
2024-4-9

RecurrentGemma: Moving Past Transformers
for Efficient Open Language Models
Griffin1, RLHF1 and Gemma Teams1
1Google DeepMind. Please see contributors and acknowledgements section for full author list.

We introduce RecurrentGemma, an open language model which uses Google’s novel Griffin architecture.
Griffin combines linear recurrences with local attention to achieve excellent performance on language.
It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences.
We provide a pre-trained model with 2B non-embedding parameters, and an instruction tuned variant.
Both models achieve comparable performance to Gemma-2B despite being trained on fewer tokens.

Introduction

We present RecurrentGemma-2B, an open model
based on the Griffin architecture (De et al., 2024).
This architecture eschews global attention, in-
stead modelling the sequence through a mixture
of linear recurrences (Gu et al., 2021; Orvieto
et al., 2023) and local attention (Beltagy et al.,
2020). RecurrentGemma-2B achieves superb per-
formance on downstream tasks, competitive with
Gemma-2B (Gemma Team, 2024), an open trans-
former model (Vaswani et al., 2023) based on
insights from Gemini (Gemini Team, 2023).

To perform inference, transformers must re-
trieve the KV cache and load it into device mem-
ory. This KV cache grows linearly with sequence
length. Although one can reduce the cache size by
using local attention (Beltagy et al., 2020), this
comes at the price of reduced performance. In
contrast, RecurrentGemma-2B compresses input
sequences into a fixed-size state without sacrific-
ing performance. This reduces memory use and
enables efficient inference on long sequences. We
verify below that RecurrentGemma-2B achieves
substantially faster inference than Gemma-2B.

We are releasing both a pre-trained checkpoint
and an instruction tuned checkpoint, fine-tuned
for instruction-following and dialogue similar to
Gemma (Gemma Team, 2024). We are also releas-
ing efficient JAX code to evaluate and fine-tune
our models (Bradbury et al., 2018), including a
specialized Pallas kernel to perform the linear re-
currence on TPU. We provide a reference Pytorch
implementation as well (Paszke et al., 2019).

Table 1 | Key model hyper-parameters. See Griffin
paper (De et al., 2024) for model definition.

Total params 2.7B
Non-Embedding params 2.0B

Embedding params 0.7B

Vocabulary size 256k
Model width 2560
RNN width 2560

MLP expansion factor 3
Depth 26

Attention heads 10
Local attention window size 2048

Model architecture

We make only a single modification to the Griffin
architecture (De et al., 2024), which is to multi-
ply the input embeddings by a constant equal to
the square root of model width. The input and
output embeddings are tied, but this factor is not
applied to the output. A similar multiplicative
factor appears in Gemma (Gemma Team, 2024).
We define the key model hyper-parameters in Ta-
ble 1, and defer the reader to De et al. (2024) for
exact details on the overall architecture.

Note that we do not apply weight decay to the
parameters of the recurrent (RG-LRU) layers dur-
ing training. Additionally when backpropagating
through the square root operation, we always clip
the derivative to a maximum value of 1000 for
stability.

Corresponding author(s): [botev, slsmith, sohamde, anushanf]@google.com
© 2024 Google DeepMind. All rights reserved



RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

Table 2 | Academic benchmark results, compared to the Gemma-2B model.

Benchmark Metric Gemma-2B RecurrentGemma-2B

MMLU 5-shot, top-1 42.3 38.4
HellaSwag 0-shot 71.4 71.0
PIQA 0-shot 77.3 78.5
SIQA 0-shot 49.7 51.8
Boolq 0-shot 69.4 71.3
Winogrande partial scoring 65.4 67.8
CQA 7-shot 65.3 63.7
OBQA 47.8 47.2
ARC-e 73.2 72.9
ARC-c 42.1 42.3
TriviaQA 5-shot 53.2 52.5
NQ 5-shot 12.5 11.5
HumanEval pass@1 22.0 21.3
MBPP 3-shot 29.2 28.8
GSM8K maj@1 17.7 13.4
MATH 4-shot 11.8 11.0
AGIEval 24.2 23.8
BBH 35.2 35.3

