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In this lecture series, leading research scientists 
from leading AI research lab, DeepMind, will give
12 lectures on an exciting selection of topics
in Deep Learning, ranging from the fundamentals 
of training neural networks via advanced ideas 
around memory, attention, and generative 
modelling to the important topic of responsible 
innovation.

Please join us for a deep dive lecture series
into Deep Learning!
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focusing on visual representation 
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1 Overview

Extra notes/ideas
I removed most of the “explicit” branding, only first slide 
has DeepMind name on it, everything else - a small logo 
in the corner. Also no “confidential” info



Generative models

Learn a model of the true (unknown) 
underlying data distribution from samples 



Generative models



Generative models

Learning an explicit distribution from data.



Generative models

Learning an implicit distribution from data.



Explicit likelihood models:

● Maximum likelihood
○ PPCA, Factor Analysis, Mixture 

models
○ PixelCNN/PixelRNN
○ Wavenet
○ Autoregressive language models

● Approximate maximum likelihood
○ Boltzmann machines
○ Variational autoencoders

Generative model zoo

Implicit models (no likelihoods):

● Generative adversarial networks
● Moment matching networks





Denton, et al. Deep Generative Image 
Models using a Laplacian Pyramid of 
Adversarial Networks. NIPS (2015)

Goodfellow, et al. Generative adversarial 
networks. NIPS (2014)

Radford et al. Unsupervised 
Representation Learning with Deep 
Convolutional Generative Adversarial 
Networks  ICLR (2015)

Miyato et al. Spectral normalization for 
Generative Adversarial Networks
ICLR (2018)

Karras et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis
ICLR (2018)

Brock et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis
ICLR (2019)

Karras et al. A Style-Based Generator 
Architecture for Generative Adversarial 
Networks  CVPR (2019)



Generative adversarial networks
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

Learning an implicit model through a two 
player game.



Generative adversarial networks

Discriminator Generator

Learns to distinguish 
between real and 
generated data.

Learns to generate data 
to “fool” the discriminator.

vs
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G(z)

generated data
G(z)

generator G

  G

real data x ~ P*(x)   D

Discriminator Teacher (less adversarial view)

Generator
fool the discriminator

make the teacher happy by 
making generated data look real

Teacher
distinguish between real and 

generated data, so that I can tell the 
generator how to improve

real or generated?

G(z)



Generative adversarial networks

log-probability that D correctly 
predicts real data x are real

log-probability that D correctly predicts 
generated data G(z) are generated

Want to learn more?
Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)



Generative adversarial networks

log-probability that D correctly 
predicts real data x are real

log-probability that D correctly predicts 
generated data G(z) are generated

discriminator’s (D) goal: maximize prediction accuracy 

generator’s (G) goal: minimize D’s prediction accuracy,
by fooling D into believing its outputs G(z) are real as often as 
possible

Want to learn more?
Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)



Generative adversarial networks

Algorithm from Goodfellow et al. (2014)

Want to learn more?
Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)



GANs are an implicit generative model 
trained as a two player game.



Generative adversarial networks as zero sum game

- Bi level optimization of the same loss function.
- Connection to game theory literature.

- Nash equilibria
- Strategies 
- Fictitious play 



Generative models as distance minimization

Why divergence/distance minimization?

- The objective of generative models is often to minimize a divergence or distance.
- Most common: Maximum likelihood (KL divergence).



Generative models as distance minimization

- The objective of generative models is often to minimize a divergence or distance.
- Most common: Maximum likelihood (KL divergence).

Maximum likelihood



Effects of the choice of divergence - learned models

Want to learn more?
Goodfellow, et al. NIPS 2016 
Tutorial:
Generative Adversarial Networks
Arxiv (2016)



Are GANs doing divergence minimization?
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

If the discriminator (D) is optimal: 
the generator is minimizing the Jensen Shannon divergence 

between the true and generated distributions.



Are GANs doing divergence minimization?
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

If the discriminator (D) is optimal: 
the generator is minimizing the Jensen Shannon divergence 

between the true and generated distributions.

