randomly subsample a “mini-batch” of training cases                                 
of size                 , and estimate gradient as:

  



Stochastic gradient descent (SGD)

● Stochastic gradient descent (SGD) replaces              with its mini-batch 
estimate             , giving:

● To ensure convergence, need to do one of the following:

○ Decay learning rate:

○ Use “Polyak averaging”:                                        or 
 
○ Slowly increase the mini-batch size during optimization



Convergence of stochastic methods

● Stochastic methods converge slower than corresponding non-stochastic 
versions

● Asymptotic rate for SGD with Polyak averaging: 

● Iterations to converge:

Gradient estimate 
covariance matrix

vs

no log!



Stochastic 2nd-order and momentum methods

● Mini-batch gradients estimates can be used with 2nd-order and 
momentums methods too

● Curvature matrices estimated stochastically using decayed averaging over 
multiple steps

● No stochastic optimization method that sees the same amount of data can 
have better asymptotic convergence speed than SGD with Polyak averaging

● But... pre-asymptotic performance usually matters more in practice. So 
stochastic 2nd-order and momentum methods can still be useful if:

○ the loss surface curvature is bad enough and/or

○ the mini-batch size is large enough



Experiments on deep convnets

Details

● Mini-batch size of 512
● Imagenet dataset
● 100 layer deep 

convolutional net without 
skips or batch norm

● Carefully initialized 
parameters



Conclusions / Summary

● Optimization methods:

○ enable learning in models by adapting parameters to minimize some objective

○ main engine behind neural networks

● 1st-order methods (gradient descent):

○ take steps in direction of “steepest descent”

○ run into issues when curvature varies strongly in different directions

● Momentum methods:

○ use principle of momentum to accelerate along directions of lower curvature

○ obtain “optimal” convergence rates for 1st-order methods



Conclusions / Summary

● 2nd-order methods:

○ improve convergence in problems with bad curvature, even more so than 
momentum methods

○ require use of trust-regions/damping to work well

○ also require the use of curvature matrix approximations to be practical in high 
dimensions (e.g. for neural networks)

● Stochastic methods:

○ use “mini-batches” of data to estimate gradients

○ asymptotic convergence is slower

○ pre-asymptotic convergence can be sped up using 2nd-order methods and/or 
momentum



Thank you



Questions



References and further reading

Solid introductory texts on optimization:

● Numerical Optimization  (Nocedal & Wright)

● Introductory Lectures on Convex Optimization: A Basic Course  (Nesterov)

Further reading for those interested in neural network optimization:

● Optimization Methods for Large-Scale Machine Learning  (Bottou et al)

● The Importance of Initialization and Momentum in Deep Learning  (Sutskever et al.)

● New insights and perspectives on the natural gradient method  (Martens)

● Optimizing Neural Networks with Kronecker-factored Approximate Curvature  (Martens & 
Grosse)

● Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic 
Model  (Zhang et al.)


