WELCOME TO THE

UCL x DeepMind
lecture series

In this lecture series, leading research scientists
from leading Al research lab, DeepMind, will give
12 lectures on an exciting selection of topics

in Deep Learning, ranging from the fundamentals
of training neural networks via advanced ideas
around memory, attention, and generative
modelling to the important topic of responsible
innovation.

Please join us for a deep dive lecture series
into Deep Learning!

#UCLxDeepMind
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TODAY'S SPEAKER

Alex Graves

Alex Graves completed a BSc in Theoretical Physics at the
University of Edinburgh, Part Ill Maths at the University of
Cambridge and a PhD in artificial intelligence at IDSIA with
Jurgen Schmidhuber, followed by postdocs at the
Technical University of Munich and with Geoffrey Hinton at
the University of Toronto. He is now a research scientist at
DeepMind. His contributions include the Connectionist
Temporal Classification algorithm for sequence labelling
(widely used for commercial speech and handwriting
recognition), stochastic gradient variational inference, and
the Neural Turing Machine / Differentiable Neural
Computer architectures
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TODAY'S LECTURE
Attention and
Memory in Deep
Learning

Attention and memory have emerged as two
vital new components of deep learning over
the last few years. This lecture covers a
broad range of attention mechanisms,
including the implicit attention present in
any deep network, as well as both discrete
and differentiable variants of explicit
attention. It then discusses networks with
external memory and explains how attention
provides them with selective recall. It briefly
reviews transformers, a particularly
successful type of attention network, and
lastly looks at variable computation time,
which can be seen as a form of ‘attention in
time'.
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Attention, Memory and Cognition

The ability to focus on one thing and ignore others has a vital role in guiding
cognition.

Not only does this allow us to pick
out salient information from noisy
data (cocktail party problem) it
also allows us to pursue one
thought at a time, remember one
event rather than all events...




Neural Networks

Hidden
Input
Output

legpard

jaguar
= cheetah
snow leopard

Egyptian cat

Neural nets are parametric, nonlinear function approximations that can be fit to data
to learn functions from input vectors (e.g. photographs) to output vectors (e.g.
distributions over class labels)

What does that have to do with attention? @



Implicit Attention in Neural Networks

Deep nets naturally learn a form of implicit attention where they respond more
strongly to some parts of the data than others

To a first approximation, we can visualise this by looking at the network Jacobian —
sensitivity of the network outputs with respect to the inputs

o



Neural Network Jacobian

X = size k input vector

y = size m output vector - Oy1

Jacobian J = m x k matrix 0x1
] 5

833_7' - 01

Can compute with ordinary backdrop
(just set output ‘errors’ = output activations)
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Jacobian in Action: Duelling Network
STATE-VALUE
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Dueling Network Architectures for Deep Reinforcement Learning, Wang et. al. (2015) @
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https://docs.google.com/file/d/1o4XANSa38qP93EC5Oj--jH4BUC2qCvCd/preview

Attention and memory in Recurrent Networks (RNNs)
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RNNs contain a recursive hidden state and learn functions from sequences of inputs
(e.g. a speech signal) to sequences of outputs (e.g. words)

The sequential Jacobian shows which past inputs they remember when predicting

current outputs. @



Network Outputs
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Reconstructed Image

» The Sequential Jacobian is
the set of derivatives of one
network output with respect
to all the inputs

st = (EM Oy )

oxt’ ox2

» |t shows how the network
responds to widely
separated, but related,
inputs, such as the delayed
dot of the ‘i’ in ‘having’
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Implicit Attention
allows reordering
In machine
translation:

“to reach” -> “zu erreichen”

Neural Machine Translation in Linear Time,
Kalchbrenner et. al. (2016)
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Explicit Attention
Implicit attention is great, but there are still advantages to an explicit attention
mechanism that limits the data presented to the network in some way:

= Computational efficiency

= Scalability (e.g. fixed sized glimpse for any size image)

= Sequential processing of static data (e.g. moving gaze)

= Easier to interpret

O



Neural Attention Models ( Data )

The network produces and extra output l
vector used to parameterise an attention Attenti
model ention
Model OQutput
The attention model then operates on some \ /
data (image, audio sample, text to be

translated...) to create a fixed-size “glimpse”
vector that is passed to the network as input

) Network
at the next time step
The complete system is recurrent, even if the T
network isn't

