
2024-04-09

CodeGemma: Open Code Models Based on
Gemma
CodeGemma Team, Google LLC1
1See Contributions and Acknowledgments section for full author list. Please send correspondence to
codegemma-team@google.com.

This paper introduces CodeGemma, a collection of specialized open code models built on top of Gemma,
capable of a variety of code and natural language generation tasks. We release three model checkpoints.
CodeGemma 7B pretrained (PT) and instruction-tuned (IT) variants have remarkably resilient natural
language understanding, excel in mathematical reasoning, and match code capabilities of other open
models. CodeGemma 2B is a state-of-the-art code completion model designed for fast code infilling and
open-ended generation in latency-sensitive settings.

Introduction

We present CodeGemma, a collection of open
code models based on Google DeepMind’s
Gemma models (Gemma Team et al., 2024).

Continuing from Gemma pretrained models,
CodeGemma models are further trained on more
than 500 billion tokens of primarily code, using
the same architectures as the Gemma model fam-
ily. As a result, CodeGemmamodels achieve state-
of-the-art code performance in both completion
and generation tasks, while maintaining strong
understanding and reasoning skills at scale. We
release a 7B code pretrained model and a 7B
instruction-tuned code model. Further, we re-
lease a specialized 2B model, trained specifically
for code infilling and open-ended generation. The
lineage of these models is depicted in Figure 1.

In this report, we provide an overview of the
additions to Gemma, such as pretraining and
instruction-tuning details for CodeGemma, fol-
lowed by evaluations of all models across a wide
variety of academic and real world tasks against
similar models. Finally, we outline the areas in
which CodeGemma excels and its limitations, fol-
lowed by recommendations for using this model.

Pretraining

Training Data

CodeGemma models are further trained on 500
billion tokens of primarily English language data

Gemma Pretrained Models

2B 7B

CodeGemma

2B
CodeGemma

7B

CodeGemma

7B
Instruct

100% Code

Infilling

80% Code Infilling

20% Natural Language

Code SFT
& RLHF

Figure 1 | Both pretrained models are derived
from corresponding Gemma pretrained models.

from web documents, mathematics, and code.
The 2B models are trained with 100% code while
the 7B models are trained with a 80% code-
20% natural language mixture. Our code corpus
comes from publicly available code repositories.
Datasets are deduplicated and filtered to remove
contamination of evaluation code and certain per-
sonal and sensitive data. In addition to the pro-
cessing done for Gemma, we perform additional
pretraining steps for code data.

Preprocessing for Fill-in-the-Middle

The pretrained CodeGemma models are trained
using a method based on the fill-in-the-middle
(FIM) task (Bavarian et al., 2022) with improve-
ments that address the shortcomings cited in the

© 2024 Google LLC. All rights reserved

mailto:codegemma-team@google.com

CodeGemma: Open Code Models Based on Gemma

original work as well as empirically-found sys-
temic issues with existing FIM-trained models.
The relevant formatting control tokens are pre-
sented in Table 1. The models are trained to work
with both PSM (Prefix-Suffix-Middle) and SPM
(Suffix-Prefix-Middle) modes. Figure 2 shows a
sample snippet formatted in PSM. We make de-
tailed FIM usage instructions in the Inference
Recommendations section.

Context Relevant Token

FIM prefix <|fim_prefix|>

FIM middle <|fim_middle|>

FIM suffix <|fim_suffix|>

File separator <|file_separator|>

Table 1 | Formatting control tokens used for FIM
task. Note that | is the standard pipe character
(ASCII code 124).

Multi-file Packing

Many downstream code-related tasks involve gen-
erating code based on a repository-level context
as opposed to a single file. To improve model
alignment with real-world applications, we cre-
ate training examples by co-locating the most
relevant source files within code repositories and
best-effort grouping them into the same training
examples. Specifically, we employ two heuris-
tics: dependency graph-based packing and unit
test-based lexical packing.

