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Density functional theory describes matter at the quantum level, but all pop-

ular approximations suffer from systematic errors that arise due to the vio-

lation of mathematical properties of the exact functional. We overcome this

fundamental limitation by training a neural network on molecular data and

on fictitious systems with fractional charge and spin. The resulting functional,

DM21, correctly describes typical examples of artificial charge delocalization

and strong correlation and performs better than traditional functionals on

thorough benchmarks for main-group atoms and molecules. DM21 accurately
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models complex systems such as hydrogen chains, charged DNA base pairs and

diradical transition states. More crucially for the field, because our methodol-

ogy relies on data and constraints, which are continually improving, it repre-

sents a viable pathway towards the exact universal functional.

Computing electronic energies underpins theoretical chemistry and materials science, and Den-

sity Functional Theory (DFT) (1, 2) promises an exact and efficient approach. However, there

is a conundrum at the heart of DFT: the exact functional – mapping electron density to energy –

is proven to exist, but little practical guidance is given on its explicit form. Approximations to

the exact functional have enabled numerous investigations of matter at a microscopic level and

rank as some of the most impactful works in the whole of science (3). Nevertheless, despite

their design and success, pathological errors persist in these approximations, and it has been

known for over a decade (4) that the root cause of many of these errors is the violation of exact

conditions for systems with fractional electrons. In this paper, we use deep learning to train a

functional that respects these conditions and thus has excellent performance across main-group

chemistry.

Since the early days of DFT, it has been clear that approximations improve when they satisfy

more of the mathematical constraints of the exact functional and fit more systems. 17 known

exact constraints (but not the fractional constraints) are satisfied by the SCAN functional (5),

which achieves unprecedented accuracy and predictiveness for bonded systems among the func-

tionals that are not fitted to any bonded system. Recent work has also begun to address the

fractional constraints, particularly interesting being a localized correction on the orbitals (6, 7).

In parallel, machine learning has emerged as a powerful tool at the level of molecular modeling

in chemistry (8, 9), and has been recently applied to functional development (10, 11). Proof of

principle studies have shown that neural networks (12–16) can be trained on molecular data, but

to date they are not competitive in accuracy with traditional hand designed functionals.
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In this work, we present a functional, DM21 (DeepMind 21), which is state of the art on

thorough benchmark evaluation and which has qualitatively improved properties, thanks to the

fact that it obeys two classes of constraints on systems with fractional electrons. The types of

fractional constraints considered were: fractional charge (FC) systems with a non-integer total

charge, and fractional spin (FS) systems with non-integer spin magnetization. In both cases, the

exact energy is a linear interpolation of the energy of the neighbouring integer systems (17,18).

FC and FS systems are fictitious, but real charge densities can include regions that have FC or

FS character, and therefore correctly modeling these idealized problems helps to ensure that

functionals behave correctly in a wide variety of molecules and materials. The FC and FS

linearity conditions have shown to be challenging to address by manual design of the functional,

but they are easy to illustrate as examples. This situation is ideally suited to a deep learning

framework, where the constraints can be expressed as data and a functional can be trained to

obey them and to reproduce the energy of molecular systems.

Our functional is illustrated in Fig. 1. Only the exchange-correlation term was learned and

interfaced to a standard Kohn-Sham DFT code (PySCF (19)). The functional was evaluated by

integrating local energies computed by a multilayer perceptron (MLP) which took as input both

local and non-local features of the occupied Kohn-Sham (KS) orbitals, and can be described

as a local range-separated hybrid. To train the functional, the sum of two objective functions

was used: a regression loss for learning the exchange-correlation energy itself, and a gradient

regularisation term that ensured that the functional derivatives can be used in self-consistent

field (SCF) calculations after training. For the regression loss, a dataset of fixed densities repre-

senting reactants and products for 2235 reactions was used and the network was trained to map

from these densities to high accuracy reaction energies by a least-squares objective (Fig. 1B).