Average 44.9 44.6

Training details

Pre-training

We train on sequences of 8192 tokens. We use
the same pre-training data as Gemma-2B, which
comprises primarily English data from web docu-
ments, mathematics and code. This dataset was
filtered to reduce the risk of unwanted or unsafe
utterances, and to filter out personal or sensitive
data as well as to filter out all evaluation sets from
our pre-training dataset. We refer to the Gemma
report for more details (Gemma Team, 2024).

We pre-train RecurrentGemma-2B on 2T to-
kens. Note that in contrast, Gemma-2B was pre-
trained on 3T tokens. Like Gemma, we first train
on a large general data mixture, beforing contin-
uing training on a smaller, higher quality dataset.
Like Gemma, we use a subset of the Sentence-
Piece tokenizer (Kudo and Richardson, 2018),
with a vocabulary size of 256k tokens. Note that,
as a consequence of this large vocabulary size, the
embedding layer comprises a significant fraction
of the total model parameters.

Table 3 | Relevant formatting control tokens used
for both SFT and RLHF of Gemma models.

Context Relevant Token

User turn user

Model turn model

Start of conversation turn <start_of_turn>

End of conversation turn <end_of_turn>

Instruction tuning and RLHF

We follow a similar instruction tuning approach to
Gemma (Gemma Team, 2024), including a novel
RLHF algorithm to fine-tune the model to out-
put responses with high reward. Our instruction
tuned model is trained to obey a specific dialogue
format, which is defined in Table 3. For clarity,
we give a concrete example in Table 4.

Evaluation

We evaluate RecurrentGemma-2B across a broad
range of domains, using a combination of auto-

2



RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

Table 4 | Example dialogue with control tokens.

User: <start_of_turn>user
Knock knock.<end_of_turn>
<start_of_turn>model

Model: Who’s there?<end_of_turn>
User: <start_of_turn>user

Gemma.<end_of_turn>
<start_of_turn>model

Model: Gemma who?<end_of_turn>

mated benchmarks and human evaluation.

Automated Benchmarks

We report the performance of RecurrentGemma-
2B on a range of popular downstream evaluations
in Table 2. RecurrentGemma-2B achieves com-
parable performance to Gemma-2B, even though
Gemma-2B was trained on 50% more tokens.

Human Evaluation

We sent our final instruction tuned model
(RecurrentGemma-2B-IT) for human evaluation
studies against the Mistral 7B v0.2 Instruct model
(Jiang et al., 2023). As shown in Table 5, on
a held-out collection of around 1000 prompts
oriented toward asking models to follow instruc-
tions across creative writing and coding tasks,
RecurrentGemma-2B-IT achieves a 43.7% win
rate against the larger Mistral 7B model, only
slightly below the 45.0% win rate achieved by
Gemma-1.1-2B-IT.

On a held-out collection of around 400 prompts
oriented towards testing basic safety protocols,
RecurrentGemma-2B-IT achieved a 59.8% win
rate against Mistral 7B v0.2 Instruct model.

Inference Speed Benchmarks

A key advantage of RecurrentGemma is that it
has a significantly smaller state size than trans-
formers on long sequences. Whereas Gemma’s
KV cache grows proportional to sequence length,
RecurrentGemma’s state is bounded, and does
not increase on sequences longer than the local at-
tention window size of 2k tokens. Consequently,
whereas the longest sample that can be gener-
ated auto-regressively by Gemma is limited by the

Table 5 | Win rate of RecurrentGemma-2B-IT
and Gemma-1.1-2B-IT against Mistral 7B v0.2
Instruct, under human evaluation with 95% con-
fidence intervals. We report a breakdown of wins,
ties and losses, and break ties evenly when report-
ing the final win rate. RecurrentGemma-2B-IT
achieves similar performance to Gemma-1.1-2B-
IT, and is surprisingly competitive with the larger
Mistral 7B model.

