WELCOME TO THE

UCL x DeepMind
lecture series

In this lecture series, leading research scientists
from leading Al research lab, DeepMind, will gi
12 lectures on an exciting selection of topics
in Deep Learning, ranging from the fundamenta
of training neural networks via advanced ideas
around memory, attention, and generative
modelling to the important topic of responsible
innovation.

Please join us for a deep dive lecture series
into Deep Learning!
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TODAY'S SPEAKERS

Mihaela Rosca +
Jeff Donahue

Mihaela Rosca is a Research Engineer at
DeepMind and a PhD student at UCL,
focusing on generative models research
and probabilistic modelling, from
variational inference to generative
adversarial networks and reinforcement
learning.

Jeff Donahue is a Research Scientist at
DeepMind, currently focusing on
adversarial generative models and
unsupervised representation learning. He
completed his Ph.D. at UC Berkeley,
focusing on visual representation
learning.




DeepMind

Generative
adversarial
networks

Jeff Donahue & Mihaela Rosca

UCL x DeepMind Lectures
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DeepMind

1 Overview

o



Generative models

Learn a model of the true (unknown)
underlying data distribution from samples

O



Generative models

O



Generative models

e data
model

Learning an explicit distribution from data.




Generative models

® data
® model samples

Learning an implicit distribution from data.




Generative model zoo

Explicit likelihood models:

e Maximum likelihood

o  PPCA, Factor Analysis, Mixture

models

o  PixelCNN/PixelRNN

o  Wavenet

o  Autoregressive language models
e Approximate maximum likelihood

o  Boltzmann machines

o  Variational autoencoders

Implicit models (no likelihoods):

Generative adversarial networks
Moment matching networks

O
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Radford et al. Unsupervised
Representation Learning with Deep
Convolutional Generative Adversarial
Networks ICLR (2015)

& Denton, et al. Deep Generative Image
Models using a Laplacian Pyramid of
Adversarial Networks. NIPS (2015)

Miyato et al. Spectral normalization for
Generative Adversarial Networks
ICLR (2018)

Goodfellow, et al. Generative adversarial
networks. NIPS (2014)
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Karras et al. Large Scale GAN Training for
High Fidelity Natural Image Synthesis
ICLR (2018)

Brock et al. Large Scale GAN Training for
High Fidelity Natural Image Synthesis
ICLR (2019)

Karras et al. A Style-Based Generator
Architecture for Generative Adversarial
Networks CVPR (2019)




Want to learn more?

Generative adversarial networks

Learning an implicit model through a two
player game.

Goodfellow, et al. Generative adversari

h networks.. Neural Information Process|
Systems (2014)

ial
ing
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Generative adversarial networks

Discriminator

Learns to distinguish
between real and
generated data.

Generator

Learns to generate data
to “fool” the discriminator.

O



Generator

latent (“noise”) vector generator G: generated data
z ~ P(2) a deep neural network G(2)

z : G




Generator

latent (“noise”) vector generator G: generated data
z ~ P(2) a deep neural network G(2)

z , G

It was the best of
times, it was the worst
of times, it was the age
of wisdom, it was the

3 2 = o T age of foolishness... @




Discriminator

D real or generated?

generator G

G

O




Piseriminator Teacher (less adversarial view)

Generator

footthe-diserimtnator
make the teacher happy by
making generated data look real =

generator G

G

real da ~ P*(X) \

generated data

D real or generated?

Teacher
distinguish between real and

generated data, so that | can tell the
generator how to improve




Want to learn more?

Generative adversarial networks Q Goodfellow, et al. Generative adversarial

networks.. Neural Information Processing
Systems (2014)

minmax V (D, G) = Exnpy (@) 108 D(2)] + Eznp, (2 [log(1 — D(G(2))))

\ J \ J
| |

log-probability that D correctly log-probability that D correctly predicts
predicts real data x are real generated data G(z) are generated

O



Want to learn more?

Generative adversarial networks @ Goodfellow, et al. Generative adversarial

networks.. Neural Information Processing
Systems (2014)

minmax V (D, G) = Exnpy (@) 108 D(2)] + Eznp, (2 [log(1 — D(G(2))))

\ J \ J
| |

log-probability that D correctly log-probability that D correctly predicts
predicts real data x are real generated data G(z) are generated

discriminator’s (D) goal: maximize prediction accuracy

generator’s (G) goal: minimize D's prediction accuracy,
by fooling D into believing its outputs G(z) are real as often as
possible @



Want to learn more?

h Goodfellow, et al. Generative adversarial
networks.. Neural Information Processing
Systems (2014)

Generative adversarial networks

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(!), ..., z(™)} from noise prior p,(z).
e Sample minibatch of m examples {a:(l), s .,a:(m)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo,— 3 [log D (+) +105 (1- D (6 ()]

1=

end for
e Sample minibatch of m noise samples {z(1), ..., z("™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, o tox (1= (6 ().
end for @

Algorithm from Goodfellow et al. (2014)



GANSs are an implicit generative model
trained as a two player game.




Generative adversarial networks as zero sum game

min max V' (D, G)
G D

9 Bilevel optimization of the same loss function.
Connection to game theory literature.
© Nash equilibria
© Strategies
O Fictitious play

O



Generative models as distance minimization

© The objective of generative models is often to minimize a divergence or distance.

O Most common: Maximum likelihood (KL divergence).

Why divergence/distance minimization?

D(p*|lp) =0 = p=p"

O



Generative models as distance minimization

© The objective of generative models is often to minimize a divergence or distance.
© Most common: Maximum likelihood (KL divergence).

Maximum likelihood

KL lleo) - [ v 1082 ) i

p(x)

KL(p"(%)[|p(x)) = 0 = p(x) = p"(x) )



Want to learn more?
a Goodfellow, et al. NIPS 2016
L. Tutorial:
Generative Adversarial Networks

Effects of the choice of divergence - learned models b e

KL(p",p) KL(p,p")

O



Want to learn more?