Specifically, 1161 training reactions represented atomization, ionization, electron affinity and

inter-molecular binding energies of small main-group, H-Kr, molecules, and 1074 represented
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the crucial FC and FS densities only for the atoms H-Ar, see supplementary section S2.1. The

fixed densities for the main-group molecules were obtained from a popular traditional functional

(B3LYP (20)), and the energy labels were obtained either from literature (21–25) or based on

in-house complete basis set CCSD(T) calculations. For more justification on the use of a fixed

charge density, see supplementary section S4.3. For gradient training, perturbation theory gives

the leading order change in energy, δESCF, after a single SCF iteration (see supplementary

section S1.3.1). This energy change depends on the derivatives of the exchange-correlation

functional (Fig. 1C), and adding δE2
SCF to the training objective encourages the model to avoid

making spuriously large orbital rotations away from reasonable orbitals during self consistent

iteration. This approach was considerably cheaper than supervising explicit self-consistent it-

erations during training (26), or Monte Carlo methods to supervise densities (12). Networks

with gradients regularized in this way were able to run self-consistently on all reactions in large

main-group benchmarks (see Fig. 4), and DM21 produced accurate molecular densities, see

supplementary section S5.

After training, the behaviour of the functional was analysed, starting with the archetypal FC

and FS systems in Fig. 2A,B. Here, and throughout the paper, DM21 is compared to SCAN

and popular hybrid functionals: B3LYP (20), M06-2X (27) and ωB97X (28), with all calcu-

lations carried out using a modified version of PySCF (19). Generally, traditional functional

approximations are convex with respect to the FC exact condition and concave with respect to

the FS exact condition, with improved performance on FC coming at the cost of a larger error

in FS, and vice versa. DM21 stands out in comparison as close to the correct behaviour for both

FC and FS. The functional was trained only on the exact conditions for bare atoms, but correct

behaviour was also seen on fragments of molecules for both FC and FS, albeit with a somewhat

larger error. This result shows that DM21 has not simply memorized the training examples, but

has found features in the charge density of the atom data that usefully generalize to molecular
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systems.

Additional limitations of current functionals associated with FC and FS errors are incor-

rect description of bond breaking for charged and closed-shell neutral molecules, respectively.

When dissociating a charged molecule, functionals with a convex error for FC artificially lower

the energy by delocalizing charge; as such they predict that - even at infinite separation - a

charged molecule is bound. This limitation is the essence of the well known charge delocaliza-

tion error in DFT and DM21 achieves the correct asymptote as in Fig. 2C. Related discussion

on eigenvalues is in supplementary section S6. Traditional functionals also grossly overestimate

the energy of a stretched closed-shell molecule, whereas DM21 yields correct asymptotes (Fig.

2D). This overestimation is often described in terms of static correlation error under the inter-

pretation that at large separation there is near degeneracy of bonding and anti-bonding states

that cannot be represented by a single reference method. In the spirit of previous studies (4,29)

we revisited this interpretation and instead suggest that the error is due to the overestimation

of the energy for spin delocalized solutions: closed-shell orbitals are not capable of artificially

breaking spin symmetry and localising spins, giving asymptotes that are too high for func-

tionals with FS error. Additionally, a quantitative evaluation of the advantage of DM21 for

bond breaking is provided in Fig. 4 using an accurate Quantum Monte Carlo bond breaking

benchmark (BBB) developed in supplementary section S8.1. Note that for neutral molecules at

intermediate distances, DM21 could exhibit a ‘hump’ in the energy. This feature, seen before

with other methods such as the random phase approximation (30), can be corrected with an ex-

tension to fractional occupation of the closed-shell orbitals (31). Of the functionals presented,

optimisation of the orbital occupations lowered the hump energy only for DM21 (details in

supplementary section S3.2).

Having established the improved FC and FS behaviour of DM21 on textbook systems, Fig.

3 illustrates how this behaviour leads to improved description of subtle electronic structure in
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systems of scientific interest. Three systems from across the sciences were considered: charge

delocalisation in a DNA base pair, magnetic properties of a compressed hydrogen chain and

reaction barrier heights for a ring opening intermediate with diradical character. Charge trans-

port in DNA is a subject of considerable experimental and theoretical interest (32), and Fig.

3A shows the distribution of the charge of an ionized base pair (adenine and thymine). A pop-

ular functional such as B3LYP predicts charge density delocalized over both base pairs, but

this prediction is an artefact driven by the violations of FC conditions for the individual bases.

Conversely, DM21 is much closer to the correct FC behaviour and charge is localized on the

adenine unit alone. The difficulties for traditional functionals to localize charges are well un-

derstood, but artificial spin localization errors associated with FS violation are less well studied.