Connection to optimality:



Jensen Shannon divergence



GANs: More than Jensen Shannon divergence

In practice: D is not optimal:
limited computational resources

we do not have access to the true data distribution (just samples)



Properties of KL & Jensen Shannon divergences

No learning signal from KL/JSD divergence if non overlapping support between the data and the model.

Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)



Non overlapping support



Non overlapping support

Moving the model closer to the true distribution (new p) results in no change in KL/JSD.



Generative adversarial networks as zero sum game

Can we choose another V?



Generative adversarial networks as zero sum game

Will it correspond to a distributional 
divergence?



Other divergences and distances

Wasserstein Distance

Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)
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Other divergences and distances

Wasserstein Distance

Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)

Learning

Estimation



Other divergences and distances

Try to make D is 1-Lipschitz via gradient penalties, spectral normalization, weight clipping.

Want to learn more?
Arjovsky, et al Wasserstein GAN.  
International Conference on Machine 
Learning  (2017)

Wasserstein GAN

Wasserstein Distance



Other divergences and distances

MMD

 is a RKHS.

Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)



Other divergences and distances

MMD

 is a RKHS.

 Choose kernel with learned features (via D)

Want to learn more?
Li, et al MMD GAN: Towards Deeper 
Understanding of Moment Matching 
Network.  
Neural Information Processing 
Systems (2017)

MMD-GAN



Other divergences and distances

variational lower bound

Want to learn more?
Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

f-divergences

optimal T for KL: is the convex conjugate of



Other divergences and distances
Want to learn more?

Nowozin, et al f-GAN: Training 
Generative Neural Samplers using 
Variational Divergence Minimization.  
Neural Information Processing 
Systems (2016)

f-divergences

f-GAN



Can create GAN training criteria inspired by multiple 
divergences & distances.



Why train a GAN instead of doing divergence minimization?

- Model type 

- Computational Intractability
        Smooth learning signal
       Learned “divergence“



Implicit models and KL divergence

Model type

For implicit models, we do not have access to the explicit distribution p(x).

z G(z)

generated datalatent noise    neural network

  Gz



Implicit models and KL divergence

Model type

For implicit models, we do not have access to the explicit distribution p(x).

z G(z)

generated datalatent noise    neural network

  Gz

f-GAN



Wasserstein distance & computational intractability

Computational intractability

Computationally intractable for complex cases. 

Wasserstein GAN



Smooth learning signal

No learning signal from KL/JSD divergence if non-overlapping support between the data and the model.

Want to learn more
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)



The density ratio jumps to infinity at the data distribution. 

Smooth learning signal



Smooth learning signal
Want to learn more?

Fedus, et al Many paths to 
equilibrium.  
International Conference for learning 
representations (2018)

But GANs still learn!

Red = data
Blue = model (changes in training)



Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)

true ratio

ratio approximation used in GAN training



Want to learn more?
Gretton, et al Interpretable 
comparison
of distributions and models
Neural Information Processing 
Systems Tutorial (2019)

true ratio

ratio approximation used in GAN training

is the family of functions used to approximate the ratio (deep neural networks, RKHS).



Smooth approximation of the density ratio does not go to infinity.

Smooth learning signal



Smooth approximation of the density ratio does not go to infinity.

Smooth learning signal



D is smooth approximation to the decision boundary of the underlying divergence:

GANs do not do divergence minimization in practice

GANs do not fail in cases where the underlying divergence would



Discriminators as learned “distances”
Want to learn more?

Arora, et al Generalization and Equilibrium in 
Generative Adversarial Nets.  
International Conference for machine learning  
(2017)

We can think of D (the teacher) as learning a “distance” between the data 
and model distribution that can provide useful gradients to the model.



Discriminators as “learned” distances

Wasserstein GAN

Original GAN



Discriminators as “learned” distances

D provides a learned distance between 
the data and sample distributions, using 
learned neural network features.    



GANs (learned distance) or divergence minimization?