Are GANs doing divergence minimization? |§

networks.. Neural Information Processing
Systems (2014)

mGln mDa’XV(D7 G) — ]Emdiata(w) [log D(m)] + EZNPZ (%) [log(l o D(G(Z)))]

If the discriminator (D) is optimal:

the generator is minimizing the Jensen Shannon divergence
between the true and generated distributions.

o



Want to learn more?

Are GANs doing divergence minimization? |§

networks.. Neural Information Processing
Systems (2014)

mGln mB'X V(D7 G) — ]Em'\’pdata(m) [log D(m)] + ]Eszz (%) [log(l o D(G(Z)))]

If the discriminator (D) is optimal:

the generator is minimizing the Jensen Shannon divergence
between the true and generated distributions.

Connection to optimality:

JSD(p*|lp) =0 = p=p° (o)



Jensen Shannon divergence

1
JSD(p, p*) = §KL(p,

JJJJJJJJJ




GANSs: More than Jensen Shannon divergence

In practice: D is not optimal:

&) limited computational resources
&) we do not have access to the true data distribution (just samples)

o



Want to learn more?

Properties of KL & Jensen Shannon divergences 1 o

Systems Tutorial (2019)

No learning signal from KL/JSD divergence if non overlapping support between the data and the model.

KL(p"(x)[p(x)) = o0 JSD(p* (x)||p(x)) = log 2

— p(x)
—_— p*(x)

— e m—e "wee ¢ @



Non overlapping support

KL(p (o)l Ip(x) = [ () log LIPS

.

p(x)

— px)
— p*(x)

o



Non overlapping support

Moving the model closer to the true distribution (new p) results in no change in KL/JSD.

— p(x)
p*(x)

— new p(x)

o



Generative adversarial networks as zero sum game

min max V' (D, G)
G D

Can we choose another V?

O



Generative adversarial networks as zero sum game

min max V (D, G)
G D

Will it correspond to a distributional

divergence?

O



Other divergences and distances

Want to Iearn more?

eeeeeeeeeeeeeeeeeeeeeee

S

Wasserstein Distance

W(p*,p) =

Sup Ep (a;)f( )
1 fllo<1

f(z) = fy)l < |z -y

o



Other divergences and distances

Want to Iearn more?

eeeeeeeeeeeeeeeeeeeeeee

S

Wasserstein Distance

W(p*,p) =

Sup Ep (w)f( )
1 fllo<1

— IE:p(ac) f(ZIZ‘)

W(p*,p) = 1.78

oo oo oo ° (LU T ¢

o



Other divergences and distances

Want to Iearn more?

eeeeeeeeeeeeeeeeeeeeeee

S

Wasserstein Distance

W(p*,p) = sup Ep«u) f(r) — Epw) f(2)
1 fll<1

o



Want to learn more?

eeeeeeeeeeeeeeeeeeeeeee

Other divergences and distances i Sl

Neural Information Processing
Wasserstein Distance Estimation

W(p*ap) Sup IIEf‘p (CB)f( ) ]Ep(x)f(x)
1 flln<1

Learning

min W(p,p*) =min sup E,«)f(x) — Ep) f(G(2))
G G lflle<t

O



Want to learn more?

Other divergences and distances )

‘W(P»P*)= sup  Ep) f(2) — Ep« () f ()

o<1

Wasserstein GAN

| mén le)r|1|a,LX§1 ox (2) D () — Epy D(G(2))

O

Try to make D is 1-Lipschitz via gradient penalties, spectral normalization, weight clipping.



Want to Iearn more"

Other divergences and distances B
MMD i
MMD (p*,p) = sup Ep«)f(x) —Ep@) f(T)
IFIES!
‘H is a RKHS.

MMD estimate of f

co@e o omde WO & ¢

o



Want to learn more?
) GAN: Towards Deeper

Other divergences and distances & rrsanang o o o
Sy
MMD
sk
MMD (p 7p) — Sup IEEp* (:L‘)f(aj) - Ep(w)f(x)
[ F]# <1
‘H is a RKHS.

MMD-GAN

' Cox (o D(x) — E o D(G
ménngﬂ?{Xgl p*(x) ('T) p(z) ( (Z))

, o)
Choose kernel with learned features (via D) K¢ (Qj, le) — K (¢(X) , ¢(X ))



Want to learn more?
i al f~-GAN: Training

Other divergences and distances |§ e

p*(x)
‘ D¢ (p*|lp) = / p(x)f ( ) dx

X
variational lower bound p( )

TeT

optimal T for KL: f” <p *(x)) @

f*is the convex conjugate of



Want to learn more?
i al f~-GAN: Training

Other divergences and distances |§ S

..................................
f-divergences

Neural Information Processing

min max K, ) D(G(2)) — Ep« ) f (D(2))

G D

O



Can create GAN training criteria inspired by multiple
divergences & distances.




Why train a GAN instead of doing divergence minimization?

O Model type

© Computational Intractability
O Smooth learning signal

O Learned “divergence”

O



Implicit models and KL divergence

Model type

KL(py"(0)llp(x)) = [ 9 (x)1og 2 X)

p(x)

For implicit models, we do not have access to the explicit distribution p(x).

latent noise neural network  generated data

= e om

o



Implicit models and KL divergence

Model type

KL(py"(0)llp(x)) = [ 9 (x)1og 2 X)

p(x)
For implicit models, we do not have access to the explicit distribution p(x).

latent noise neural network  generated data

= e om

f-GAN

‘m(%n max ﬂp(z)D(G(z)) _ ﬂp* (x)f>l< (D(ZE))

D

o



Wasserstein distance & computational intractability

Computational intractability

Wi(p,p*) = ”fS|1|1p<1Ep(x>f () — Ep+(2) f ()

Computationally intractable for complex cases.