>( Glimpse ) @



Glimpse Distribution

Attention models generally work by defining a
probability distribution over glimpses g of the

data x given some set of attention outputs a
from the network:

Pr(g|a)

simplest case: a just assigns probabilities to a
set of discrete glimpses:

Pr(gxla) = exp(a)

D €xp(ax)




Attention with RL

We can treat the distribution over glimpses g as a stochastic policy _, sample
from it, and use REINFORCE (with reward R = task loss L induced by the glimpse) to
train the attention model

Ta = Pr(gk|a)
R = ngﬂ'a [log ”TaL(g)]
VaR — ]EgN’ll'a [Va log ﬂ-aL(g)]

In general we can use RL methods for supervised tasks any time some module in
the network is non-differentiable

O



Complex Glimpses

Generally the glimpse distribution is more complex than just a softmax (e.g.

Gaussian over co-ordinates, width, height...) and the glimpses are more complex
than image tiles (e.g. foveal models)

N

Glimpse Sensor
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6 point “Glimpse path” (in green) while trying to classify image

- '
4

6 Foveal Glimpses seen by the network

Recurrent Models of Visual Attention, Mnih et. al. (2014)
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Multiple Object Recognition with Visual Attention, Ba et. al. (2014)


https://docs.google.com/file/d/1-Be9FFKU8S7dZuDwFZhqlTBV0tYCRsjC/preview

2 Soft Attention
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Soft Attention

The last examples used hard attention: fixed size attention windows moved around
the image, trained with RL techniques.

Robots have to look left or right, but in many cases attention doesn't need to be
hard: we just want to focus more on certain regions and less on others.

If we do this in a differentiable way, we get soft attention which we can train
end-to-end with backprop

Generally easier than using RL, but more expensive to compute

O



Soft Attention

Basic template: we use the attention parameters a to determine a distribution

Pr(gla) as before, only now we take an expectation over all possible glimpses
instead of a sample

g= > g'Pr(g|a)

g'ex

This is differentiable w.r.t. a as long as Pr(gla) is:

Vag = Z g'VaPr(g'|a)

g'ex
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Attention weights

We don't really need a distribution at all: any set of weights w.* can be used to define an
attention readout v from some values v

v = Z Wi Look familiar? Can think of attention as defining
— """ data-dependent dynamic weights (cf. fast weights)
7

L J L ] L J L ] @ ® L J L J ® e o ® o
/\\
@ ® @ ® o o L ] L ] [
Convolution Attention

*but it's nice if Zwi =1, 0<w; <1Vs
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Handwriting Synthesis with RNNs

handwriting —» L\o\r\d wv"\jr‘\ﬂg

s An RNN takes a text sequence as input, produces a sequence of pen
trajectories as output

= Problem: the alignment between the text and the writing is unknown

s Solution: before predicting each point on the trajectory, the network
decides where to look in the text sequence

O



Location
Attention

Gaussian ‘window’
over text sequence
index (soft reading)

Window vector (input to net)
S

. E w,fs,;
i=1

Window weights (net outputs for a,b,c)

= Zak exp (

bt [Ck — 1 )

Input vectors (one-hot)
(81,...,88)

1.0l
1.84
0.75
0.46

0.51
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Generating Sequences with Recurrent Neural Networks, Graves (2013)
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Writing with Attention

Hese  seqUences uefe gt @L@Eb\/
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Alignment

Thought that the muster from
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Unconditional Writing

<\Q AT LI &X\L Drice - woolkle— JY\I\Q =Hn

v Mg O gl (S

e ol bt Lol fladd

s he Fhindin fulsebve ol he

O



Associative Attention

Instead of attending by position, we can attend by content: a key vector k is
compared to all x; in the data using some similarity function S. The similarities are
typically normalised (softmax) and used to define w,

exp S(k,x;))
Zj exp S(k, z;))

S can be learned (MLP, linear operator...) or fixed (dot product / cosine similarity...).
Yields a Multidimensional, feature-based lookup: natural way to search

w; =

O

Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et. al. (2014)



Keys and Values

Given w; we can sum over the data directly to get an attention readout v
V= E w;x;
i

Or we can split the data into key, value pairs (k, v.), use the keys to define the
attention weights and the values to define the readout:

- expS(k,ki))
U7 exp Sk, k) o ;wivi

O
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Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et. al. (2014) @



by ent423 ,ent261 correspondent updated 9:49 pmet ,thu
march 19,2015 (ent261) aent114 was killedina parachute
accidentinent45 ,ent85 ,nearent312 ,aent119 official told
ent261on wednesday .he was identifiedthursday as

special warfare operator 3rd .M ent187 ,

ent265 . ent23 distinguished himself consistently

throughout his career .he was the epitome of the quiet
professionalin allfacets of his life ,and he leaves an

inspiring legacy of naturaltenacity and focused

by ent270 ,ent223 updated 9:35 amet ,monmarch2,2015
(en. familial for fall at its fashion show in
ent231on sunday ,dedicating its collectionto " mamma"
with nary a pair of " momjeans "insight .ent164 andent21,
who are behindthe ent196 brand ,sent models down the
runway indecidedly feminine dresses and skirts adorned
with roses ,lace and even embroidered doodles by the
designers 'own nieces and nephews .many of the looks

featured saccharine needlework phrases like " ilove you,

ent119 identifies deceased sailor as X ,who leaves behind

awife

X dedicated their fall fashion show to moms

Teaching Machines to Read and Comprehend, Hermann et. al. (2015)
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Listen, Attend and Spell, Chan et. al. (2015)
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Differentiable Visual Attention

DRAW (Gregor et. al. 2015) uses a grid of Gaussian filters to read from input images and draw to a
canvas image:

0

o — filter variance

gx,3gy — gridcentre gY{
) — grid stride

Y — intensity gx
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https://docs.google.com/file/d/1-g5JWjsc610e7eCpSFwUtb4y7OSshIj_/preview

3

Introspective
Attention
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Introspective Attention

So far we have looked at attention to external data

Also useful to selectively attend to the network’s internal state or memory:

introspective attention (Memory = attention through time)

With internal information we can do selective writing as well as reading,
allowing the network to iteratively modify its state

O



Neural Turing Machines

External Input External Output
The Controller is a neural network \ /
(recurrent or feedforward) Controller
The Heads select portu?ns of the — Wiité Heds
memory and read or write to them |
The Memory is a real-valued matrix Memory

Neural Turing Machines, Graves et. al. (2014)
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Selective Attention

e Want to focus on the parts of memory the network will read and write
to: need an introspective attention model

e \We use the controller outputs to parameterise a distribution
(weighting) over the rows (locations) in the memory matrix

e The weighting is defined two main attention mechanisms: one based
on content and one based on location

O



Addressing by content

A key vector k is emitted by the controller and compared to the content
of each memory location M[i] using a similarity measure S(,") (e.g.
cosine distance) then normalised with a softmax. A ‘sharpness’ fis
used to narrow the focus. Finds the memories ‘closest’ to the key

exp (ﬁS(k, M[z]))
Zj eXp (55(1{, M[J]))

wli| =

O



Addressing by Location

The controller outputs a shift kernel s (e.g. a
softmax on [-n,n]) which is convolved with a

weighting w to produce a shifted weighting w.

wli = > wljls(i - J)

O



Data Structure and Accessors

The combination of addressing mechanisms allows the controller to
interact with the memory in several distinct modes, corresponding to
different data structures and accessors.

Content key only — memory is accessed like an associative map

Content and location — key finds an array, shift indexes into it

Location only — shift iterates from the last focus

O



Reading and Writing

Once the weightings are defined, each read head returns a read vector
r as input to the controller at the next timestep

r= Z wi|Mi]

Each write head receives an erase vector e and an add vector a from
the controller and resets then writes to modify the memory (like LSTM)

M[i] + M[:](1 — w]i]e) + w]i]a

O



The NTM Copy Algorithm

Write
Vectors

Location —»

Time —— Time ——
Write Weightings Read Weightings
NTM++

initialize: move head to start location

while input delimiter not seen do
receive input vector
write input to head location
increment head location by 1

end while

return head to start location

while true do
read output vector from head location
emit output

increment head location by 1
end while

pseudocode

o



Copy Generalisation: length 10 to 120

ogers [

outputs

targets

outputs

O



Copy N Times

Inputs Outputs
m""h' *I"‘: : - Hv '|-.- ‘l-- 'l--'l(%:’
oflls } T T AT ARt ARt AT At O
<C -" # a - J : . ‘™. - ‘m - . L] %
_q,i_‘_-ﬂl—m v o T T g a W e W
C
o
3
3
Time ———» Time ——»
Write Weightings Read Weightings
NTM learns its first for-loop, using content to jump,
iteration to step, and a variable to count to N.