In the example of a highly compressed hydrogen chain, unrestricted DFT calculations with tra-

ditional functionals localizes spin on what appear like anti-ferromagnetic domains (Fig. 3B).

This observation has been used to bolster the evidence for a magnetic phase transition (33).

Conversely, high level wavefunction methods did not yield spin polarized solutions, suggest-

ing that the symmetry breaking might be driven by errors in traditional functionals, and indeed

DM21 predicts a ground state with no spin symmetry breaking. In the example of ring opening

in bicyclobutane (C4H6), the energy of the disrotatory transition state is highly overestimated

in unrestricted calculations with functionals such as M06-2X and ωB97X, but is correctly pre-

dicted by DM21. This is again linked to FS error: although the transition state is a singlet, DFT

predicts partial localization of the spin with an intermediate 〈S2〉 value between 0 and 1. This

means that functionals with incorrect FS behaviour give large errors. This result is highly rem-

iniscent of the way that energy is overestimated for closed-shell bond breaking. For the C4H6

case high level reference calculations are available to verify that DM21 behaves correctly (34),

but in supplementary section S7.2 it is also observed that hybrid functionals tend to overestimate

barrier heights for transition states with intermediate levels of spin polarization in other sets of
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reactions, and this phenomeneon has also been observed in the literature for other cycloaddition

reactions (35).

Finally, beyond the treatment of FC and FS, analysis of DM21 is extended to consider

broader classes of main-group chemistry contained in large benchmark sets. Fig. 4B shows the

summary performance of DM21 compared to existing functionals on the GMTKN55 bench-

mark (36), a set of sub-benchmarks used to probe the behaviour of functionals for several im-

portant chemical tasks requiring extrapolation to systems very distinct from the training set.

GMTKN55 includes systems containing heavy atoms beyond Kr that were never seen during

training, and therefore we would not normally recommend for DM21 (these were evaluated

using pseudo-potentials following the method in (36)). The mean absolute error is calculated

for each sub-benchmark and the mean of these means (MoM) is reported, with additional re-

weighted scores presented in supplementary section S8.2. Overall, the behaviour of DM21 is

better than the best hybrid functional and approaches the performance of the much more expen-

sive double hybrid functionals. In particular, DM21 excels at the description of barrier heights,

a fact that is surprising given that no transition states were present in the training data. Abla-

tion of the training data revealed that the improved performance on this class stems from the

FC and FS training data (see supplementary section S8.2). Additionally, DM21 considerably

outperforms existing functionals on the mindless benchmark subset (MB16-43) of GMTKN55,

a set of atomization energies for randomly generated geometries of atoms, that was designed

to test performance on out-of-distribution exotic geometries. Otherwise well-performing func-

tionals have large errors for this dataset, such as ωB97-X (over 30 kcal/mol error), as well as

non-empirical functionals, such as SCAN (15 kcal/mol error), but DM21 had an error of under

5 kcal/mol. This dataset is as far from the training and validation set as is possible, showing that

our functional performs well even when applied to out-of-distribution generalization examples.

To further stress this out-of-distribution generalization, benchmarking on the QM9 (37, 38)
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dataset is shown in Fig. 4B. This is a collection of 133,857 enumerated isomers of organic

molecules with up to 9 heavy atoms, and again DM21 displays state of the art performance

when compared to existing functionals.

This work has successfully demonstrated that deep learning provides a framework for the de-

velopment of improved functionals with novel properties. Specifically, development of DM21

combined highly accurate chemical data and fractional electron constraints to address major

shortcomings in prior functionals. This combination led to a better description of the quantum

mechanical interaction of electrons from simple atomization energies to complicated reaction

barriers and exotic compressed hydrogen chains. This work has focused on main-group chem-

istry, but the methodology can be easily extended to incorporate new data and constraints which

will allow even better functionals to be trained. To illustrate this flexibility, results from adding

the uniform electron gas condition to the functional are provided in supplementary section S4.2.