To construct the dependency graph, we first
group files by repository. For each source file,
we extract imports from the top N lines and per-
form suffix matching to determine the longest
matching paths within the repository structure.
We determine edge importance (a heuristic mea-
sure) between files, and remove unimportant
edges to break cyclic dependencies (common in
Python). We then calculate all-pairs shortest
paths within the graph, where shorter distances
signify stronger file relationships. Finally, we lin-
earize the graph of files using a topological sort,
selecting the next unparented node based on min-
imum distance to sorted nodes and using lexico-
graphic order to break ties.

Files not covered by this dependency graph
method are sorted alphabetically within their
repository with unit tests packed next to their
implementations (e.g. TestFoo.java beside
Foo.java).

Instruction Tuning

Our training data consists of a combination of
open-source math datasets and synthetically gen-
erated code, in addition to the finetuning datasets
used by Gemma. By exposing the model to math-
ematical problems, we aim to enhance its logical
reasoning and problem-solving skills, which are
essential for code generation.

Mathematics Datasets

To enhance the mathematical reasoning capabili-
ties of coding models, we employ supervised fine-
tuning on a diverse set of mathematics datasets,
including:

MATH Dataset A collection of 12,500 challeng-
ing mathematical problems from competi-
tions, providing step-by-step solutions for
training models in answer derivation and
explanation generation (Hendrycks et al.,
2021).

GSM8k Dataset A collection of 8,500 grade
school math problems. This dataset tests
the multi-step reasoning abilities of models,
highlighting their limitations despite the sim-
plicity of the problems (Cobbe et al., 2021a).

MathQA Dataset A large-scale dataset of math
word problems (Amini et al., 2019) with an-
notations built on top of the AQuA dataset
(Ling et al., 2017).

Synthetic Mathematical Data A
programmatically-generated dataset of
algebraic problems used to improve ability
to solve long algebra problems.

By leveraging these diverse datasets, we ex-
pose the model to a wide range of mathematical

2

CodeGemma: Open Code Models Based on Gemma

path/to/the/first/file.py↵

<|fim_prefix|>from typing import List↵

↵

def mean_absolute_deviation(numbers: List[float]) -> float:↵

"""For a given list of input numbers, calculate Mean Absolute Deviation↵

around the mean of this dataset.↵

Mean Absolute Deviation is the average absolute difference between each↵

element and a centerpoint (mean in this case):↵

MAD = average | x - x_mean |↵

>>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])↵

1.0↵

"""↵

<|fim_suffix|><|fim_middle|> return sum(abs(x - mean) for x in numbers) / len(numbers)↵

<|file_separator|>path/to/the/second/file.py↵

<|fim_prefix|>...

Figure 2 | Example code snippet in PSM mode. The green ↵ characters are part of the format, whereas
uncolored ↵ is from the source. The shown code sample is from HumanEval (Chen et al., 2021).

problems, increasing their ability to perform com-
plex mathematical reasoning. Our training exper-
iments indicate that these datasets significantly
boost code generation performance.

Coding Dataset

Effectively instruction-tuning large language
models for code generation tasks requires a sub-
stantial amount of question-answer pairs. We
leverage synthetic code instruction data genera-
tion to create datasets used in the supervised-
finetuning (SFT) and reinforcement learning
from human feedback (RLHF) phase. We apply
the following steps:

Example Generation Following the approach
outlined in the OSS-Instruct paper (Wei et al.,
2023), we generate a set of self-contained
question-answer pairs.

Post-Filtering We filter question-answer pairs
using an LLM tasked with evaluating the
helpfulness and correctness of the generated
question-answer pairs.

Evaluation

We evaluate CodeGemma for code completion
and generation performance, as well as natural
language understanding, with automated bench-
marks across a variety of domains.

Infilling Capability

HumanEval Infilling

The CodeGemma models are trained for code
completion purposes. We use the single-line
and multi-line metrics in the HumanEval Infilling
benchmarks introduced in Fried et al. (2023) to
evaluate. Performance against other FIM-aware
code models is shown in Table 2.

We observe that our 2B pretrained model is
an excellent well-rounded model for code com-
pletion use cases, where low latency is a critical
factor. It performs on par with the other models
while being, in many cases, nearly twice as fast
during inference. We attribute this speedup to
the base Gemma architectural decisions.