O



N-Gram Inference

Add Vectors

Write Weights

Read Weights

Time ——»

Specific memory locations store variables that count the
occurrences of particular N-Grams

O



Priority Sort

57 463 2 !

Priority

IHPUtS _—’
l. A

Hypothesised Locations Write Weightings Read Weightings

Time ——» Time ——» Time ——

1234567.

Targets

Location —»

The network maps from priorities to write locations,
then iterates through the memory to return the sorted list

O
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https://docs.google.com/file/d/1znqStkvQvQ7k2q9fhK8zTJCSp7aQdqG1/preview

Differentiable Neural Computers

DNC is a successor architecture to Neural
Turing Machines with new attention
mechanisms for memory access

Hybrid Computing Using a Neural network with
Dynamic External Memory, Graves et. al. (2016) O




Graph Experiments

Training Data
a. Random Graph

Test Examples
b. London Underground

L ) DN

Traversal Question:

(OxfordCircus, _, Central), (_, _, Circle)

(. _. Circle}, (_, _, Carcle),

(_, _, Bakerico), (_, _, Victoria),

(_. _. Victoria), {_. _, Circle),

(. .. Bakerico), (_, _, Jubiles)

Answer:
{OxtordCircus, NottingHillGate, Central)
(NottingHillGate, Paddington, Circle)

{Embankment, Waterlco, Bakerioo)
(Waterloo, GreenPark, Jubiles)

Shortest Path Question:
(Moorgate, PicadiltyCircus, )

Answer:

(Moorgate, Bank, Northern)

(Bank, Helbam, Central)

(Holborn, LeicesterSq, Picadily)
(LelcestarSq, PicadillyCircus, Picadilly)

Mary

Becky Tom

|

Alan | Lindsey

e Hm-o

Charlotte Alison Fergus | Jane

Steve

Simon Freva

Family Tree Input:

(Chariotte, Alan, Father)
{Simon, Steve, Father)

(Bab, Jane, Mother)
{Natalle, Alica, Mother)
{(Mary, lan, Father)
{Jane, Alice, Dawghter1)
{Mat, Charlotte, Mother)

- 54 edges in total

Ak ol & &

Mar Liam Nina Alice Bob

______________________ I

Maternal Great Uncle Natalie

Inference Question:
(Freya, _, MaternalGreatUncle}

Answer:
(Freya, Fergus, MatermnaiGreatUncle)

O



bADI Tasks

Set of 20 question-answering tasks on synthetic ‘stories’

“One Supporting Fact” Counting
Story Story
Abe got the football. Abe
Mary went to the hallway. 20 different dropped the football. Abe got the
John went to the kitchen. tasks milk .
Q: Where is Mary? ooo Q: How many objects is Abe
A: hallway holding?
A: two.

Towards Al Complete Question Answering: A Set of Prerequisite Toy Tasks. Weston et. al. (2015) @



bADI Results

bADbI Best Results

Task LSTM NTM DNC1 DNC2 MemN2N MemN2N DMN

(Joint) (Joint) (Joint) (Joint) (Joint) 2" | (Single) 2" | (Single) 2°
1: 1 supporting fact 24.5 e 0.0 0.0 0.0 0.0 0.0
2: 2 supporting facts 532 54.5 13 0.4 1.0 0.3 1.8
3: 3 supporting facts 48.3 439 24 1.8 6.8 2.1 4.8
4: 2 argument rels. 0.4 0.0 0.0 0.0 0.0 0.0 0.0
5: 3 argument rels. 3.5 0.8 0.5 0.8 6.1 0.8 0.7
6: yes/no questions 11.5 17.1 0.0 0.0 0.1 0.1 0.0
7: counting 15.0 17.8 0.2 0.6 6.6 2.0 3.1
8: lists/sets 16.5 13.8 0.1 0.3 2.7 0.9 3.5
9: simple negation 10.5 16.4 0.0 0.2 0.0 0.3 0.0
10: indefinite knowl. 229 16.6 0.2 0.2 0.5 0.0 0.0
11: basic coreference 6.1 15.2 0.0 0.0 0.0 0.1 0.1
12: conjunction 3.8 8.9 0.1 0.0 0.1 0.0 0.0
13: compound coref. 0.5 7.4 0.0 0.1 0.0 0.0 0.2
14: time reasoning 593 24.2 0.3 0.4 0.0 0.1 0.0
15: basic deduction 44.7 47.0 0.0 0.0 0.2 0.0 0.0
16: basic induction 52.6 53.6 524 55.1 0.2 51.8 0.6
17: positional reas. 39.2 25.5 24.1 12.0 41.8 18.6 40.4
18: size reasoning 4.8 2.2 4.0 0.8 8.0 5.3 4.7
19: path finding 89.5 43 0.1 3.9 75.7 2.3 65.5
20: agent motiv. 1.3 1.5 0.0 0.0 0.0 0.0 0.0
Mean Err. (%) 25.2 20,1 43 3.8 75 4.2 6.4
Failed (err. > 5%) 15 16 2 2 6 3 2
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Self-Attention

