
In this lecture series, leading research scientists
from leading AI research lab, DeepMind, will give
12 lectures on an exciting selection of topics
in Deep Learning, ranging from the fundamentals
of training neural networks via advanced ideas around
memory, attention, and generative modelling to the
important topic of responsible innovation.

Please join us for a deep dive lecture series into
Deep Learning!

#UCLxDeepMind

UCL x DeepMind
WELCOME TO THE

lecture series

General
information

Exits:
At the back, the way you came in

Wifi:
UCL guest

TODAY’S SPEAKER

James Martens
James Martens is a research scientist at DeepMind
working on the fundamentals of deep learning
including optimization, initialization, and regularization.
Before that he received his BMath from the University
of Waterloo, and did his Masters and PhD at University
of Toronto, co advised by Geoff Hinton and Rich Zemel.
During his PhD he helped revive interest in deep neural
network training by showing how deep networks could
be effectively trained using pure optimization methods
(which has now become the standard approach).

TODAY’S LECTURE

Optimization for
Machine Learning

Optimization methods are the engines
underlying neural networks that enable them
to learn from data. In this lecture I will cover
the fundamentals of gradient-based
optimization methods, and their application
to training neural networks. Major topics
include gradient descent, momentum
methods, 2nd-order methods, and
stochastic methods. I will analyze these
methods through the interpretive framework
of local 2nd-order approximations.

Optimization for
Machine Learning

James Martens

UCL x DeepMind Lectures

Plan for this Lecture

1
Intro and motivation

2
Gradient descent

5
Stochastic optimization

3
Momentum methods

4
2nd-order methods

Intro and
motivation1

Motivation

● Optimization algorithms are the basic engine behind deep learning methods that
enable models to learn from data by adapting their parameters

● They solve the problem of the minimization of an objective function that measures
the mistakes made by the model

○ e.g. prediction error (classification), negative reward (reinforcement learning)

● Work by making a sequence of small incremental changes to model parameters
that are each guaranteed to reduce the objective by some small amount

● Parameters:

● Real-valued objective function :

● Goal of optimization:

Basic notation

1D example objective function
dimension

Example: neural network training objective

● The standard neural network training objective is
given by:

 where:
 is a loss function measuring

disagreement between and
and

 is a neural network function taking
input and outputing some prediction

Gradient
descent2

Gradient descent: definition

● Basic gradient descent iteration:

Learning rate:
(aka “step size”)

Gradient:

Intuition: gradient descent is “steepest descent”

● Gradient direction gives
greatest reduction in per unit of
change* in .

● If is “sufficiently smooth”, and
learning rate small, gradient will keep
pointing down-hill over the region in
which we take our step

High
smoothness

Low
smoothness

Intuition: gradient descent is minimizing a local
approximation

● 1st-order Taylor series for around current is:

● For small enough this will be a reasonable
approximation

● Gradient update computed by minimizing this
within a sphere of radius :

where

The problem with gradient descent visualized:
the 2D “narrow valley” example

Large learning rate () Small learning rate

No good choice !

● has Lipschitz continuous derivatives (i.e. is “Lipschitz smooth”):

● is strongly convex (perhaps only near minimum):

● And for now: Gradients are computed exactly (i.e. not stochastic)

Convergence theory: technical assumptions

 (a lower bound on the curvature)

 (an upper bound on the curvature)

Convergence theory: upper bounds

If previous conditions hold and we take :

where .

Number of iterations to achieve is

minimizer

Convergence theory: useful in practice?

● Issues with bounds such as this one:

○ too pessimistic (they must cover worst-case examples)

○ some assumptions too strong (e.g. convexity)

○ other assumptions too weak (real problems have additional useful structure)

○ rely on crude measures of objective (e.g. condition numbers)

○ usually focused on asymptotic behavior

● The design/choice of an optimizer should always be informed by practice more
than anything else. But theory can help guide the way and build intuitions.

