WELCOME TO THE

UCL x DeepMind
lecture series

In this lecture series, leading research scientists

from leading Al research lab, DeepMind, will give

12 lectures on an exciting selection of topics

in Deep Learning, ranging from the fundamentals

of training neural networks via advanced ideas around
memory, attention, and generative modelling to the
important topic of responsible innovation.

Please join us for a deep dive lecture series into
Deep Learning!

#UCLxDeepMind
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TODAY'S SPEAKER

Marta Garnelo

Marta is a research scientist at DeepMind working
on deep generative models and meta learning.
During her time at DM she has worked on Generative
Query Networks as well as Neural Processes and
recently her research focus has shifted towards
multi-agent systems. In addition she is currently
wrapping up her PhD with Prof Murray Shanahan

at Imperial College London where she also did

an MSc in Machine Learning.
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TODAY'S LECTURE

Sequences
and Recurrent
Networks

In this lecture we will focus on sequential
data and how machine learning methods
have been adapted to process this
particular type of structure. We will start
by introducing some fundamentals

of sequence modeling including common
architectures designed for this task such
as RNNs and LSTMs. We will then move
on to sequence-to-sequence decoding
and its applications before finishing with
some examples of recent applications

of sequence models.
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Roadmap

Motivation

Why sequences matter
and why the methods
we have covered so far
don’t work on them.

Fundamentals

Loss, optimisation
and architectures

of sequence models.

Generation

Applications
and examples of
sequence modelling.
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DeepMind

1 Motivation

Sequences and Recurrent Neural Networks
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So far

Feed forward networks

Convolutional networks
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Sequences

Collections of elements where:

Elements can be repeated
Order matters

e Of variable (potentially
infinite) length

O



Modeling sequences

e Elements can be

o matters

o Of (potentially
infinite) length

Models discussed so far don’t do well with sequential data.
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“Why do we care about sequences?”
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Sequences are everywhere

“Sequences really seem to be
everywhere! We should learn how
to model them. What is the best

way to do that? Stay tuned!”

1 Second

Words, letters Speech Videos
ﬁ\'
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e
:
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Images Programs Decision making
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Summary

Sequences are collections of variable length
where order matters

Sequences are widespread across machine
learning applications

Not all deep learning models can handle
sequential data

O



DeepMind

2 Fundamentals
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Training machine learning models

Supervised learning

Data {xa y}Z

Model y = fo (37)
N

LO)=> I(folz:),y:)
i=1

Optimisation 0" = arg m@in L(0)
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Training machine learning models

Supervised learning

Data {xa y}Z

Model y = fo (37)
N

Loss L(0) = Zl(fG(xi)ayi)
i=1

Optimisation 0" = arg m@in L(0)

Sequence modelling

{z}i

p(z) = folz)

£(0) = Y logplfo()

0" = arg max L(0)
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Modeling p(x)

“Modeling word probabilities is really difficult”

O



Modeling p(x)

T
Simplest model:

Assume independence of words p(X) — H p(xt)
t=1

p(“modeling”) x p(“word”) x p(“probabilities”) x p(“is”) x p(“really”) x p(“difficult”)

Word p(x)

O



Modeling p(x)

T
Simplest model:

Assume independence of words p(X) — H p(xt)
t=1

p(“modeling”) x p(“word") x p(“probabilities”) x p(“is”) x p(“really”) x p(“difficult”)

Word p(x.) However:

Most likely 6-word sentence:
“The the the the the the.”

— Independence assumption does not

match sequential structure of language.
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Modeling p(x)

More realistic model:
Assume conditional dependence of words

p(xT) — p(.’l?T|CE'1, °'°7£UT—1)

Modeling word probabilities is really ?
Target

difficult
hard
fun

easy

p(xlcontext)

0.01
0.009
0.005

0.0000i1
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Modeling p(x)

The chain rule
Computing the joint p(x) from conditionals

Modeling
word
probabilities
is
really
difficult
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Scalability issues

p(@a|z1)

Modeling

word

probabilities
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Scalability issues
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Scalability issues




Scalability issues

These images are only for context of size N=1!
The table size of larger contexts will grow with vocabularyN



Fixing a small context: N-grams

Only condition on N previous words

Modeling
word
probabilities
is
really
difficult

o



Downsides of using N-grams

1 Doesn’t take into account
words that are more than
N words away

2 Data table is still very,
very large

All Our N-gram are Belong to You
Thursday, August 3, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,
such as statistical machine translation, speech recognition, spelling correction, entity detection,
information extraction, and others. While such models have usually been estimated from training
corpora containing at most a few billion words, we have been harnessing the vast power of
Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.