Wasserstein GAN

m&n ||1I)I|1|2X§1 ox () D () — Ep) D(G(2))




Want to Iearn more

° ° tton, et al Interpretable
‘ .
Smooth learning signal |.
NNNNN | Informatlon Processing
Systems ial (2019)

No learning signal from KL/JSD divergence if non-overlapping support between the data and the model.

KL(p*(x)[|p(x)) = o0 JSD(p* (x)||p(x)) = log 2

= P(X)
— P*(X)

prx) _ (@)




Smooth learning signal

— p(x)
p*(x)

— new p(x)

The density ratio jumps to infinity at the data distribution.

O



Smooth learning signal

But GANSs still learn!

(a) Step 0

Red = data
Blue = model (changes in training)

-4 -2 0
(b) Step 5000

2

4

Want to learn more?

LY Fedus, et al Many paths to
equilibrium.
International Conference for learning

representations (2018)

(c) Step 12500

O



K L[p™(z)|p(z)]

Want to learn more?
Gretto

n, et al Interpretable

A comparison
of distributions and models
NNNNN | Information Processing
stems Tutor

true ratio

* p* x N
DeF

ratio approximation used in GAN training

O



Want to learn more?
Gretto

r n, et al Interpretable

A comparison
of distributions and models
NNNNN | Information Processing
stems Tutor

true ratio

DeF
ﬂu

KL @)lp(e) = [ 5108 (L) o> sup (8- Dlo) — Eyre”)

ratio approximatign used in GAN training

F is the family of functions used to approximate the ratio (deep neural networks, RKHS).

O



Smooth learning signal

s Pl

— p*(x)

p*(x)/p(x)

MLP approx to p*(x)/p(x)

Smooth approximation of the density ratio does not go to infinity.

O



Smooth learning signal

— p*(x)
— p(x)
— p*(x)/p(x)
RKHS learned ratio

L

Smooth approximation of the density ratio does not go to infinity.

O



D is smooth approximation to the decision boundary of the underlying divergence:

a GANs do not do divergence minimization in practice

a GANs do not fail in cases where the underlying divergence would

o



Want to learn more?

Discriminators as learned “distances” Q
(2017)

We can think of D (the teacher) as learning a “distance” between the data

and model distribution that can provide useful gradients to the model.

o



Discriminators as “learned” distances

Original GAN

m(%n max V(D,G) = Egprpy (@) 10g D(x)] + E,p, (2)log(l — D(G(2)))]

Wasserstein GAN

mén ||lI)I|1|6,L;X§1 o+ () D () — Ep) D(G(2))

min/max V (D, G)
G D

o




Discriminators as “learned” distances

mir

max V (D, G)
D

D provides a learned distance between
the data and sample distributions, using
learned neural network features.

O



GANs (learned distance) or divergence minimization?

GANSs

good samples

learned loss function

9 hard to analyze dynamics (game theory)

9 (in practice) no optimal convergence
guarantees

Divergence minimization

optimal convergence guarantees

easy to analyze loss properties

9 hard to get good samples
9 loss functions don't correlate with

human evaluation

O



In practice, GANs do not do divergence minimization.
The discriminator can be seen as a learned “distance”.



Which GAN should I use?

Empirically, it has been observed that the underlying loss matters less than
neural architectures, training regime, data.

O



Unconditional and conditional generative models

Unconditional Conditional

provides a sample from the
data distribution, but the
user has no control over what
kind of sample.

we can specify what sample
we want (dog vs cat).

O



So far... unsupervised GANSs

latent (“noise”) vector generator G: generated data
z ~ P(2) a deep neural network G(2)

z : G

Generator input is
random noise to

account for spread
of data distribution.




Conditioning information for training GANs

latent (“noise”) vector generator G: generated data
z ~ P(2) a deep neural network G(2)

G

N

Add conditioning
generation to y
specify information
about generated
sample.




Class conditional GANs

conditioning label (eg “dog”)

y = pr(x)

\A D real or generated dog?

generated data
G(y, z)

@< G

o




O
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G loss
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2

DeepMind

Evaluating
GANs

o



Want to learn more?

Theis, et al A note on the evaluation of

Evaluating generative models @

International Conference for Learning
Representations (2016)

No evaluation metric is able to capture all desired properties.

o sample quality Evaluate bgsed on end goal. . .
semi supervised learning: classification accuracy
reinforcement learning: agent reward

S data generation: human (user) evaluation

© generalization
O representation learning

O



GANs are implicit models

Log likelihoods are not available (and are very expensive to
approximate).

o



Inception score




Want to learn more?

Inception Score E fraalii:liir;sg;tﬁilmproved techniques for
Neural Information Processing Systems
L (2016)

Use a pretrained Imagenet classifier to compare (via KL divergence)
the distribution of labels obtained from the data
the distribution of labels coming from samples

Measures:
sample quality
dropping classes (no cats)
correlates with human evaluation
9 does not measure differences beyond class labels
© requires pretrained classifier

O

Higher is better.



Frechet Inception Distance




Want to learn more?

Frechet Inception Distance @

Neural Information Processing Systems
(2017)

Use a pretrained Imagenet classifier to compare (via Frechet distance)
the distribution of layer features obtained from the data
the distribution of layer features coming from samples

Measures:

sample quality

dropping classes (no cats)

captures feature level statistics (not just classes)
correlates with human evaluation

requires pretrained classifier

biased for a small number of samples and KID for a
fix (see Binkowski, et al., ICLR 2018)

0O

O

Lower is better.



Checking overfitting: Nearest neighbours

Nearest neighbors: most similar (in feature space of a pretrained ImageNet
classifier) images in the dataset.

O



Multiple metrics are needed to evaluate GAN samples.



DeepMind

3 The GAN Zoo

o



3.1

DeepMind

Image Synthesis
with GANS:
MNIST to ImageNet

o



Want to learn more?

L

The Original GANs (Goodfellow et al.)