Transformer networks take attention to its logical extreme: get rid of everything
else (recurrent state, convolutions, external memory) and just use attention to
repeatedly transform a complete sequence

Instead of a controller emitting a query, every vector in the input sequence is
compared with every other: anarchist attention?

QK"
Vg

Like NTM / DNC, multiple heads are used for multimodal attention

Attention(Q, K, V') = softmax(

1%

Attention is All You Need, Vaswani et. al. (2017)
The Annotated Transformer: http://nlp.seas.harvard.edu/2018/04/03/attention.ntml
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Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)
Model EN-DE EN-ER EN-DE  EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-10°  1.4.10%
ConvS2S [9] 25.16  40.46 9.6-10® 1.5-10%
MOoE [32] 26.03 40.56 2.0-10" 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%0
GNMT + RL Ensemble [38] 2630  41.16 1.8-1020  1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-1012 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2.3.10%°




Generating text with Transformers

Human Prompt

Generated Text
(10 tries)

In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon
is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several
companions, were exploring the Andes Mountains when they found a small valley, with
no other animals or humans. Pérez noticed that the valley had what appeared to be a
natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached
the top of one peak, the water looked blue, with some crystals on top,” said Pérez.
Pérez and his friends were astonished to see the unicorn herd. These creatures could
be seen from the air without having to move too much to see them — they were so
close they could touch their horns.

Language Models are Unsupervised Multi Task Learners, Radford et. al. (2019)
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Universal Transformers

Parameters are tied across positions and time steps
( 1

» h1t Self-Attention ]—»[ Transition Function ]—> h1t+‘1 Self-Attention ]—»[ Transition Function ]—> h1t+2
[}
T
g hzt Self-Attention }—»[ Transition Function ]—> h2t+1 Self-Attention ]—»[Transition Function ]—' h2t+2
%
o
e hmt Self-Attention ]—»[Transition Function ]—> hmt+1 [Self-Attention ]—»[Transition Function ]-' hmt+2
Time

Tying the weights at each transform makes the system like an RNN in depth
instead of time; variable runtime, recursive transforms

Recurrent state + parallel attention = best of both worlds? Strong results on MT,
bAbl, LAMBADA..

Universal Transformers, Dehghani et. al. (2019)
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Adaptive computation Time (ACT)

Weighted sum Yq Y2

\ © ]—{%P

\
\

\
<
I|S1
\

Halting Probability

A time penalty acts to reduce the total number of ‘ponder’ steps

o

Adaptive Computation Time With Recurrent Neural Networks, Graves (2016)



‘Pondering’ with ACT: attention by concentration?

7
— 6!
g
C 4
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20 : : H B
1
and the many people caught in the middle of the two. 1In recent history, with scientists learning
26
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United States security treaty</title> <id>1157</1id <revision> <id>15899658</1id>
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ACT with Universal Transformers
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Summary

= Selective attention appears to be as useful for deep learning as it is for people

N2

Neural nets always have implicit attention, but we can also add explicit
attention mechanisms

These can be stochastic and trained with reinforcement learning
Or differentiable and trained with ordinary backdrop

We can use attention to attend to memory as well as directly to data

NN N

Many types of attention mechanism (content, spatial, visual, temporal..) can be
defined

= Can get great results in sequence learning just using attention (transformers) @
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