We believe that the entire research community can benefit from access to such massive amounts
of data. It will advance the state of the art, it will focus research in the promising direction of large-
scale, data-driven approaches, and it will allow all research groups, no matter how large or small
their computing resources, to play together. That's why we decided to share this enormous dataset
with everyone. We processed 1,024,908,267,229 words of running text and are publishing the
counts for all 1,176,470,663 five-word sequences that appear at least 40 times, There are
13,588,391 unique words, after discarding words that appear less than 200 times.

O


https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

Summary

Modeling probabilities of sequences scales
badly given the non-independent structure
of their elements
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Can this probability
estimation be learned
from data in a more
efficient way?
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Learning to model word probabilities

1. Vectorising the context

bttt

“Modeling” “word” “probabilities” “is” “really”

f, summarises the context in h |such that:

p(xe|we, ..., ze-1) ~ p(ae|h)



Learning to model word probabilities

1. Vectorising the context

bttt

“Modeling” “word” “probabilities” “is” “really”

Desirable properties for f:

Order matters

Variable length

Learnable (differentiable)

Individual changes can have large effects
(non-linear/deep)

O



Desirable properties

Order matters
Variable length
Differentiable
Pairwise encoding

Preserves long-term
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N-grams

Modeling

g

word

g

probabilities

g

is

g

really
difficult
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Properties of N-grams as f,

N-gram
Order matters v
Variable length X
Differentiable X
Pairwise encoding v
Preserves long-term X



Addition

f

“Modeling”

f

“word”

f

“probabilities”

f

s _n
IS

f

“really”
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Properties of addition as f_

N-gram Addition
Order matters V4 X
Variable length X V4
Differentiable X V4
Pairwise encoding v X
Preserves long-term X V4
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Learning to model word probabilities

2. Modeling conditional probabilities

h ——— 8o —difficult

o



Learning to model word probabilities

2. Modeling conditional probabilities

h ——— 8o —difficult

Desirable properties for g, :

Individual changes can have large effects
(non-linear/deep)

Returns a probability distribution

o



Summary

N-grams and simple aggregation do not meet
the requirements for modeling sequences

O



How can we build a deep
network that meets our
requirements?
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Recurrent Neural
Networks (RNNs)

Persistent state variable h stores information from the context
observed so far.

hy +@—~O~0)| h, h; = tanh(Wjh;_; + W, x;)

Elman (1991) @



2

Recurrent Neural

Networks (RNNs) _
| RNNs predict the target y (the next
¢ word) from the state h.
-0
h, *@"@"@_’ h,
mﬁg p(Ye+1) = softmax(Why)

Softmax ensures we obtain a
X, distribution over all possible words.

Elman (1991) @




Recurrent Neural
Networks (RNNs)

Vi

oo
3ol
o @

Input next word in sentence x

Elman (1991) @



Recurrent Neural
Networks (RNNs)

Elman (1991) @



Recurrent Neural
Networks (RNNs)

Elman (1991) @



Recurrent Neural
Networks (RNNs)

Weights are shared
over time steps

RNN

<
<
N
<

[S)

<o < |
B H
H—H
N

X2

RNN rolled out over time
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Loss: Cross Entropy

Next word prediction is essentially a classification task where
the number of classes is the size of the vocabulary.

As such we use the cross-entropy loss:

For one word: [,g (y7 y)t = —V: log yt

For the a

sentence: Lo (y, y) = — Z y:log ¥y
t=1

With parameters § = {W,, W,, W}

yt+1

i

o



Differentiating wrt Wy, W and W,

h,
P(Xt+1)

= tanh(Wrh; 1 + W, x¢)
= softmax(W hy)

‘69 (Y7 y)t —

—y:logy:
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Differentiating wrt Wy

ht = tanh(Whht—l + WxXt)
p(Xe41) = softmax(W hy)

Lo(y,¥)e = —yilog¥:

OLoy  O0Lyy OFq

oW, 0y, OW,
= (Yt — yt)ht

O



Differentiating wrt W,

ht = tanh(Whht—l + WxXt)
p(Xe41) = softmax(W hy)

Lo(y,¥)e = —yilog¥:

8[,9,,5 o 8,69,75 (93% 8ht
6Wh B 85’75 8ht 8‘N-h

1)
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Differentiating wrt W,

ht = tanh(Whht—l + WxXt)
p(Xe41) = softmax(W hy)