Goodfellow, et al. Generative adversarial
networks.. Neural Information Processing
Systems (2014)

The original GAN paper
(Goodfellow et al.)

Simple data (~32x32 images)
Simple models

G and D in (a) and (b) were
MLPs (not convolutional)

- Images flattened to
vectors for training,
ignoring spatial
structure




Generalised GANs to the
conditional setting where
we have some extra
information associated with
each datum, e.g.,

- acategory ID ("cat’,
"dog", ...)

- an input image from
another domain

Want to learn more?

Conditional GANs (Mirza and Osindero) D

Mirza and Osindero. Conditional
Generative Adversarial Nets.
arXiv:14111784 (2014)
Gscriminator D(xly) @
00008 00000

@neratol’ G(zly) [. ‘ . . .’
00000

~

z

00000 00000

-

%

O



Want to learn more?

al

Conditional GANs (Mirza and Osindero)
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Laplacian GANs (LAPGAN, Denton et al.)

- Start from a tiny image

- Upsample to a 2x larger
image (blurry)

- Generate a Laplacian:
the difference between the
(blurry) upsampled image
and the final image

- A conditional GAN after the
initial resolution
- GandD each take a
lower resolution image
as input, predicting e.g.:
P(is real 64x64 image
| 32x32 image)

Real/Generated?

Want to learn more?

Denton, et al. Deep Generative Image

h Models using a Laplacian Pyramid of
Adversarial Networks. Neural
Information Processing Systems (2015)

Generated?

Real/Generated?

O



Laplacian GANs (LAPGAN, Denton et al.)

Nice results at higher resolutions

Want to learn more?

L

Denton, et al. Deep Generative Image
Models using a Laplacian Pyramid of
Adversarial Networks. Neural
Information Processing Systems (2015)




Laplacian GANs (LAPGAN, Denton et al.)

Fully convolutional generator
architecture

The model can be applied to
produce arbitrarily high-resolution
results

This model was trained on 32x32
images, but is applied recursively
to upsample to 256x256.

Want to learn more?

Denton, et al. Deep Generative Image

h Models using a Laplacian Pyramid of
Adversarial Networks. Neural
Information Processing Systems (2015)
CIFAR-8

CIFAR-16

Imagenet-32

Imagenet-32

(recursive)

Imagenet-32

(recursive)

o



Want to learn more?

Deep Convolutional GANs (DCGAN, Radford et al.)

- Simply use deep convnets
for Gand D

- Importantly, batch
normalization (loffe and
Szegedy, 2015) helped to
stabilize the difficult learning
process

Stride 2 16

CONV 2

L

Radford, et al. Unsupervised

Representation Learning with Deep
Convolutional Generative Adversarial
Networks. International Conference on
Learning Representations (2016)




Want to learn more?

L

Radford, et al. Unsupervised
Representation Learning with Deep
Convolutional Generative Adversarial
Networks. International Conference on
Learning Representations (2016)

Deep Convolutional GANs (DCGAN, Radford et al.)

- Simply use deep convnets
for Gand D

- Importantly, batch
normalization (loffe and
Szegedy, 2015) helped to
stabilize the difficult learning
process

- Interpolation between noise
(z) samples produces
semantically reasonable
images at every point

G(z)) G(lz +"%z,) G(z



Deep Convolutional GANs (DCGAN, Radford et al.)

- Simply use deep convnets
for Gand D

- Importantly, batch
normalization (loffe and
Szegedy, 2015) helped to
stabilize the difficult learning
process

- Interpolation between noise
(z) samples produces
semantically reasonable
images at every point

Want to learn more?

L

Radford, et al. Unsupervised
Representation Learning with Deep
Convolutional Generative Adversarial
Networks. International Conference on
Learning Representations (2016)

G(lz +"%z,)




Want to learn more?

Radford, et al. Unsupervised

h Representation Learning with Deep
Convolutional Generative Adversarial
Networks. International Conference on

Learning Representations (2016)

Deep Convolutional GANs (DCGAN, Radford et al.)

- The DCGAN generator's
noise/latent space appears
to have meaningful
semantics

man man woman

with glasses without glasses without glasses woman with glasses

o



Want to learn more?

Spectrally Normalised GANs (SNGAN, Miyato et |§
temaicnl Cofeancs onLaig

al.)

- Stabilise GAN training by
clamping the singular values
of D's weights to 1

| AR
= — = = Ah
o(A) = max Rl e, 4kl

Wsn (W) := W/a(W)




Projection Discriminator (Miyato et al.)

Novel formulation of the
class-conditional
discriminator

Learnt class embedding is
projected onto the final
hidden representation

Theoretically justified under
the underlying probabilistic
model

Empirically, performs better
than prior formulations

Want to learn more?

Miyato and Koyama. cGANs with

h Projection Discriminator. International
Conference on Learning Representations
(2018)

(a) cGANSs, (b) cGANSs,

. . (c) AC-GANs P
input concat hidden concat el (d) (ours) Projection
(Mirza & Osindero, 2014) (Reed et al., 2016)
Adversarial Adversarial Adversarial Classificaition Adversarial
loss loss loss loss loss

¢
vy
Figure 1: Discriminator models for conditional GANs

O



Want to learn more?

Projection Discriminator (Miyato et al.) |§ Miyato o Koyama caANewith
(;:)n]f;)rence on Learning Representations

- Novel formulation of the
class-conditional
. .. Coleseed Coral reef Coral fungus
discriminator 31.0

- Learnt class embedding is
projected onto the final
hidden representation

- Theoretically justified under
the underlying probabilistic
model

- Empirically, performs better
than prior formulations




Self-Attention GANs (SAGAN, Zhang et al.)