Momentum methods3

The momentum method

● Motivation:

○ the gradient has a tendency to flip back and forth as we take steps when
the learning rate is large

○ e.g. the narrow valley example

● The key idea:

○ accelerate movement along directions that point consistently down-hill
across many consecutive iterations (i.e. have low curvature)

● How?
○ treat current solution for like a “ball” rolling along a “surface” whose

height is given by , subject the force of gravity

Credit: Devinsupertramp via youtube.com

Defining equations for momentum

● Classical Momentum:

● Nesterov’s variant:

Learning rate:

Momentum constant:

Narrow 2D valley example revisited

Gradient descent with small
learning rate

Momentum methodGradient descent with large
learning rate

Upper bounds for Nesterov’s momentum
variant

Given objective satisfying same technical conditions as before, and
careful choice of and , Nesterov’s momentum method satisfies:

Number of iterations to achieve :

Convergence theory: 1st-order methods and
lower bounds

● A first-order method is one where updates are linear combinations of
observed gradients. i.e.:

● Included:
○ gradient descent
○ momentum methods
○ conjugate gradients (CG)

● Not included:
○ preconditioned gradient descent / 2nd-order methods

Lower bounds (cont.)

Assume number of steps is greater than the dimension (it usually is).
Then, there is example objective satisfying previous conditions for which:

Number of iterations to achieve :

Comparison of iteration counts

To achieve the number of iterations satisfies:

● (Worst-case) lower bound for 1st-order methods:

● Upper bound for gradient descent:

● Upper bound for GD w/ Nesterov’s momentum:

2nd-order
methods4

The problem with 1st-order methods

● For any 1st-order method, the number of steps needed to converge
grows with “condition number”:

● This will be very large for some problems (e.g. certain deep
architectures)

● 2nd-order methods can improve (or even eliminate) this dependency

Max curvature

Min curvature

Derivation of Newton’s method

● Approximate by its 2nd-order Taylor
series around current :

● Minimize this local approximation to obtain:

● Update current iterate with this:

The 2D narrow valley example revisited (again)

Gradient descent Momentum method 2nd-order method

Comparison to gradient descent

● Maximum allowable global learning rate for GD to avoid divergence:

● Gradient descent implicitly minimizes a bad approximation of 2nd-order
Taylor series:

● is too pessimistic / conservative an approximation of ! Treats all
directions as having max curvature.

 is maximum curvature
aka “Lipschitz constant”

● Quadratic approximation of objective is only trustworthy in a
local region around current

● Gradient descent (implicitly) approximates the curvature
everywhere by its global max (and so doesn’t have this
problem)

● Newton’s method uses , which may become an
underestimate in the region we are taking our update step

Solution: Constrain update to lie in a “trust region” around,
where approximation remains “good enough”

Breakdown of local quadratic approximation
and how to deal with it

Trust-regions and “damping”

● If we take then computing

is often equivalent to

 for some .

● depends on in a complicated way, but we can just work with
directly

 does not necessarily give the best quadratic approximation for
optimization. Different replacements for could produce:

Alternative curvature matrices

A more conservative
approximation

A more global approximation

Alternative curvature matrices (cont.)

● The most important family of related examples includes:

○ Generalized Gauss-Newton matrix (GGN)

○ Fisher information matrix

○ “Empirical Fisher”

● Nice properties:

○ always positive semi-definite (i.e. no negative curvature)

○ give parameterization invariant updates in small learning rate limit (unlike
Newton’s method!)

○ work much better in practice for neural net optimization

Barrier to application of 2nd-order methods for
neural networks

● For neural networks, can have 10s of millions of dimensions

● We simply cannot compute and store an matrix, let alone invert
it!

● To use 2nd-order methods, we must simplify the curvature matrix’s
○ computation,
○ storage,
○ and inversion

This is typically done by approximating the matrix with a simpler form.

Diagonal approximations

The simplest approximation: include only the diagonal
entries of curvature matrix (setting the rest to zero)

Properties:

● Inversion and storage cost:

● Computational costs depends on form of original
matrix (ranges from easy to hard)

● Unlikely to be accurate, but can compensate for basic scaling differences
between parameters

Used (with a square root) in RMS-prop and Adam methods to approximate
Empirical Fisher matrix

Block-diagonal approximations

Another option is to take only include certain diagonal blocks.