GANs Divergence minimization

      good samples

      learned loss function

       hard to analyze dynamics (game theory)

       (in practice) no optimal convergence 
guarantees

      optimal convergence guarantees

      easy to analyze loss properties

       hard to get good samples

       loss functions don’t correlate with      

       human evaluation



In practice, GANs do not do divergence minimization. 
The discriminator can be seen as a learned “distance”.



Empirically, it has been observed that the underlying loss matters less than 
neural architectures, training regime, data.

Which GAN should I use?

Stay tuned!



Unconditional and conditional generative models

Unconditional Conditional

provides a sample from the 
data distribution, but the 
user has no control over what 
kind of sample.

we can specify what sample 
we want (dog vs cat).



z G(z)

generated data
G(z)

latent (“noise”) vector
z ~ P(z)

generator G:
a deep neural network

  Gz

Generator input is 
random noise to 

account for spread 
of data distribution.

So far... unsupervised GANs



G(z)

generated data
G(z)

latent (“noise”) vector
z ~ P(z)

generator G:
a deep neural network

  Gz

y

Conditioning information for training GANs

Add conditioning 
generation to 

specify information 
about generated 

sample.



Class conditional GANs

G(z)

generated data
G(y, z)

  G

real data x ~ P*(x)   D real or generated dog?

z

conditioning label (eg “dog”)

y

G(z)





Mode collapse



iteration

G
 lo

ss



2 Evaluating 
GANs

Extra notes/ideas
I removed most of the “explicit” branding, only first slide 
has DeepMind name on it, everything else - a small logo 
in the corner. Also no “confidential” info



Evaluating generative models

No evaluation metric is able to capture all desired properties.

- sample quality
- generalization
- representation learning

Evaluate based on end goal
semi supervised learning: classification accuracy
reinforcement learning: agent reward
data generation: human (user) evaluation

Want to learn more?
Theis, et al A note on the evaluation of 
generative models 
International Conference for Learning 
Representations (2016)



GANs are implicit models

Log likelihoods are not available (and are very expensive to 
approximate).



Inception score

Data

Model



Inception Score

Use a pretrained Imagenet classifier to compare (via KL divergence)

the distribution of labels obtained from the data

the distribution of labels coming from samples

Want to learn more?
Salimans, et al Improved techniques for 
training GANs
Neural Information Processing Systems 
(2016)

Measures:
- sample quality
- dropping classes (no cats)
- correlates with human evaluation
- does not measure differences beyond class labels
- requires pretrained classifier

Higher is better.



Frechet Inception Distance

Data

Model



Frechet Inception Distance
Want to learn more?

Heusel, et al GANs Trained by a Two 
Time-Scale Update Rule Converge to a 
Local Nash Equilibrium

Neural Information Processing Systems 
(2017)

Use a pretrained Imagenet classifier to compare (via Frechet distance)

the distribution of layer features obtained from the data

the distribution of layer features coming from samples

Measures:
- sample quality
- dropping classes (no cats)
- captures feature level statistics (not just classes)
- correlates with human evaluation

requires pretrained classifier
biased for a small number of samples and KID for a 
fix (see Binkowski, et al., ICLR 2018)

Lower is better.



Checking overfitting: Nearest neighbours 

Nearest neighbors: most similar (in feature space of a pretrained ImageNet 
classifier) images in the dataset.



Multiple metrics are needed to evaluate GAN samples.



3 The GAN Zoo



3.1 Image Synthesis 
with GANs:
MNIST to ImageNet



The Original GANs (Goodfellow et al.)
Want to learn more?

Goodfellow, et al. Generative adversarial 
networks..  Neural Information Processing 
Systems (2014)

- The original GAN paper 
(Goodfellow et al.)

- Simple data (~32x32 images)

- Simple models

- G and D in (a) and (b) were 
MLPs (not convolutional)

- Images flattened to 
vectors for training, 
ignoring spatial 
structure



Conditional GANs (Mirza and Osindero)
Want to learn more?