Model Safety Instruction Following

RecurrentGemma 59.8% 43.7%
95% Conf. Interval [57.1%, 62.6%] [41.8%, 45.6%]
Win / Tie / Loss 47.5% / 24.6% / 27.9% 34.5% / 18.3% / 47.2%

Gemma 1.1 60.1% 45.0%
95% Conf. Interval [57.3%, 62.8%] [43.1%, 46.9%]
Win / Tie / Loss 48.5% / 23.2% / 28.3% 37.1% / 15.8% / 47.1%

memory available on the host, RecurrentGemma
can generate sequences of arbitrary length.

Since inference is typically memory-bound, Re-
currentGemma can generate samples more effi-
ciently than the Gemma model. In particular, the
reduced memory requirement enables Recurrent-
Gemma to perform inference at larger batch sizes,
which amortizes the cost of loading model param-
eters from host memory into device memory.

In Figure 1a, we plot the throughput achieved
when sampling from a prompt of 2k tokens for
a range of generation lengths. The throughput
calculates the maximum number of tokens we
can sample per second on a single TPUv5e de-
vice. Note that in this plot, we do not account
for the time required to process the prompt or
the time required to convert the output sequence
from a list of token ids into the final text string.
RecurrentGemma achieves higher throughput at
all sequence lengths considered. The throughput
achieved by RecurrentGemma does not reduce as
the sequence length increases, while the through-
put achieved by Gemma falls as the cache grows.

For completeness, in Figure 1b, we show
the throughput achieved when processing input
prompts. Unlike auto-regressive sampling, the
prompt is processed in parallel. Gemma and Re-
currentGemma process input prompts at simi-
lar speeds. When processing the prompt, both
Gemma and RecurrentGemma achieve through-

3



RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

Table 6 | Safety academic benchmark results. We provide results for both our pre-trained checkpoint
and our instruction tuned variant.

Benchmark metric RecurrentGemma-2B RecurrentGemma-2B-IT

RealToxicity avg 9.8 7.6
BOLD 39.3 52.3
CrowS-Pairs top-1 41.1 43.4
BBQ Ambig top-1 62.6 71.1
BBQ Disambig top-1 58.4 50.8
Winogender top-1 55.1 54.7
TruthfulQA 35.1 42.7
Winobias 1_2 58.4 56.4
Winobias 2_2 90.0 75.4
Toxigen 56.7 50.0

(a) Throughput when sampling from a 2k prompt (b) Throughput when processing prompts

Figure 1 | Maximum tokens per second generated on a single TPUv5e, when (a) sampling sequences
of different lengths from a prompt of 2k tokens, and (b) when processing prompts of different lengths
to generate the initial state from which to sample.

put of roughly 40k tokens per second. By con-
trast, when sampling RecurrentGemma achieves
throughput of 6k tokens per second, with Gemma
substantially slower. Thus, sampling will domi-
nate the total time required, unless the prompt
is significantly longer than the desired sample.

Figures 1a and 1b were generated using the
Flax implementation of RecurrentGemma, which
includes a specialized Pallas kernel for TPU. Users
should expect lower throughput when using the
Pytorch implementation or when using GPUs. We
perform inference for Gemma using a modified
version of Gemma’s Flax implementation, which
we optimized further to improve performance.

Responsible Deployment

We follow the same safety mitigations as de-
scribed in the Gemma release (Gemma Team,
2024). We evaluated our models on standard
academic safety benchmarks, as shown in Table
6, and our final models were also subjected to
ethics and safety evaluations by an independent
team before release. However, our testing cannot
cover all possible use cases of RecurrentGemma,
and thus we recommend all users of Recurrent-
Gemma to conduct their own safety testing, spe-
cific to their use-case, prior to deployment.