For neural nets, a block could correspond to:
● weights on connections going into a given unit
● weights on connections going out of a given unit
● all the weights for a given layer

Properties:
● Storage cost: (assuming block size)
● Inversion cost:
● Similar difficulty to computing diagonal
● Can only be realistically applied for small block sizes

Well-known example developed for neural nets: TONGA

● Block-diagonal approximation of GGN/Fisher where blocks correspond to
network layers

● Approximate each block as Kronecker product of two small matrices:

● Storage and computation cost: *

● Cost to apply inverse: (uses)

● Used in current most powerful neural net optimizer (K-FAC)

Kronecker-product approximations

Stochastic
methods5

Motivation for stochastic methods

● Typical objectives in machine learning are an average over training cases of
case-specific losses:

● can be very big, and so computing the gradient gets expensive:

Mini-batching

● Fortunately there is often significant statistical overlap between ’s

● Early in learning, when “coarse” features of the data are still being learned,
most ‘ s will look similar

● Idea: randomly subsample a “mini-batch” of training cases
of size , and estimate gradient as:

Stochastic gradient descent (SGD)

● Stochastic gradient descent (SGD) replaces with its mini-batch
estimate , giving:

● To ensure convergence, need to do one of the following:

○ Decay learning rate:

○ Use “Polyak averaging”: or

○ Slowly increase the mini-batch size during optimization

Convergence of stochastic methods

● Stochastic methods converge slower than corresponding non-stochastic
versions

● Asymptotic rate for SGD with Polyak averaging:

● Iterations to converge:

Gradient estimate
covariance matrix

vs

no log!

Stochastic 2nd-order and momentum methods

● Mini-batch gradients estimates can be used with 2nd-order and
momentums methods too

● Curvature matrices estimated stochastically using decayed averaging over
multiple steps

● No stochastic optimization method that sees the same amount of data can
have better asymptotic convergence speed than SGD with Polyak averaging

● But... pre-asymptotic performance usually matters more in practice. So
stochastic 2nd-order and momentum methods can still be useful if:

○ the loss surface curvature is bad enough and/or

○ the mini-batch size is large enough

Experiments on deep convnets

Details

● Mini-batch size of 512
● Imagenet dataset
● 100 layer deep

convolutional net without
skips or batch norm

● Carefully initialized
parameters

Conclusions / Summary

● Optimization methods:

○ enable learning in models by adapting parameters to minimize some objective

○ main engine behind neural networks

● 1st-order methods (gradient descent):

○ take steps in direction of “steepest descent”

○ run into issues when curvature varies strongly in different directions

● Momentum methods:

○ use principle of momentum to accelerate along directions of lower curvature

○ obtain “optimal” convergence rates for 1st-order methods

Conclusions / Summary

● 2nd-order methods:

○ improve convergence in problems with bad curvature, even more so than
momentum methods

○ require use of trust-regions/damping to work well

○ also require the use of curvature matrix approximations to be practical in high
dimensions (e.g. for neural networks)

● Stochastic methods:

○ use “mini-batches” of data to estimate gradients

○ asymptotic convergence is slower

○ pre-asymptotic convergence can be sped up using 2nd-order methods and/or
momentum

Thank you

Questions

References and further reading

Solid introductory texts on optimization:

● Numerical Optimization (Nocedal & Wright)

● Introductory Lectures on Convex Optimization: A Basic Course (Nesterov)

Further reading for those interested in neural network optimization:

● Optimization Methods for Large-Scale Machine Learning (Bottou et al)

● The Importance of Initialization and Momentum in Deep Learning (Sutskever et al.)

● New insights and perspectives on the natural gradient method (Martens)

● Optimizing Neural Networks with Kronecker-factored Approximate Curvature (Martens &
Grosse)

● Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic
Model (Zhang et al.)