Mirza and Osindero. Conditional 
Generative Adversarial Nets. 
arXiv:1411.1784 (2014)

- Generalised GANs to the 
conditional setting where 
we have some extra 
information associated with 
each datum, e.g.,

- a category ID ("cat", 
"dog", ...)

- an input image from 
another domain



Conditional GANs (Mirza and Osindero)
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- a category ID ("cat", 
"dog", ...)
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Laplacian GANs (LAPGAN, Denton et al.)
Want to learn more?

Denton, et al. Deep Generative Image 
Models using a Laplacian Pyramid of 
Adversarial Networks.  Neural 
Information Processing Systems (2015)

- Start from a tiny image

- Upsample to a 2x larger 
image (blurry)

- Generate a Laplacian:
the difference between the 
(blurry) upsampled image 
and the final image

- A conditional GAN after the 
initial resolution

- G and D each take a 
lower resolution image 
as input, predicting e.g.:

   P(is real 64x64 image
                 | 32x32 image)



Laplacian GANs (LAPGAN, Denton et al.)

Nice results at higher resolutions

Want to learn more?
Denton, et al. Deep Generative Image 
Models using a Laplacian Pyramid of 
Adversarial Networks.  Neural 
Information Processing Systems (2015)



Laplacian GANs (LAPGAN, Denton et al.)

Fully convolutional generator 
architecture

The model can be applied to 
produce arbitrarily high-resolution 
results

This model was trained on 32x32 
images, but is applied recursively 
to upsample to 256x256.

Want to learn more?
Denton, et al. Deep Generative Image 
Models using a Laplacian Pyramid of 
Adversarial Networks.  Neural 
Information Processing Systems (2015)



Deep Convolutional GANs (DCGAN, Radford et al.)
Want to learn more?

Radford, et al. Unsupervised 
Representation Learning with Deep 
Convolutional Generative Adversarial 
Networks.  International Conference on 
Learning Representations (2016)

- Simply use deep convnets 
for G and D

- Importantly, batch 
normalization (Ioffe and 
Szegedy, 2015) helped to 
stabilize the difficult learning 
process



Deep Convolutional GANs (DCGAN, Radford et al.)
Want to learn more?

Radford, et al. Unsupervised 
Representation Learning with Deep 
Convolutional Generative Adversarial 
Networks.  International Conference on 
Learning Representations (2016)

- Simply use deep convnets 
for G and D

- Importantly, batch 
normalization (Ioffe and 
Szegedy, 2015) helped to 
stabilize the difficult learning 
process

- Interpolation between noise 
(z) samples produces 
semantically reasonable 
images at every point

G(z1)                               G(½ z1 + ½ z2)                                  G(z2)
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Deep Convolutional GANs (DCGAN, Radford et al.)
Want to learn more?

Radford, et al. Unsupervised 
Representation Learning with Deep 
Convolutional Generative Adversarial 
Networks.  International Conference on 
Learning Representations (2016)

- The DCGAN generator's 
noise/latent space appears 
to have meaningful 
semantics



Spectrally Normalised GANs (SNGAN, Miyato et 
al.)

Want to learn more?
Miyato, et al. Spectral Normalization for 
Generative Adversarial Networks. 
International Conference on Learning 
Representations (2018)

- Stabilise GAN training by 
clamping the singular values 
of D's weights to 1



Projection Discriminator (Miyato et al.)
Want to learn more?

Miyato and Koyama. cGANs with 
Projection Discriminator. International 
Conference on Learning Representations 
(2018)

- Novel formulation of the 
class-conditional 
discriminator

- Learnt class embedding is 
projected onto the final 
hidden representation

- Theoretically justified under 
the underlying probabilistic 
model

- Empirically, performs better 
than prior formulations 
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Self-Attention GANs (SAGAN, Zhang et al.)
Want to learn more?

Zhang, et al. Self-Attention Generative 
Adversarial Networks. International 
Conference on Machine Learning (2019)

- Added self-attention to give 
images better global 
structure and coherence

- Self-attention has had a big 
impact in a number of 
domains (especially 
language modeling, 
translation)
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Want to learn more?