- Added self-attention to give
images better global
structure and coherence

- Self-attention has had a big
impact in a number of
domains (especially
language modeling,
translation)

fx)

Want to learn more?
Zhang, et al. Self-Attention Generative
h Adversarial Networks. International
Conference on Machine Learning (2019)

’ transpose tenti
convolution /IxIconv — attention
feature maps (x) map
v softmax .
: / self-attention
B _|—| g(x) _tll—‘ feature maps (o)
L 1 L - L
‘ \ IxIconv ®—;._~.1
'y L
L

R B

Ix1lconv

O



Want to learn more?

Self-Attention GANs (SAGAN, Zhang et al.)

Zhang, et al. Self-Attention Generative

h Adversarial Networks. International
Conference on Machine Learning (2019)

- Added self-attention to give
images better global
structure and coherence

-.

- Self-attention has had a big
impact in a number of
domains (especially
language modeling,
translation)

S in p
7.9 P,




Want to learn more?

Zhang, et al. Self-Attention Generative

h Adversarial Networks. International
Conference on Machine Learning (2019)

Self-Attention GANs (SAGAN, Zhang et al.)

- Added self-attention to give
images better global
structure and coherence goldfish

- Self-attention has had a big indigo
impact in a number of bunting
domains (especially
language modeling,

translation) pr—

saint
bernard

tiger
cat




Want to learn more?

L

Brock, et al. Large Scale GAN Training for
High Fidelity Natural Image Synthesis.
International Conference on Learning
Representations (2019)

BigGANSs (Brock et al.)

- Make GANs really big
- Big batches
- Big models
- Big datasets
- Big (high res) images
- Trained on ImageNet (1.2M
images) and JFT (300M
images)

- 3

By

Vi

O




BigGANSs (Brock et al.)

Large empirical study to

build a reliable recipe for
large scale GAN training,
including:

Hinge loss in D
Spectral norm
Self-attention
Projection disc
Orthogonal
regularisation

"Skip connections’
from noise

Class label embedding
shared across layers

Want to learn more?

Brock, et al. Large Scale GAN Training for
High Fidelity Natural Image Synthesis.
International Conference on Learning
Representations (2019)




Want to learn more?

Brock, et al. Large Scale GAN Training for
High Fidelity Natural Image Synthesis.
International Conference on Learning
Representations (2019)

BigGANSs (Brock et al.)

- Introduced the truncation
trick
- Change the scale of the
noise z input to the
generator
- Make the noise smaller
(truncate) to increase image
fidelity
- Generates prototypical
examples of each class
- Make the noise larger to
increase variety
- Generates the full class
distribution




Want to learn more?

L

Brock, et al. Large Scale GAN Training for
High Fidelity Natural Image Synthesis.
International Conference on Learning
Representations (2019)

BigGANSs (Brock et al.)

- Introduced the truncation
trick
- Change the scale of the
noise z input to the
generator
- Make the noise smaller
(truncate) to increase image
fidelity
- Generates prototypical
examples of each class
- Make the noise larger to
increase variety
- Generates the full class
distribution




BigGANSs (Brock et al.)

>

FID: more variety

previous work

o SN-GAN

Want to learn more?

Brock, et al. Large Scale GAN Training for

h High Fidelity Natural Image Synthesis.
International Conference on Learning
Representations (2019)

mmmmm

BigGAN with
full z
distribution

o e
X

¥

BigGAN
with z2

150
nnnnnnnnnnnnnn

IS: higher fidelity



Want to learn more?

o
BlgGANS (BrOCk et al ) a Brock, et al. Large Scale GAN Training for
L4 High Fidelity Natural Image Synthesis.
. International Conference on Learning
Representations (2019)

4x deeper, but more efficient!

BigGAN (original) Block BigGAN-deep Block i e i memmmm e
>

-

a N

Linear

BigGAN /

(original)

=

[ 1x1 Conv J [ 3x3 Conv ]

m Linear

3x3 Conv

FID: more variety

BigGAN-deep

I Linear

nnnnnnnnnnnnnn

8 IS: higher fidelity




Want to learn more?

Brock, et al. Large Scale GAN Training for
High Fidelity Natural Image Synthesis.
International Conference on Learning
Representations (2019)

BigGANSs (Brock et al.): failure modes




Want to learn more?

Wu, et al. LOGAN: Latent Optimisation

h for Generative Adversarial Networks.
arXiv:1912.00953 (2019)

LOGAN (Wu et al.)

- Uses latent optimisation to
improve the adversarial
dynamics between G & D

- Natural gradient
descent to optimise
G's latent inputs

- Results in significant further
improvements in BigGAN
terms of fidelity and variety

BigGAN-deep LOGAN
IS = 259.4 IS =259.9

FID = 2797 FID = 8.19
o



Want to learn more?

Progressive GANs (Karras et al.) B SorTuem
L o Loarning Representations (2018)
- First, train a GAN to generate
tiny (4x4) images G ilﬁxl(i 16x16
2 [2x ]
[ 3232
- After convergence, add a i
new layer (in G & D) to toRGB toRGB toRGB toRGB
generate 8x8 resolution l 1‘“@” o l
images T I e VO
D fromRGB ; fromRGB fromRGB
- Repeat for 16x16, 32x32, ... Pm—
0.5x 0.5x
- Very compelling results in a aaY
restricted domain (faces) |IG‘>1211|
(a) (b) (c)



Want to learn more?

Karras, et al. Progressive Growing of
GANS s for Improved Quality, Stability,
and Variation. International Conference
on Learning Representations (2018)

Progressive GANs (Karras et al.)

- First, train a GAN to generate
tiny (4x4) images

- After convergence, add a
new layer (in G & D) to
generate 8x8 resolution
images

- Repeat for 16x16, 32x32, ...

- Very compelling results in a
restricted domain (faces)




Style GANs (Karras et al.)

StyleGANs were shown to be
capable of generating remarkably
photorealistic face images

Structured latent inputs (z) to the
generator can be used to control
its outputs in various interesting
ways.

Source A

Source B

Want to learn more?