Lo(y,¥)e = —yilog¥:

8[,9,,5 o 8,69,75 (93% 8ht
8Wh B 85’75 8ht a‘N'h
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Back propagating through time

Ohy
oWy,

8ht 8ht 81’175_1

oW, | oh,. oW,

_ O Ohy [Ohyy Oy Oy

“OW, | Ohy_, | OW, | Oh,_, OW,
Z oh, Ohy,
Ohy, OW),
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Differentiating wrt W

h; = tanh(Wrh; 1 + W xy) 2 9, 5
p(X+1) = softmax(W hy) H H H
‘69(}’7 y)t = —Y¢ log yt

- B BN
OLos 0Ly, 09 Ohy \
OW;, ayt Oh; OW, H H H
Oh, Z oh, Ohy, . Z 0Lyt 0y Ohy Ohy,
OWy, Ohy OW, 0y: dh; oh, OWy,
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Vanishing gradients

A simple example

ﬁ LX)

—r

ht—)OOlf|Wh|>1
ht—>01f|Wh|<1

Hochreiter (1991), Bengio et al. (1994) “’



Vanishing gradients

A simple example

h.— h, — .. — h

But RNNs bound h with a tanh!

ht — Whht—l —> ht = tanh(Whht_l)
o



Vanishing gradients

ht == tanh(Whht_l)

ohy

Ohy_r

import numpy as np

hs = [0.5]
fo in range(T):

WO NO WU Ss WN

dh

for t range(T):
dh = (1-hs[-1-t]

hs[-1], dh

T=10
16 wlim = 4
17
18 results = []

import matplotlib.pyplot as plt

forward backward prop(w, T):

hs.append(np.tanh(w*hs[-1]))

S

19 ws = np.linspace(-wlim, wlim, 1000)

20 fo in ws:

21 esults.append(forward backward prop(w, T))

22
23 plt.plot(ws, [r[e]
24 plt.plot(ws, [r[1]

= (1 - tall}12<‘0\7hllt__1):y\N]h

for r in results],

r in results],

Ohy_y

Ohy_r

label="'RNN
label='G

1.0

0.8

0.6

0.4

0.2

0.0

RNN state
- Gradients

-1 0 1
Value of weight w
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Properties of RNNs as {,

N-gram Addition RNN
Order matters V4 X V4
Variable length X V4 V4
Differentiable X V4 V4
Pairwise encoding v X X
Preserves long-term X V4 X



Summary

Recurrent neural networks can model sequences
of variable length and can be trained via
back-propagation

They do, however suffer from the vanishing
gradients problem, which stops them from
capturing long-term dependencies

O



Long term dependencies are important

.. Finally, Tim was planning to visit France on
the final week of his journey. He was quite
excited to try the local delicacies and had
lots of recommendations for good
restaurants and exhibitions. His first stop
was, of course, the capital where he would
meet his long-time Friend Jean-Pierre. In
order to arrive for breakfast he took the early
5 AM train from London to ...

O



Long term dependencies are important

.. Finally, Tim was planning to visit France on
the final week of his journey. He was quite
excited to try the local delicacies and had
lots of recommendations for good
restaurants and exhibitions. His first stop
was, of course, the capital where he would
meet his long-time Friend Jean-Pierre. In
order to arrive for breakfast he took the early
5 AM train from London to ...
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Long term dependencies are important

.. Finally, Tim was planning to visit France on
the final week of his journey. He was quite
excited to try the local delicacies and had
lots of recommendations for good
restaurants and exhibitions. His first stop
was, of course, the capital where he would
meet his long-time Friend Jean-Pierre. In
order to arrive for breakfast he took the early
5 AM train from London to ...

PARIS!

O



How can we capture
long-term dependencies?
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Long Short-Term Memory (LSTM) networks

RNN state update

o



Long Short-Term Memory (LSTM) networks

LSTM state update

- g - o -
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Hochreiter (1997), Gers et al. (1999) b,



1) Forget gate

Long Short-Term Memory (LSTM) networks

o

fl=0(Wpi-[he1,x¢] +by)



Long Short-Term Memory (LSTM) networks

2) Input gates

- ey (rrmmee———c e e e e e e e e —————————————— I
E = E =
—»lc,, |— Lyl c, >
] - | : '
! | ! [
] ! '
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| i Input gates | H
| ! Nl o i |
i ' I | H
] ! H 1
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! | ' : |
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X

ft2 = O'(sz . [ht—l,Xt] + bfz) O, tanh(sz . [ht—l,Xt] -+ bfz)
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3) Output gate