Zhang, et al. Self-Attention Generative 
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Conference on Machine Learning (2019)

- Added self-attention to give 
images better global 
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BigGANs (Brock et al.)
Want to learn more?

Brock, et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis. 
International Conference on Learning 
Representations (2019)

- Make GANs really big
- Big batches
- Big models
- Big datasets
- Big (high res) images

- Trained on ImageNet (1.2M 
images) and JFT (300M 
images)



BigGANs (Brock et al.)
Want to learn more?

Brock, et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis. 
International Conference on Learning 
Representations (2019)

- Large empirical study to 
build a reliable recipe for 
large scale GAN training, 
including:

- Hinge loss in D
- Spectral norm
- Self-attention
- Projection disc
- Orthogonal 

regularisation
- "Skip connections" 

from noise
- Class label embedding 

shared across layers



BigGANs (Brock et al.)
Want to learn more?

Brock, et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis. 
International Conference on Learning 
Representations (2019)

- Introduced the truncation 
trick

- Change the scale of the 
noise z input to the 
generator

- Make the noise smaller 
(truncate) to increase image 
fidelity

- Generates prototypical 
examples of each class

- Make the noise larger to 
increase variety

- Generates the full class 
distribution
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International Conference on Learning 
Representations (2019)

- Introduced the truncation 
trick

- Change the scale of the 
noise z input to the 
generator

- Make the noise smaller 
(truncate) to increase image 
fidelity
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Brock, et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis. 
International Conference on Learning 
Representations (2019)

Want to learn more?

previous work

FI
D
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e 
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et

y
IS: higher fidelity

BigGAN 
with z≅0

BigGAN with 
full z 
distribution 
~N(0,I)

Brock, et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis. 
International Conference on Learning 
Representations (2019)

BigGANs (Brock et al.)



Brock, et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis. 
International Conference on Learning 
Representations (2019)

Want to learn more?

FI
D

: m
or

e 
va

ri
et

y
IS: higher fidelity

BigGAN 
with z≅0

BigGAN with 
full z 
distribution 
~N(0,I)

Brock, et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis. 
International Conference on Learning 
Representations (2019)

BigGAN (original) Block BigGAN-deep Block

4x deeper, but more efficient!

BigGAN
(original)

BigGAN-deep

BigGANs (Brock et al.)



BigGANs (Brock et al.): failure modes
Want to learn more?

Brock, et al. Large Scale GAN Training for 
High Fidelity Natural Image Synthesis. 
International Conference on Learning 
Representations (2019)



LOGAN (Wu et al.)
Want to learn more?

Wu, et al. LOGAN: Latent Optimisation 
for Generative Adversarial Networks. 
arXiv:1912.00953 (2019)

- Uses latent optimisation to 
improve the adversarial 
dynamics between G & D

- Natural gradient 
descent to optimise 
G's latent inputs

- Results in significant further 
improvements in BigGAN 
terms of fidelity and variety

BigGAN-deep
IS = 259.4
FID = 27.97

LOGAN
IS = 259.9
FID = 8.19



Progressive GANs (Karras et al.)
Want to learn more?

Karras, et al. Progressive Growing of 
GANs for Improved Quality, Stability, 
and Variation. International Conference 
on Learning Representations (2018)

- First, train a GAN to generate 
tiny (4x4) images

- After convergence, add a 
new layer (in G & D) to 
generate 8x8 resolution 
images

- Repeat for 16x16, 32x32, ...

- Very compelling results in a 
restricted domain (faces)
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Style GANs (Karras et al.)
Want to learn more?

Karras, et al. A Style-Based Generator 
Architecture for Generative Adversarial 
Networks. IEEE Conference on Computer 
Vision and Pattern Recognition (2019)

StyleGANs were shown to be 
capable of generating remarkably 
photorealistic face images

Structured latent inputs (z) to the 
generator can be used to control 
its outputs in various interesting 
ways.



Style GANs (Karras et al.)
Want to learn more?