L

Karras, et al. A Style-Based Generator
Architecture for Generative Adversarial
Networks. [EEE Conference on Computer
Vision and Pattern Recognition (2019)

Coarse styles from source B




Want to learn more?

Karras, et al. A Style-Based Generator

h Architecture for Generative Adversarial
Networks. [EEE Conference on Computer
Vision and Pattern Recognition (2019)

Style GANs (Karras et al.)

- Global latents transformed Latent z € Z Latent 7 € 2 | _—
via an 8 layer MLP Synthesis network g

- Incorporates spatial pixel Norrn;i[ize ' Const 4x4x512
i apping ©
nOIseSa.t ela ch l!]ayer | N Fully-connected network f style AdalN
- ingle-channel “image . /
of S
. ©
- Broadcast via learnt : style
. PixelNorm AdaIN
per-channel scaling "
factors

- Model learns to associate
global latents with the overall
style of the image

- Pixel noise modulates
the local appearance

(a) Traditional (b) Style-based generator



Want to learn more?

L

Karras, et al. A Style-Based Generator
Architecture for Generative Adversarial
Networks. [EEE Conference on Computer
Vision and Pattern Recognition (2019)

(a) Generated image (b) Stochastic variation

O

Style GANs (Karras et al.)

- Global latents transformed
via an 8 layer MLP
- Incorporates spatial pixel
noise at each layer
- Single-channel "image”
of noise
- Broadcast via learnt
per-channel scaling
factors
- Model learns to associate
global latents with the overall
style of the image
- Pixel noise modulates
the local appearance




Takeaways: Image Synthesis

- Rapid progress scaling up
GANs from simple images
(MNIST) to large-scale
databases of high resolution
images (ImageNet, Flickr
Faces HQ)

T

o gwato eta.!£ 3

-

- Improvements from a variety

of sources
- G & D architectures
- Conditioning

- Normalisation

- D parametrization

- Latent space structure
- Loss functions

- Algorithmic

Brock et al. (2019)
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Motivating Example #1:

Semantics in DCGAN Latent Space (Radford et al.)

- The DCGAN generator's
noise/latent space appears
to have meaningful
semantics

man
with glasses

man
without glasses

woman
without glasses

Want to learn more?

L

Radford, et al. Unsupervised
Representation Learning with Deep
Convolutional Generative Adversarial
Networks. International Conference on
Learning Representations (2016)

woman with glasses

O



Motivating Example #2:
Unsupervised Category Discovery with BigGANs

- Unsupervised BigGAN trained on
unlabeled ImageNet learns to
associate a discrete latent
variable with interesting
semantics

- Qualitatively, the learnt
clusters often resemble
image categories

- This model was trained with a
combination of discrete and
continuous latents:

- 120D Gaussian (N(O, 1))
- 1024-way uniform
categorical

- Rows correspond to categorical
values, columns to Gaussian
values

[Unpublished Results]



InfoGANs (Chen et al.)

Information maximising
GANSs

Adds an inference network
to recover the latent codes
z given the generator
output G(z)

mGin max Vi(D,G) =V(D,G) — M(c; G(z,¢))

With information
maximising objective,
generator learns
(unsupervised) to
associate a discrete
(10-way categorical) latent
variable with digit category

Want to learn more?

(b) Varying c; on regular GAN (

o
o
=
(]
=
B8
[
&
=
(0]
N

o



ALI / Bidirectional GANs

(Dumoulin et al., Donahue et al.)

Adversarial approach to
feature representation
learning and inference

Adds an encoder network
(E) which learns the
inverse mapping from G,
mapping from data x to
latents z

The joint discriminator
sees tuples (x, z)

features

data

Want to learn more?

Dumoulin, et al. Adversarially Learned

h Inference. International Conference on
Learning Representations (2017)

Donahue, et al. Adversarial Feature
Learning. International Conference on
Learning Representations (2017)
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ALI / Bidirectional GANs

(Dumoulin et al., Donahue et al.)

- The joint discriminator
sees tuples (x, z)
- z~P,x=G(2)
- x~P,z=E(x)

- In the global optimum, E
and G are inverses; for all x
and z we have

- x=G(E(x))
- z =E(G(2))

features

data

Want to learn more?

Dumoulin, et al. Adversarially Learned

h Inference. International Conference on
Learning Representations (2017)

Donahue, et al. Adversarial Feature
Learning. International Conference on
Learning Representations (2017)
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Want to learn more?
ALI / Bidirectional GANs b SR e
a Learning Represen tations (2017)
(Dum0u11n et al. ’ Donahue et al.) L Donahue, et al. Adversarial Feature

Learning. International Conference on

Learning Represen tations (2017)

- In the global optimum, E

and G are inverses; for all x x
and z we have G(E(x))
- x=G(Ex)) "
- = E(G
z = E(G(2)) CE(X)
- In practice, this inversion -
property does not hold ClEle )t aﬁ £
perfectly EaR20ans
- But reconstructions Ee feallBPR
still often capture AaRPEHAS R
interesting semantics Bﬁl?ﬂﬂﬂl@
2BasBERANE
LR L
20ADAERA &

(a) CelebA samples.

PASARRAAA
EcHBE S22 8
cEEBQaHE
AABSAONE O
HEAALE B &
& & b5 el BBt
ZENOPNNER

sapAsE

(b) CelebA reconstructions.

@



Want to learn more?

BigBiGANs (Donahue et al.) 7 EREET

Information Processing Systems (2019)

- BiGANs at scale:
BigBiGANs are BiGANs
trained using the BigGAN G
and D architectures

real data x (128x128)

- ResNet-style encoders E

- Reconstructions exhibit
clear high-level semantics
of the input images
(despite being
unsupervised), while
clearly not being
memorised copies

BigBiGAN reconstructions G(E(x))

O



Want to learn more?