Real-world Evaluation

We validate our model’s infilling abilities by mask-
ing out random snippets in code with cross-file de-
pendencies, generating samples from the model,
and retesting the code files with the generated
snippets to show that it performs as expected,
a similar approach to Liu et al. (2023) or Ding
et al. (2023). Due to our inclusion of very recently
committed open source code, we do not use the
evaluations directly, but use an internal version
with the same testing methodology.

In addition to evaluating on offline evaluations,

3

CodeGemma: Open Code Models Based on Gemma

Time (s) Performance

Model Single Multi Single Multi

2B
cl
as
s CodeGemma 543 8479 78.41% 51.44%

DeepSeek Coder 990 13138 79.96% 50.95%
DeepSeek Coder Instruct 5632 31505 81.41% 37.35%
StarCoder2 3665 20629 77.44% 47.65%

7B
cl
as
s

CodeGemma 1505 22896 76.09% 58.44%
CodeGemma Instruct 8330 49438 68.25% 20.05%
Code Llama* 74.10% 48.20%
DeepSeek Coder 1559 22387 85.87% 63.20%
DeepSeek Coder Instruct 9500 53498 86.45% 58.01%
StarCoder2 8080 45459 81.03% 53.21%

Table 2 | Single-line and multi-line code completion capability of CodeGemma compared to other
FIM-aware code models. Time is the total number of seconds to obtain 128-token continuations per
each HumanEval Infilling task (1033 tasks in single-line and 5815 multi-line). Measurements are done
with HuggingFace’s Transformers (Wolf et al., 2020) model implementations on g2-standard-4
GCE instances with bfloat16 datatype and batch size of 1. * Code Llama numbers are taken from
Rozière et al. (2024).

the model was tested within live coding environ-
ments to benchmark its performance against cur-
rent Google completion models.

Coding Capability

Python Coding

The canonical benchmarks used in coding evalu-
ation are HumanEval (Chen et al., 2021) and
Mostly Basic Python Problems (Austin et al.,
2021). We present our results in Table 3.

Benchmark HumanEval MBPP

2B-PT 31.1% 43.6%
Gemma 2B PT 22.0% 29.2%

7B-PT 44.5% 56.2%
7B-IT 56.1% 54.2%
Gemma 7B PT 32.3% 44.4%

Table 3 | Python coding capability of CodeGemma
on de-facto coding benchmarks.

Compared to the base Gemma models (Gemma
Team et al., 2024), CodeGemma models perform
significantly better on tasks from the coding do-
main.

Multi-lingual Benchmarks

BabelCode (Orlanski et al., 2023) is used to mea-
sure the performance of CodeGemma on code
generation across a variety of popular program-
ming languages. Results are presented in Table
4.

Language Capability

We evaluate performance on a variety of domains
including question answering (Bisk et al., 2019;
Clark et al., 2019, 2018; Joshi et al., 2017), natu-
ral language (Hendrycks et al., 2020; Sakaguchi
et al., 2019; Zellers et al., 2019) and mathemat-
ical reasoning (Cobbe et al., 2021b; Hendrycks
et al., 2021). We present the results of our two
7B models next to the instruction-tuned Gemma
7B model in Figure 3.

CodeGemma retains most of the same natural
language capabilities seen in the base Gemma
models. CodeGemma PT and IT both outperform
Mistral 7B (Jiang et al., 2023) by 7.2% and Llama-
2 13B model (Touvron et al., 2023) by 19.1%
(numbers reported in Gemma Team et al. 2024).
Further, we compare scores for GSM8K andMATH
in Table 5 from several code models in the 7B

4

CodeGemma: Open Code Models Based on Gemma

Language 2B 7B 7B-IT
H
um

an
Ev

al

C/C++ 24.2% 32.9% 42.2%
C# 10.6% 22.4% 26.7%
Go 20.5% 21.7% 28.6%
Java 29.2% 41.0% 48.4%
JavaScript 21.7% 39.8% 46.0%
Kotlin 28.0% 39.8% 51.6%
Python 21.7% 42.2% 48.4%
Rust 26.7% 34.1% 36.0%

M
BP

P

C/C++ 47.1% 53.8% 56.7%
C# 28.7% 32.5% 41.2%
Go 45.6% 43.3% 46.2%
Java 41.8% 50.3% 57.3%
JavaScript 45.3% 58.2% 61.4%
Kotlin 46.8% 54.7% 59.9%
Python 38.6% 59.1% 62.0%
Rust 45.3% 52.9% 53.5%

Table 4 | Multi-lingual coding capability of
CodeGemma (CG) on BabelCode-translated Hu-
manEval and Mostly Basic Python Problems
(MBPP) datasets. IT stands for instruction-tuned.

size class, and show that CodeGemma excels at
mathematical reasoning compared to similarly
sized models.