Karras, et al. A Style-Based Generator 
Architecture for Generative Adversarial 
Networks. IEEE Conference on Computer 
Vision and Pattern Recognition (2019)

- Global latents transformed 
via an 8 layer MLP

- Incorporates spatial pixel 
noise at each layer

- Single-channel "image" 
of noise

- Broadcast via learnt 
per-channel scaling 
factors

- Model learns to associate 
global latents with the overall 
style of the image

- Pixel noise modulates 
the local appearance
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- Incorporates spatial pixel 
noise at each layer
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Takeaways: Image Synthesis

- Rapid progress scaling up 
GANs from simple images 
(MNIST) to large-scale 
databases of high resolution 
images (ImageNet, Flickr 
Faces HQ)

- Improvements from a variety 
of sources

- G & D architectures
- Conditioning
- Normalisation
- D parametrization
- Latent space structure
- Loss functions
- Algorithmic

Goodfellow et al. (2014) Denton et al. (2015) Radford et al. (2016)

Miyato et al. (2018) Zhang et al. (2019)

Brock et al. (2019) Karras et al. (2019)

Miyato et al. (2018)



3.2 GANs for 
Representation 
Learning



Motivating Example #1:
Semantics in DCGAN Latent Space (Radford et al.)

Want to learn more?
Radford, et al. Unsupervised 
Representation Learning with Deep 
Convolutional Generative Adversarial 
Networks.  International Conference on 
Learning Representations (2016)

- The DCGAN generator's 
noise/latent space appears 
to have meaningful 
semantics



Motivating Example #2:
Unsupervised Category Discovery with BigGANs

- Unsupervised BigGAN trained on 
unlabeled ImageNet learns to 
associate a discrete latent 
variable with interesting 
semantics

- Qualitatively, the learnt 
clusters often resemble 
image categories

- This model was trained with a 
combination of discrete and 
continuous latents:

- 120D Gaussian (N(0, 1))
- 1024-way uniform 

categorical
- Rows correspond to categorical 

values, columns to Gaussian 
values

[Unpublished Results]



InfoGANs (Chen et al.)
Want to learn more?

Chen, et al. InfoGAN: Interpretable 
Representation Learning by Information 
Maximizing Generative Adversarial Nets. 
arXiv:1606.03657 (2016)

- Information maximising 
GANs

- Adds an inference network 
to recover the latent codes 
z given the generator 
output G(z)

- With information 
maximising objective, 
generator learns 
(unsupervised) to 
associate a discrete 
(10-way categorical) latent 
variable with digit category



ALI / Bidirectional GANs
(Dumoulin et al., Donahue et al.)

Want to learn more?
Dumoulin, et al. Adversarially Learned 
Inference. International Conference on 
Learning Representations (2017)

Donahue, et al. Adversarial Feature 
Learning. International Conference on 
Learning Representations (2017)

- Adversarial approach to 
feature representation 
learning and inference 

- Adds an encoder network 
(E) which learns the 
inverse mapping from G, 
mapping from data x to 
latents z

- The joint discriminator 
sees tuples (x, z)



ALI / Bidirectional GANs
(Dumoulin et al., Donahue et al.)

Want to learn more?
Dumoulin, et al. Adversarially Learned 
Inference. International Conference on 
Learning Representations (2017)

Donahue, et al. Adversarial Feature 
Learning. International Conference on 
Learning Representations (2017)

- The joint discriminator 
sees tuples (x, z)

- z ~ Pz, x = G(z)
- x ~ Px, z = E(x)

- In the global optimum, E 
and G are inverses; for all x 
and z we have

- x = G(E(x))
- z  = E(G(z))



ALI / Bidirectional GANs
(Dumoulin et al., Donahue et al.)

Want to learn more?
Dumoulin, et al. Adversarially Learned 
Inference. International Conference on 
Learning Representations (2017)

Donahue, et al. Adversarial Feature 
Learning. International Conference on 
Learning Representations (2017)

- In the global optimum, E 
and G are inverses; for all x 
and z we have

- x = G(E(x))
- z  = E(G(z))

- In practice, this inversion 
property does not hold 
perfectly

- But reconstructions 
still often capture 
interesting semantics



BigBiGANs (Donahue et al.)
Want to learn more?