Long Short-Term Memory (LSTM) networks

| /o~

Output gate

= O'(Whg . [ht—b Xt] + bhi) O tanh(ct)

/
t

h

O



Long Short-Term Memory (LSTM) networks

LSTM state update
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Gated Recurrent Unit nets

GRU state update

T e | Vo
1 ! h '
—| h,, |= > () —(H)——»| h, —E—»
: : Reset Update * : 1
| ! gate Vv gate 1 :
| - ! |
= : - : :

i ! A i !
= N : :

i — | [x,, h,] >°—> i i

]
- ; bl
! i [x. b’ ] ——> A i
' ! : 1
. : A | L

-----------------------------------

GRU can be seen as a simplified LSTM.

Cho et al. (2014) @



Properties of LSTMs as f

N-gram Addition RNN LSTM
Order matters v X v V4
Variable length X V4 V4 V4
Differentiable X V4 V4 V4
Pairwise encoding v X X X
Preserves long-term X V4 X v



Summary

LSTMs and GRUs overcome the vanishing gradient
problem by making use of sophisticated gating
mechanisms

As a result these models are ubiquitous across
machine learning research

O
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Generating
Sequences

o



Using a trained model

During training we focussed on optimising the log probability
estimates produced by our model.

Lo(y,¥) = —yilog ¥,

This means at test time we can use it to evaluate the probability of
a new sentence. This, however, is arguably not very interesting.

An alternative use case of our trained model is sequence
generation.

O



Generating sequences with RNNs

Vi

¥ is a probability distribution
m) over possible words that we can
1 sample from.
@

O



Generating sequences with RNNs

A

ég The sampled y is the input to

m m the next iteration of the network.
hy +@~@—~@D~{ h; [FO-O
.

o me




Generating sequences with RNNs

Vi V.

O



Generating sequences with RNNs

~ v

g‘e o

v, Ol v, Ol

h, 4?»6%@» h, O~ h, »E@»@*
oo me @
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Images as sequences

o



Images as sequences: PixelRNN

Van den Oord et al. (2016) b,



Softmax Sampling

255

O



Softmax Sampling
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Softmax Sampling

O



Softmax Sampling
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Softmax Sampling

O



Softmax Sampling

O



Softmax Sampling

—I

O



Softmax Sampling

O



Softmax Sampling

O



Softmax Sampling

O



Softmax Sampling

O



Softmax Sampling

255

O



Softmax Sampling

255

O



Softmax Sampling

255

O



Softmax Sampling

255

O



Softmax Sampling

255
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Softmax Sampling

255

O



Softmax Sampling

255

O



Softmax Sampling

255

O



Softmax Sampling

255

O



Softmax Sampling

255

O



Softmax Sampling

955

O



Softmax Sampling

255

O



Images as sequences: PixelRNN

Van den Oord et al. (2016) “,



Images as sequences

Pixel-by-pixel Group-by-group
Reed et al. “Parallel Multiscale
Autoregressive Density Estimation.” @



Natural language
as sequences

o



Language as sequences:
Sequence-to-sequence models

_‘F>

= [—

X —

O



Language as sequences:
Sequence-to-sequence models

h',

h',

h',

°><—>_‘='—>_';<’

O



Language as sequences:
Sequence-to-sequence models

h',

T

Sequence

h',

T

to

> rfs

T

sequence

O



This setup is flexible

t ! ! f t
h, h, —| h, h, h, = h, h,
i t t f
Xo Xo Xo X X,
One to one One to many Many to one
! t t t f f
h, = h, h, h', — h', —| h, h, h, h,
i t f t t t t
Xy X, X, Co C, C, Xo X, X,

Many to many

Many to many

o



Seq2seq has a wide range of applications

1.

MT [Kalchbrenner et al, EMNLP 2013][Cho et al, EMLP 2014][Sutskever &
Vinyals & Le, NIPS 2014][Luong et al, ACL 2015][Bahdanau et al, ICLR 2015]
Image captions [Mao et al, ICLR 2015][Vinyals et al, CVPR 2015][Donahue
et al, CVPR 2015][Xu et al, ICML 2015]

Speech [Chorowsky et al, NIPS DL 2014][Chan et al, arxiv 2015]

Parsing [Vinyals & Kaiser et al, NIPS 2015]

Dialogue [Shang et al, ACL 2015][Sordoni et al, NAACL 2015][Vinyals & Le,
ICML DL 2015]

Video Generation [Srivastava et al, ICML 2015]

Geometry [Vinyals & Fortunato & Jaitly, NIPS 2015]

O



Google Neural Machine Translation

l ! | ! | l l
Encoder € |—| e |—| € |/ €3 |—| e |—/—=>| es |—/—| ©s
Decoder do —_— ds Em— d> — da
/) | ! l
Wu et al, 2016

(Kalchbrenner et al, 2013; Sutskever et al, 2014; Cho et al, 2014; Bhadanau et al, 2014; ...) @



Google Neural Machine Translation

Translation quality
N w EAN al

o =

Closes gap between old system and human-quality translation by 58% to 87%.