Gemma IT CodeGemma PT CodeGemma IT
0

20

40

60

80

Boolq PIQA TriviaQA ARC-C HellaSwag

MMLU WinoGrande GSM8K MATH

Figure 3 | Language capability comparison of
CodeGemma and the instruction-tuned version of
Gemma. Both Gemma and CodeGemma are in
the 7B size class.

Model GSM8K MATH

CodeGemma PT 44.2% 19.9%
CodeGemma IT 41.2% 20.9%
Code Llama 13.0%
DeepSeek Coder 43.2% 19.2%
StarCoder2 40.4%

Table 5 | Math reasoning capability of other code
models in the same 7B size class. Results collected
from Guo et al. (2024); Lozhkov et al. (2024);
Rozière et al. (2024).

Practical Considerations

CodeGemma is tailored for practical use and de-
ployment in latency-sensitive settings. The 2B
model is considerably faster than all models in
our comparison set, which is critical for latency-
sensitive applications such as code completion.
This speedup does not come with a significant,
measured compromise in quality according to
our evaluations — the 2B model performs as
well or better compared to other open models
in its class at code infilling tasks. Consequently,
CodeGemma 2B is exceptionally suitable for uti-
lization within Integrated Development Environ-
ments (IDEs), local environments, and other ap-
plications with memory constraints.

The 7B models, characterized by their strong
performance, are general coding models that sur-
pass the baseline Gemma models in terms of cod-
ing tasks while maintaining a high level of natural
language comprehension. The larger memory re-
quirement during inference renders these models
particularly suitable for deployment in hosted en-
vironments and applications where model quality
is of utmost importance.

The Responsible Deployment section in Gemma
Team et al. (2024) contains a thorough discussion
about the limitations and benefits of using an
open model.

Inference Recommendations

For pretrained models, prompts should be for-
matted for code completion tasks such as func-
tion completion, docstring generation, and im-

5

CodeGemma: Open Code Models Based on Gemma

port suggestion. Figure 4 shows an example of a
prompt format, where the file path is optional but
recommended. The stopping strategy for model
outputs should be chosen carefully to align with
the deployment setting. The most straightfor-
ward method is to truncate upon generating a
FIM sentinel token, as shown in Table 1.

path/file.py↵

<|fim_prefix|>prefix<|fim_suffix|>suffix
<|fim_middle|>

Figure 4 | Prompt in PSM mode. The carriage
return ↵ is part of the format. There are no spaces
after the suffix.

The same formatting as Gemma, with
<start_of_turn> and <end_of_turn> to-
kens, can also prompt the instruction-tuned
model.

Conclusion

We present a collection of open models spe-
cialized for coding applications, built on top of
Gemma, an openly available family of language
models (Gemma Team et al., 2024). These mod-
els push the state of the art in code completion
and generation, while retaining natural language
capabilities from the base models.

The CodeGemma models presented in this re-
port are highly capable languagemodels designed
for effective real-world deployment, optimized
to be run in latency-constrained settings while
delivering high-quality code completion on a va-
riety of tasks and languages. We show that the
lessons and technologies that built Gemini and
Gemma are transferable to downstream applica-
tions, and we are excited to release these models
to the broader community and to enable the appli-
cations which will be built on top of these models.