Donahue, et al. Large Scale Adversarial 
Representation Learning. Neural 
Information Processing Systems (2019)

- BiGANs at scale: 
BigBiGANs are BiGANs 
trained using the BigGAN G 
and D architectures 

- ResNet-style encoders E

- Reconstructions exhibit 
clear high-level semantics 
of the input images 
(despite being 
unsupervised), while 
clearly not being 
memorised copies

real data x (128x128)

BigBiGAN reconstructions G(E(x))



BigBiGANs (Donahue et al.)
Want to learn more?

Donahue, et al. Large Scale Adversarial 
Representation Learning. Neural 
Information Processing Systems (2019)

- BiGANs at scale: 
BigBiGANs are BiGANs 
trained using the BigGAN G 
and D architectures 

- ResNet-style encoders E

- Reconstructions exhibit 
clear high-level semantics 
of the input images 
(despite being 
unsupervised), while 
clearly not being 
memorised copies

real data x (256x256)

BigBiGAN reconstructions G(E(x))



BigBiGANs (Donahue et al.)
Want to learn more?

Donahue, et al. Large Scale Adversarial 
Representation Learning. Neural 
Information Processing Systems (2019)

- BigBiGAN encoder learns 
ImageNet representations 
competitive with other 
unsupervised / 
self-supervised 
approaches

- Nearest neighbors (right) 
in BigBiGAN encoder 
feature space show the 
semantics present in the 
learnt representations

query        neigh. #1    neigh. #2   neigh. #3 query        neigh. #1    neigh. #2   neigh. #3



3.3 GANs for Other 
Modalities & 
Problems



Pix2Pix (Isola et al.)
Want to learn more?

Isola, et al. Image-to-Image Translation 
with Conditional Adversarial Networks. 
IEEE Conference on Computer Vision and 
Pattern Recognition (2017)

- Train a generator to 
translate between images of 
two different domains

- Standard GAN objective 
combined with 
reconstruction error



CycleGAN (Zhu et al.)
Want to learn more?

Zhu, et al. Unpaired Image-to-Image 
Translation using Cycle-Consistent 
Adversarial Networks. International 
Conference on Computer Vision (2017)

- Train a generator to 
translate between images of 
two different domains

- But without any paired 
samples!

- Enforces cycle consistency: 
- Image x in domain A
- Translate to domain B
- Back to domain A -> x'
- Enforce x ≈ x'



GANs for Audio Synthesis

GAN-TTS (Bińkowski et al.)

Want to learn more?
Kumar et al. MelGAN: Generative 
Adversarial Networks for
Conditional Waveform Synthesis. Neural 
Information Processing Systems (2019)

Want to learn more?
Bińkowski et al. High Fidelity Speech 
Synthesis with Adversarial Networks. 
International Conference on Learning 
Representations (2020)

MelGAN (Kumar et al.)

Want to learn more?
C. Donahue et al. Adversarial Audio 
Synthesis. International Conference on 
Learning Representations (2019)

WaveGAN (C. Donahue et al.)



GANs for Video Synthesis & Prediction

TriVD-GAN (Luc et al.)

Want to learn more?
Clark et al. Adversarial Video Generation 
on Complex Datasets. arXiv:1907.06571 
(2019)

Want to learn more?
Luc et al. Transformation-based 
Adversarial Video Prediction on 
Large-Scale Data. arXiv:2003.04035 
(2020)

DVD-GAN (Clark et al.)

Want to learn more?
Saito and Saito. TGANv2: Efficient 
Training of Large Models for Video 
Generation with Multiple Subsampling 
Layers. arXiv:1811.09245 (2018)

TGAN-v2 (Saito & Saito)



GANs Everywhere!