BigBiGANs (Donahue et al.) 7 EREET

Information Processing Systems (2019)

- BiGANs at scale:
BigBiGANs are BiGANs
trained using the BigGAN G
and D architectures

real data x (256x256)

- ResNet-style encoders E

- Reconstructions exhibit
clear high-level semantics
of the input images
(despite being
unsupervised), while
clearly not being
memorised copies

BigBiGAN reconstructions G(E(x))



Want to learn more?

BigBiGANs (Donahue et al.) 7 EREET

Information Processing Systems (2019)

- BigBiGAN encoder learns
ImageNet representations
competitive with other = r—
unsupervised / s
self-supervised
approaches

query neigh. #1 neigh. #2 neigh. #3 query neigh. #1 neigh. #2 neigh. #3

- Nearest neighbors (right)
in BigBiGAN encoder
feature space show the
semantics present in the
learnt representations
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Want to learn more?

° °
PlX 2 PlX (ISOla et al ) a Isola, et al. Image-to-Image Translation
L with Conditional Adversarial Networks.
. |IEEE Conference on Computer Vision and
Pattern Recognition (2017)

- Train a generator to
translate between images of Labels to Street Scene
two different domains

Labels to Facade BW to Color

- Standard GAN objective
combined with
reconstruction error

Lcan(G, D) =Ey[log D(y)]+
]Em,z[log(l 2l D(G(.’E, z))]

output output input output

Example results on several image-to-image translation problems. In each case we use the same architecture and objective, simply training on different data.

input

L11(G) = Eg,y.2[lly — G(, 2)|1].

G" = argminmax Logan (G, D) + AL (G)-

O



Want to learn more?

CycleGAN (Zhu et al.) |§

Translation using Cycle-Consistent
Adversarial Networks. International
Conference on Computer Vision (2017)

- Train a generator to
translate between images of
two different domains

Monet _ Photos Summer > Winter

Zebras {_ Horses

- But without any paired
samples!

e X g
Dx Dy /\\F/ \F//\

G
x| V] T AT oo
g I R — > e
Fa Y\ @ o</o

(a) ®) ()

' i

Van Gogh a Cezanne

Photoraph
- Enforces cycle consistency:

- Image x in domain A

- Translate to domain B

- Back to domain A -> x' @

- Enforce x = x'



GANs for Audio Synthesis

WaveGAN (C. Donahue et al.)

Want to learn more?
C. Donahue et al. Adversarial Audio
h Synthesis. International Conference on
| Learning Representations (2019)

MelGAN (Kumar et al.)

Mel Spectogram (
Raw Waveform “"

Feature maps
+ output

Discriminator
Block

Conv Layer

TIMIT (detail)

s Pl __‘f Discriminator | Feature maps

Input sequence Block + output

0% L - | Discriminator Feature maps
Dilated JER00 | Block + output
conv block g
fany o g
5% . -

Upsampling 53]
Layer

idual stack |

i

Upsampling [2x] . /
Layer ™ {1 Con Layer

2x Output sequence

—te—
Residual stack 4x

Feature map

Downsampling [1x] 13 Feitwes i

Conv Layer Feature map

Conv Layer

Q{H

Conv Layer Output
Raw Waveform L Y ) &

(a) Generator (b) Discriminator

Want to learn more?
Kumar et al. MelGAN: Generative
h Adversarial Networks for
Conditional Waveform Synthesis. Neural
Information Processing Systems (2019)

GAN-TTS (Birikowski et al.)

Cond. DBlock
phaiorioags 0 o siz

DBlock

downsample: 2

DBlock

reshape

downsomple: 15

reshape
downsomple: 2

o T

borged
l H ' linguistic features | | 2000 567
" artitrary" ‘sampiing aligned "
sampling with ling. features

Want to learn more?

E Birikowski et al. High Fidelity Speech

Synthesis with Adversarial Networks.
International Conference on Learning
Representations (2020)

O



GANs for Video Synthesis & Prediction

TGAN-v2 (Saito & Saito)

Want to learn more?

Saito and Saito. TGANv2: Efficient

h Training of Large Models for Video
Generation with Multiple Subsampling
Layers. arXiv:1811.09245 (2018)

DVD-GAN (Clark et al.)

Want to learn more?

Clark et al. Adversarial Video Generation

A on Complex Datasets. arXiv:1907.06571
(2019)

TriVD-GAN (Luc et al.)

[PorFrame ]
)
e+ @—-O
Block

Want to learn more?

Luc et al. Transformation-based

h Adversarial Video Prediction on
Large-Scale Data. arXiv:2003.04035
(2020)



GANs Everywhere!

RL (Imitation Learning): GAIL

HalfCheetah

Image Editing: GauGAN

Cartpole Acrobot Mountain Car

Reacher
Ll e S |

Hopper

Park et al. Semantic Image Synthesis
with Spatially-Adaptive Normalization.
IEEE Conference on Computer Vision and
Pattern Recognition (2019)

Ho and Erman. Generative Adversarial

h Imitation Learning. Neural Information
Processing Systems (2016)

Motion Transfer: Everybody Dance Now

Domain Adaptation: DANN

MNIST SYN NUMBERS
SOURCE ,E 8 i
ey e Bl <8l

SVHN

MNIST-M

Ganin et al. Domain-Adversarial Training
of Neural Networks. Journal of Machine
Learning Research (2016)

Chan et al. Everybody Dance Now.

b International Conference on Computer
Vision (2019)

L

Program Synthesis: SPIRAL

INPUT RECONSTRUCTION ~ RECONSTRUCTION

TRACE
64 x 64 64 x 64 256 x 256 256 x 256

h B »n b
X £ & 7

% N N

Ganin et al. Synthesizing Programs for
| b Images using Reinforced Adversarial

Learning. International Conference on
Machine Learning (2018)

Akten. Learning To See.
http://www.memo.tv/portfolio/learning-to-see/
(2017, accessed 2020)

O
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More GANs at DeepMind (2019)

P res G A N Ground Truth PresGAN

Dieng et al. Prescribed Generative
Adversarial Networks. arXiv:1910.04302
(2019)