6

CodeGemma: Open Code Models Based on Gemma

Contributions and Acknowledgments

Core Contributors
赵赫日 (Heri Zhao)
許嘉倫 (Jeffrey Hui)
Joshua Howland
Nguyễn Thành Nam1 (Nam Nguyen)
左斯琦 (Siqi Zuo)

Contributors
胡琪恩 (Andrea Hu)
Christopher A. Choquette-Choo
Jingyue Shen
Joe Kelley
E"Etj b\sl (Kshitij Bansal)
Luke Vilnis
Mateo Wirth
Paul Michel
Peter Choy
þEtk jofF (Pratik Joshi)
Ravin Kumar

(Sarmad Hashmi)
f� Bm ag}vAl (Shubham Agrawal)
Zhitao Gong

Product Management
Jane Fine
Tris Warkentin

Program Management
Ale Jakse Hartman

Executive Sponsors
Bin Ni
Kathy Korevec
Kelly Schaefer
Scott Huffman

Acknowledgements
Our work is made possible by the dedication and
efforts of numerous teams at Google. We would
like to acknowledge the support from the follow-
ing teams: AIDA, DevRel, Gemini Infrastructure,
Gemini Safety, Gemma, Google Cloud, Google
Research Responsible AI, Kaggle, Keras.

Special thanks and acknowledgment to Alek
Andreev, அநி த் ராம் (Anirudh Sriram),
Antonia Paterson, aromA mh��dý � (Aroma Ma-
hendru), Arthur Zucker, Austin Huang, David
Huntsperger, व नक वर ड़या (Dhvanik Viradiya),

1Lead.

Elisa Bandy, Emma Yousif, gOrA\g koEWyA (Gau-
rang Kothiya), Glenn Cameron, h�t� l pV�l (Hetul
Patel), James Freedman, Jasmine George, Jenny
Brennan, Johan Ferret, Josh Woodward, Kath-
leen Kenealy, Keelin McDonell, Lav Rai, Léonard
Hussenot, علال بن لبنى (Loubna Ben Allal), Ludovic
Peran, Luiz Gustavo Martin, Manvinder Singh,
Matthew Watson, Meg Risdal, Michael Butler,
Michael Moynihan, 김민 (Min Kim), 박민우
(Minwoo Park), Minh Giang, Morgane Rivière,
Navneet Potti, Nino Vieillard, Olivier Bachem,
Omar Sanseviero, Pedro Cuenca, Phil Culliton,
Pier Giuseppe Sessa, ం (Raj Gundluru),
Robert Dadashi, s\jnA p� roEht (Sanjana Puro-
hit), Sertan Girgin, ర ప (Surya Bhu-
patiraju), u(kq p\·A (Utkarsh Pandya), v{Bv
�FvA-tv (Vaibhav Srivastav), 单志昊 (Zhihao
Shan).

References

A. Amini, S. Gabriel, P. Lin, R. Koncel-Kedziorski,
Y. Choi, and H. Hajishirzi. MathQA: Towards
interpretable math word problem solving with
operation-based formalisms, 2019. URL http:
//arxiv.org/abs/1905.13319.

J. Austin, A. Odena, M. I. Nye, M. Bosma,
H. Michalewski, D. Dohan, E. Jiang, C. J.
Cai, M. Terry, Q. V. Le, and C. Sutton. Pro-
gram synthesis with large language models.
CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

M. Bavarian, H. Jun, N. Tezak, J. Schulman,
C. McLeavey, J. Tworek, and M. Chen. Effi-
cient training of language models to fill in the
middle, 2022.

Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi.
PIQA: reasoning about physical commonsense
in natural language. CoRR, abs/1911.11641,
2019. URL http://arxiv.org/abs/1911.
11641.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P.
de Oliveira Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, A. Ray,
R. Puri, G. Krueger, M. Petrov, H. Khlaaf,
G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ry-

7

http://arxiv.org/abs/1905.13319
http://arxiv.org/abs/1905.13319
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641

CodeGemma: Open Code Models Based on Gemma

der, M. Pavlov, A. Power, L. Kaiser, M. Bavar-
ian, C. Winter, P. Tillet, F. P. Such, D. Cum-
mings, M. Plappert, F. Chantzis, E. Barnes,
A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino,
N. Tezak, J. Tang, I. Babuschkin, S. Balaji,
S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa,
A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba.
Evaluating large language models trained on
code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

C. Clark, K. Lee, M. Chang, T. Kwiatkowski,
M. Collins, and K. Toutanova. Boolq: Explor-
ing the surprising difficulty of natural yes/no
questions. CoRR, abs/1905.10044, 2019. URL
http://arxiv.org/abs/1905.10044.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabhar-
wal, C. Schoenick, and O. Tafjord. Think you
have solved question answering? try arc, the
ai2 reasoning challenge, 2018.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen,
H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schul-
man. Training verifiers to solve math word
problems, 2021a. URL https://arxiv.org/
abs/2110.14168v2.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen,
H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schul-
man. Training verifiers to solve math word
problems. CoRR, abs/2110.14168, 2021b. URL
https://arxiv.org/abs/2110.14168.