4



RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

Conclusion

RecurrentGemma-2B offers the performance of
Gemma, while achieving higher throughput dur-
ing inference, especially on long sequences. We
hope that RecurrentGemma will unlock novel ap-
plications of highly performant small language
models in resource constrained environments.

Contributions and Acknowledgments

Griffin Team
Aleksandar Botev†
Soham De†
Samuel L Smith†
Anushan Fernando†
George-Cristian Muraru†
Ruba Haroun†
Leonard Berrada†
Razvan Pascanu

RLHF
Pier Giuseppe Sessa
Robert Dadashi
Léonard Hussenot
Johan Ferret
Sertan Girgin
Olivier Bachem

Gemma Team
Alek Andreev
Kathleen Kenealy
Thomas Mesnard
Cassidy Hardin
Surya Bhupatiraju
Shreya Pathak
Laurent Sifre
Morgane Rivière
Mihir Sanjay Kale
Juliette Love
Pouya Tafti
Armand Joulin
Noah Fiedel
Evan Senter

Contributors
Yutian Chen

† Joint first authors.

Srivatsan Srinivasan
Guillaume Desjardins
David Budden
Arnaud Doucet
Sharad Vikram
Adam Paszke
Trevor Gale
Sebastian Borgeaud
Charlie Chen
Andy Brock
Antonia Paterson
Jenny Brennan
Meg Risdal
Raj Gundluru
Nesh Devanathan
Paul Mooney
Nilay Chauhan
Phil Culliton
Luiz GUStavo Martins
Elisa Bandy
David Huntsperger
Glenn Cameron
Arthur Zucker

Product Management
Tris Warkentin
Ludovic Peran

Program Management
Minh Giang

Executive Sponsors
Nando De Frietas
Yee Whye Teh
Raia Hadsell
Zoubin Ghahramani
Clément Farabet
Koray Kavukcuoglu
Demis Hassabis

Acknowledgements
Our work is made possible by the dedication and
efforts of numerous teams at Google. We would
like to acknowledge the support from the follow-
ing teams: Gemini, Gemini Safety, Gemini In-
frastructure, Gemini Evaluation, Google Cloud,
Google Research Responsible AI and Kaggle.

5



RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

References

I. Beltagy, M. E. Peters, and A. Cohan. Long-
former: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, et al.
Jax: composable transformations of python+
numpy programs. 2018.

S. De, S. L. Smith, A. Fernando, A. Botev,
G. Cristian-Muraru, A. Gu, R. Haroun,
L. Berrada, Y. Chen, S. Srinivasan, G. Des-
jardins, A. Doucet, D. Budden, Y. W. Teh, R. Pas-
canu, N. D. Freitas, and C. Gulcehre. Griffin:
Mixing gated linear recurrences with local at-
tention for efficient language models, 2024.

Gemini Team. Gemini: A family of highly capable
multimodal models, 2023.

Gemma Team. Gemma: Open models based on
gemini research and technology, 2024.

A. Gu, K. Goel, and C. Ré. Efficiently modeling
long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396, 2021.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bam-
ford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud,
M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral
7b, 2023.

T. Kudo and J. Richardson. Sentencepiece: A
simple and language independent subword to-
kenizer and detokenizer for neural text pro-
cessing, 2018.

A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gul-
cehre, R. Pascanu, and S. De. Resurrecting
recurrent neural networks for long sequences.
arXiv preprint arXiv:2303.06349, 2023.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-
torch: An imperative style, high-performance
deep learning library, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need, 2023.

6


	Introduction
	Model architecture
	Training details
	Pre-training
	Instruction tuning and RLHF

	Evaluation
	Automated Benchmarks
	Human Evaluation
	Inference Speed Benchmarks
	Responsible Deployment

	Conclusion
	Contributions and Acknowledgments