Copy-Pasting GAN

HET Sl PR ¥R
R PHE SHH w1
e = BE

]
')

- A
EE D
(a) CLEVR+bg (b) Squares. (c) NoisySquares (d) Flying Chairs
Arandjelovi¢ & Zisserman. Object

Discovery with a Copy-Pasting GAN.
arXiv:1905.11369 (2019)

h

Effectiveness of Adam on Cycles

@ @93
— o —«

Gemp & McWilliams. The Unreasonable
Effectiveness of Adam on Cycles.
NeurlPS Smooth Games Optimization and
Machine Learning Workshop (2019)

1.
pd
|
v
v
Y

Improved SPIRAL

Unsupervised Abstraction Increased Realism

Mellor et al. Unsupervised Doodling and
Painting with Improved SPIRAL.
arXiv:1910.01007 (2019)

ScratchGAN

She * s that result she believes that for Ms . Marco Rubio ’ s candidate and that is still
become smaller than ever .

Thadn ’ t been able to move on the surface — if grow through ,” she said , given it at a time
later that time .

If Iran wins business you have to win ( Iowa ) or Hillary Clinton * s survived nothing else
since then , but also of all seeks to bring unemployment .

All the storm shows is incredible , most of the kids who are telling the girls the people we *
re not turning a new study with a challenging group .

Six months before Britain were the UK leaving the EU we will benefit from the EU - it is
meeting by auto , from London , so it * s of also fierce faith Freedom .

de Masson d'/Autume et al. Training
language GANs from Scratch.

Neural Information Processing Systems
(2019)

h

Classification Accuracy Score
) igAN-deep - - ‘_\"Q-A-Z

Ravuri & Vinyals. Classification Accuracy
Score for Conditional Generative Models.
Neural Information Processing Systems (2019)

h



More GANs at DeepMind (2017-19)

Deep Compressed Sensing
F

opnmlsatlon

/1117 10

Wu et al. Deep Compressed Sensing.

h International Conference on Machine
Learning (2019)

Method of Learned Moments

Generator go(2)

fo(@)

Ravuri et al. Learning Implicit Generative

b Models with the Method of Learned
Moments. International Conference on
Machine Learning (2018)

‘GRADIENT DESCENT

SGA

[

.IAmL('ANlu ing at 0, 10000 and 20000 steps.

/

(b) GAN-GP training at 0, 10000 and 20000 steps.

n-Player Differentiable Games

001 0032 01

,/

Balduzzi et al. The Mechanics of n-Player
Differentiable Games. International
Conference on Machine Learning (2018)

Many Paths to Equilibrium

Fedus et al. Many Paths to Equilibrium:
GANs Do Not Need to Decrease a
Divergence At Every Step. International
Conference on Learning Representations
(2017)

Variational GAN Hybrids

B E9 2 ¥B X wem
R W\ W~
mcemr B~ £
Q!r.‘.m &-rk‘l
ﬂnﬂ ﬂ *-‘*""

VGH/VGH++

Rosca et al. Distribution Matching in

b Variational Inference. arXiv:1802.06847
(2018)

Cramér GAN

w—\WGAN-GP N, = 1

2
0% == = = WGANGP N

s Cramer GAN N, = 1
= = = = Cramer GAN Ny =5

Wasserstein Distance

.. o2 OO
70000 40000 80000 80000 366000
Generator Steps

Bellemare et al. The Cramer Distance as a

b Solution to Biased Wasserstein Gradients.
arXiv:1705.10743 (2017)

O



More GANs at DeepMind (2016-17)

Unrolled GAN

5 step 10 step

= Forward Pass

'/\ ,/_\ —» 8, Gradients
8y’ 6,2 6, Gradients

o
8, = 1,00 > SGD = > 1,00, > SGD > 16,8, Unrolling
~» SGD
* * * Gradients
LY 8 8

Metz et al. Unrolled Generative

h Adversarial Networks.
International Conference on Learning
Representations (2017)

Rosca et al. Variational Approaches for
Auto-Encoding Generative Adversarial
Networks. arXiv:1706.04987 (2017)

P e o

Population Based Training

10g,,(D Learning Rate)

10g,,(G Learning Rate)

-40 [

nnnnnnnnnnn

Jaderberg et al. Population Based

h Training of Neural Networks.
arXiv:171.09846 (2017)

Connecting GANs & Actor-Critic

Method GANs

Freezing learning yes

Label smoothing yes

<>ﬁ’ \‘”‘7/ ) T I Historical averagin ves

Minibatch discrimination _ yes

(= D] Batch normalization yes

( ‘\)J mm&;’ i Target networks | na

d SVG(O) 18] 1 Neu uyr nud Q-lcxmlng Replay buffers no

@ INewois T Wit Entropy regularization 1o
Compatibility no

Pfau & Vinyals. Connecting Generative

b Adversarial Networks and Actor-Critic
Methods. NeurlPS Workshop on
Adversarial Training (2016)

Likelihood vs. GAN NVP Training

FI3E© apiai g e an

€1 3 QAT 2AL D,
SECALEN &
IQIBIEHB

ENIeR'EE Bn i LioARe0a
:?};HERBH 2 Slslaclsls]
L

Learning in Implicit Gen. Models

Danihelka et al. Comparison of Maximum
Likelihood and GAN-based training of
Real NVPs. arXiv:1705.05263 (2017)

Loss Objective Function (D := D(x; $))

Bernoulli loss | #E,-x) [~ 10g D] + (1 — 7)Eq, [~ log(1 — D)]
Brier score TE i) [(1 = D)) + (1= 7)Eq, ) [D?]
Exponential 1oss | 7Ey-x )[ (352)* ]+ (1= m)Eqy 0 7[(|7ﬂ)ij|

Mohamed & Lakshminarayanan. Learning in

b Implicit Generative Models. arXiv:1610.03483
(2016)
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