Y. Ding, Z. Wang, W. U. Ahmad, H. Ding, M. Tan,
N. Jain, M. K. Ramanathan, R. Nallapati, P. Bha-
tia, D. Roth, and B. Xiang. Crosscodeeval: A
diverse and multilingual benchmark for cross-
file code completion, 2023.

D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wal-
lace, F. Shi, R. Zhong, W. tau Yih, L. Zettle-
moyer, and M. Lewis. Incoder: A generative
model for code infilling and synthesis, 2023.

Gemma Team, T. Mesnard, C. Hardin, R. Dadashi,
S. Bhupatiraju, S. Pathak, L. Sifre, M. Riv-
ière, M. S. Kale, J. Love, P. Tafti, L. Hussenot,

A. Chowdhery, A. Roberts, A. Barua, A. Botev,
A. Castro-Ros, A. Slone, A. Héliou, A. Tacchetti,
A. Bulanova, A. Paterson, B. Tsai, B. Shahri-
ari, C. L. Lan, C. A. Choquette-Choo, C. Crepy,
D. Cer, D. Ippolito, D. Reid, E. Buchatskaya,
E. Ni, E. Noland, G. Yan, G. Tucker, G.-C.
Muraru, G. Rozhdestvenskiy, H. Michalewski,
I. Tenney, I. Grishchenko, J. Austin, J. Keel-
ing, J. Labanowski, J.-B. Lespiau, J. Stanway,
J. Brennan, J. Chen, J. Ferret, J. Chiu, J. Mao-
Jones, K. Lee, K. Yu, K. Millican, L. L. Sjoe-
sund, L. Lee, L. Dixon, M. Reid, M. Mikuła,
M. Wirth, M. Sharman, N. Chinaev, N. Thain,
O. Bachem, O. Chang, O. Wahltinez, P. Bailey,
P. Michel, P. Yotov, P. G. Sessa, R. Chaabouni,
R. Comanescu, R. Jana, R. Anil, R. McIlroy,
R. Liu, R. Mullins, S. L. Smith, S. Borgeaud,
S. Girgin, S. Douglas, S. Pandya, S. Shak-
eri, S. De, T. Klimenko, T. Hennigan, V. Fein-
berg, W. Stokowiec, Y. hui Chen, Z. Ahmed,
Z. Gong, T. Warkentin, L. Peran, M. Giang,
C. Farabet, O. Vinyals, J. Dean, K. Kavukcuoglu,
D. Hassabis, Z. Ghahramani, D. Eck, J. Bar-
ral, F. Pereira, E. Collins, A. Joulin, N. Fiedel,
E. Senter, A. Andreev, and K. Kenealy. Gemma:
Open models based on gemini research and
technology, 2024.

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong,
W. Zhang, G. Chen, X. Bi, Y. Wu, Y. K. Li, F. Luo,
Y. Xiong, and W. Liang. Deepseek-coder: When
the large language model meets programming
– the rise of code intelligence, 2024.

D. Hendrycks, C. Burns, S. Basart, A. Zou,
M. Mazeika, D. Song, and J. Steinhardt. Mea-
suring massive multitask language understand-
ing. CoRR, abs/2009.03300, 2020. URL
https://arxiv.org/abs/2009.03300.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora,
S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with
the math dataset. NeurIPS, 2021.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bam-
ford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud,
M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral
7b, 2023.