Ho and Erman. Generative Adversarial 
Imitation Learning. Neural Information 
Processing Systems (2016)

RL (Imitation Learning): GAIL

Park et al. Semantic Image Synthesis 
with Spatially-Adaptive Normalization. 
IEEE Conference on Computer Vision and 
Pattern Recognition (2019)

Image Editing: GauGAN

Ganin et al. Synthesizing Programs for 
Images using Reinforced Adversarial 
Learning. International Conference on 
Machine Learning (2018)

Program Synthesis: SPIRAL

Chan et al. Everybody Dance Now. 
International Conference on Computer 
Vision (2019)

Motion Transfer: Everybody Dance Now

Ganin et al. Domain-Adversarial Training 
of Neural Networks. Journal of Machine 
Learning Research (2016)

Domain Adaptation: DANN

Akten. Learning To See. 
http://www.memo.tv/portfolio/learning-to-see/
(2017, accessed 2020)

Art: Learning to See



3.4 More GANs at 
DeepMind

(Updated: 1 July 2020)



More GANs at DeepMind (2019)

Dieng et al. Prescribed Generative 
Adversarial Networks. arXiv:1910.04302 
(2019)

PresGAN

Gemp & McWilliams. The Unreasonable 
Effectiveness of Adam on Cycles. 
NeurIPS Smooth Games Optimization and 
Machine Learning Workshop (2019)

Effectiveness of Adam on Cycles

de Masson d'Autume et al. Training 
language GANs from Scratch. 
Neural Information Processing Systems 
(2019)

ScratchGAN

Arandjelović & Zisserman. Object 
Discovery with a Copy-Pasting GAN. 
arXiv:1905.11369 (2019)

Copy-Pasting GAN

Mellor et al. Unsupervised Doodling and 
Painting with Improved SPIRAL. 
arXiv:1910.01007 (2019)

Improved SPIRAL

Ravuri & Vinyals. Classification Accuracy 
Score for Conditional Generative Models. 
Neural Information Processing Systems (2019)

Classification Accuracy Score



More GANs at DeepMind (2017-19)

Wu et al. Deep Compressed Sensing. 
International Conference on Machine 
Learning (2019)

Deep Compressed Sensing

Balduzzi et al. The Mechanics of n-Player 
Differentiable Games. International 
Conference on Machine Learning (2018)

n-Player Differentiable Games

Rosca et al. Distribution Matching in 
Variational Inference. arXiv:1802.06847 
(2018)

Variational GAN Hybrids

Ravuri et al. Learning Implicit Generative 
Models with the Method of Learned 
Moments. International Conference on 
Machine Learning (2018)

Method of Learned Moments

Fedus et al. Many Paths to Equilibrium: 
GANs Do Not Need to Decrease a 
Divergence At Every Step. International 
Conference on Learning Representations 
(2017)

Many Paths to Equilibrium

Bellemare et al. The Cramer Distance as a 
Solution to Biased Wasserstein Gradients. 
arXiv:1705.10743 (2017)

Cramér GAN



More GANs at DeepMind (2016-17)

Metz et al. Unrolled Generative 
Adversarial Networks. 
International Conference on Learning 
Representations (2017)

Unrolled GAN

Jaderberg et al. Population Based 
Training of Neural Networks. 
arXiv:1711.09846 (2017)

Population Based Training

Danihelka et al. Comparison of Maximum 
Likelihood and GAN-based training of 
Real NVPs. arXiv:1705.05263 (2017)

Likelihood vs. GAN NVP Training

Rosca et al. Variational Approaches for 
Auto-Encoding Generative Adversarial 
Networks. arXiv:1706.04987 (2017)

⍺-GAN

Pfau & Vinyals. Connecting Generative 
Adversarial Networks and Actor-Critic 
Methods. NeurIPS Workshop on 
Adversarial Training (2016)

Connecting GANs & Actor-Critic

Mohamed & Lakshminarayanan. Learning in 
Implicit Generative Models. arXiv:1610.03483 
(2016)

Learning in Implicit Gen. Models



Thank you