......................................................................................... perfec‘t translation

neural (GNMT)
phrase-based (PBMT)

English  English  English  Spanish  French Chinese
> >

> > > >

Spanish  French  Chinese  English  English English

Translation model

O



Image captioning

p(language, | language,) — p(language, | image)

good

A

o



Image captioning

Human: A brown dog
laying in a red wicker
bed.

Best Model: A small dog
is sitting on a chair.

O



Image captioning

Human: A man outside
cooking with a sub in his
hand.

Best Model: A man is
holding a sandwich in
his hand.

O



Image captioning

Human: Someone is
using a small grill to melt
his sandwich.

Best Model: A person is
cooking some food on a

grill.

O



Image captioning

Human: A woman holding
up a yellow banana to
her face.

Best Model: A woman
holding a banana up to
her face.

O



Audio waves
as sequences

o



Audio waves as sequences: convolutions

Output

Hidden
Layer

Hidden
Layer

Hidden
Layer

Input

100 BNED S Ee

00000000 0ODO0OD0OO0OO

000000 O0OO0O0ODO0ODOO0OO

00000000 ODOOOOO

1 Second

Van den Oord et al. (2016) b,



Properties of Convolutions as f,

N-gram Addition RNN LSTM Conv
Order matters V4 X V4 V4 V4
Variable length X V4 V4 V4 V4
Differentiable X \/ \/ \/ \/
Pairwise encoding v X X X X
Preserves long-term X V4 X v V4



Policies as sequences

O



Policies as sequences

v

Ba et al. (2014), Gregor et al (2015) , Mellor et al (2019) b,
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Alphastar

g - ’

Rencer of Agent's view

A

-
Outcome Prediction

| man i

Considered Location

Raw Observations

Considered Build/Train




AlphaStar Architecture

Observation Torsos

W ResNet Stack

—;» Scalar Torso

Core Heads Action

Eunction Function
Head

Embedded Args
Transformer ANl e Head

O



Attention for sequences:
transformers

O



Transformers

I.I\ ] .m

Convolution Transformer

Vaswani et al. (2017) b’



Transformers

Vaswani et al. (2017) b’



Transformers

Vaswani et al. (2017) b’



Transformers
L M
i I\ - ~

Vaswani et al. (2017) b’



Transformers

Vaswani et al. (2017) b’



GPT2

e Transformer-based
language model with 1.5
billion parameters for
next-word prediction

e Dataset: 40GB of text data
from 8M websites

e Adapts to and
of arbitrary
conditioning input

https://openai.com/blog/better-language-models/#samplel

Radford et al. (2019) b’


https://openai.com/blog/better-language-models/#sample1

GPT2

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke
perfect English.

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the
time we reached the top of one peak, the water looked blue, with some
crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These
creatures could be seen from the air without having to move too much
to see them — they were so close they could touch their horns.

O



Properties of Transformers as f,

N-gram Addition RNN LSTM Conv Transf.
Order matters V4 X v V4 V4 v
Variable length b 4 \/ \/ \/ \/ \/
Differentiable X V4 v V4 V4 v
Pairwise encoding V4 X X X X V4
Preserves long-term X v X v V4 V4



Evolution of language modeling

Sutskever et al, 2011, RNNs

[ ] while he was giving attention to the second advantage of school building
a 2-for-2 stool killed by the Cultures saddled with a halfsuit defending the
Bharatiya Fernall ’s office

Radford et al, 2019, GPT2

[ Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood
Boulevard today.] The singer was wearing a black hoodie with the label ‘Blurred
Lines’ on the front and ‘Fashion Police’ on the back.

O



Summary

1
2

Motivation: Sequences are everywhere
but modeling them is hard!

Covered different approaches:

a.
b.

C.
d.

N-Grams
RNNs
LSTMs & GRUs

Dilated convolutions and Transformers

These models are flexible and can be applied
to a wide range of tasks across machine learning
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hank yo
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