8

https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1905.10044
https://arxiv.org/abs/2110.14168v2
https://arxiv.org/abs/2110.14168v2
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2009.03300

CodeGemma: Open Code Models Based on Gemma

M. Joshi, E. Choi, D. S. Weld, and L. Zettle-
moyer. Triviaqa: A large scale distantly su-
pervised challenge dataset for reading compre-
hension. CoRR, abs/1705.03551, 2017. URL
http://arxiv.org/abs/1705.03551.

W. Ling, D. Yogatama, C. Dyer, and P. Blunsom.
Program induction by rationale generation :
Learning to solve and explain algebraic word
problems, 2017. URL https://arxiv.org/
abs/1705.04146v3.

T. Liu, C. Xu, and J. McAuley. Repobench: Bench-
marking repository-level code auto-completion
systems, 2023.

A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-
Poirier, N. Tazi, A. Tang, D. Pykhtar, J. Liu,
Y. Wei, T. Liu, M. Tian, D. Kocetkov, A. Zucker,
Y. Belkada, Z. Wang, Q. Liu, D. Abulkhanov,
I. Paul, Z. Li, W.-D. Li, M. Risdal, J. Li, J. Zhu,
T. Y. Zhuo, E. Zheltonozhskii, N. O. O. Dade,
W. Yu, L. Krauß, N. Jain, Y. Su, X. He, M. Dey,
E. Abati, Y. Chai, N. Muennighoff, X. Tang,
M. Oblokulov, C. Akiki, M. Marone, C. Mou,
M. Mishra, A. Gu, B. Hui, T. Dao, A. Zebaze,
O. Dehaene, N. Patry, C. Xu, J. McAuley, H. Hu,
T. Scholak, S. Paquet, J. Robinson, C. J. Ander-
son, N. Chapados, M. Patwary, N. Tajbakhsh,
Y. Jernite, C. M. Ferrandis, L. Zhang, S. Hughes,
T. Wolf, A. Guha, L. von Werra, and H. de Vries.
Starcoder 2 and the stack v2: The next genera-
tion, 2024.

G. Orlanski, K. Xiao, X. Garcia, J. Hui, J. How-
land, J. Malmaud, J. Austin, R. Singh, and
M. Catasta. Measuring the impact of program-
ming language distribution. arXiv preprint
arXiv:2302.01973, 2023.

B. Rozière, J. Gehring, F. Gloeckle, S. Sootla,
I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre,
T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori,
W. Xiong, A. Défossez, J. Copet, F. Azhar,
H. Touvron, L. Martin, N. Usunier, T. Scialom,
and G. Synnaeve. Code llama: Open founda-
tion models for code, 2024.

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and
Y. Choi. WINOGRANDE: an adversarial
winograd schema challenge at scale. CoRR,

abs/1907.10641, 2019. URL http://arxiv.
org/abs/1907.10641.

H. Touvron, L. Martin, K. Stone, P. Albert,
A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Es-
iobu, J. Fernandes, J. Fu, W. Fu, B. Fuller,
C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas,
V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev,
P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mi-
haylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton,
J. Reizenstein, R. Rungta, K. Saladi, A. Schel-
ten, R. Silva, E. M. Smith, R. Subramanian,
X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X.
Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan,
M. Kambadur, S. Narang, A. Rodriguez, R. Sto-
jnic, S. Edunov, and T. Scialom. Llama 2: Open
foundation and fine-tuned chat models, 2023.

Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang.
Magicoder: Source code is all you need,
2023. URL http://arxiv.org/abs/2312.
02120.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. De-
langue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von
Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L.
Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing, 2020.

R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and
Y. Choi. Hellaswag: Can a machine really finish
your sentence?, 2019.

9

http://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.04146v3
https://arxiv.org/abs/1705.04146v3
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/2312.02120
http://arxiv.org/abs/2312.02120

	Introduction
	Pretraining
	Training Data
	Preprocessing for Fill-in-the-Middle
	Multi-file Packing
	Instruction Tuning
	Mathematics Datasets
	Coding Dataset
	Evaluation
	Infilling Capability
	HumanEval Infilling
	Real-world Evaluation
	Coding Capability
	Python Coding
	Multi-lingual Benchmarks

	Language Capability

	Practical Considerations
	Inference Recommendations

	Conclusion
	Contributions and Acknowledgments