Many natural phenomena, from charge transfer excitations to the stripe phase in superconduct-

ing cuprates (39), rely on subtle effects dependent on the motion of charge and spin polarization

and we believe that the functional presented here, and the approach that we suggest, are central

to improving our understanding of these and other properties of materials.
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Figure 1: Overview of the functional architecture and training. A, Features of the electron
density computed from KS orbitals are sampled on an atom-centered quadrature grid. Specif-
ically the input features are the spin-indexed charge density ρ, the norm of its gradient |∇ρ|,
the kinetic energy density τ , and the (range-separated) local Hartree Fock exchange energy
densities eωHF and eHF. These are fed through a shared MLP that predicts local enhancement
factors for local density approximation and Hartree-Fock contributions to the local exchange-
correlation energy density, which is then integrated over all space. A dispersion correction is
then added to the functional. B, The network is trained using a dataset of KS input densities
and high accuracy energy labels for molecules, and exact mathematical constraints. C, The
gradient of the learned functional at fixed electron number (N ) is supervised by requesting that
the supplied orbitals are a stationary point of the total energy w.r.t. unitary rotation of occupied
and virtual orbitals (illustrated by angle δ). D, Once trained, the functional can be deployed in
self-consistent calculations. Numbers on the right indicate dataset sizes (excluding grid aug-
mentations) for the DM21 functional.
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Materials and Methods

S1 Functional architecture

The exchange-correlation functional consists of a MLP f θ with a single set of weights, θ, that

accepts a vector of features, x(r), at each grid point r and returns a vector of 3 enhancement

factors. The energy is then computed as the integral

EMLP
xc [ρ] =

∫
fθ(x(r)) ·

[
eLDA
x (r)

eHF(r)

eωHF(r)

]
d3r. (S1)

Note that none of the input features are sensitive to long-range dispersion forces, and thus we

simply augment the MLP energy with an empirical dispersion correction (see also Table S7).
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We chose to use a D3 correction with Becke-Johnson damping (D3BJ) (48) with coefficients

chosen to match those of B3LYP, and simply add the correction during and after training.

EDM21
xc = EMLP

xc + ED3(BJ). (S2)

In the following sections we provide additional details for the computation of the input features

x(r), the MLP architecture and the objective functions used for training.

S1.1 Feature generation

The 11 features, x(r), supplied at each grid point are computed from a (spin indexed σ ∈ {↑, ↓})

density matrix Γσab and basis set ψa as follows (using Einstein summation throughout):

• The density ρσ(r) = Γσabψa(r)ψb(r) in each spin channel.

• The square norm of the gradient of the density in each channel and of the total density

(|∇ρ↑|2, |∇ρ↓|2, |∇(ρ↑ + ρ↓)|2).

• The kinetic energy density τσ(r) = 1
2
Γσab[∇ψa(r) · ∇ψb(r)] in each channel.

• The local HF features

eωHF
σ (r) = −ΓσacΓ

σ
bd

2

∫
ψa(r)ψb(r)

erf(ω|r− r′|)
|r− r′|

ψc(r
′)ψd(r

′) d3r′ (S3)

for both range-separated ω = 0.4 and non-range-separated ω →∞ in each spin channel.

The single range-separated feature at ω = 0.4 in atomic units was chosen empirically

based on validation set performance.

We perform these feature computations with slightly different settings during training and test-

ing to ensure that the large molecules in the benchmark sets (e.g. C60) converge quickly.

Additionally the 3 exchange energies that are enhanced by our network are computed as eLDA(r) =

−2π[(3/4π)(ρ↑ + ρ↓)]4/3, eHF(r) = eHF
↑ (r) + eHF

↓ (r), and eωHF(r) = eωHF
↑ (r) + eωHF

↓ (r).
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Overall, the functional can be described as a local range-separated hybrid using only the

occupied orbitals. There have been several interesting attempts to construct local-hybrids in

the literature (49–51) but none has yet clearly surpassed the performance of the simpler global

hybrids.

For training we use PySCF (19) with the aug-pc-3 basis set, and the integrals in equa-

tion (S3) are performed without any approximation. We compute features on 8 different grids

for each reaction, given by Treutler, Mura-Knowles, Delley, and Gauss-Chebyshev schemes at

PySCF grid levels 2 and 3. The 8 grids of features are all labelled with the same reaction energy

and each grid is treated as an independent training example so that the model does not specialise

to any particular choice of grid.

For testing, we run all benchmarks using the (aug′-)def2-QZVP basis set (43) on Treutler

grids at PySCF level 3. For efficiency, the local HF integrals are computed using the resolution

of the identity method described in supplementary section S3.1.

Besides computing the raw input features x, we also supply the gradients of these features

∂x/∂Γσab to compute the Fock matrices F σ
ab = (dE/dx) · (∂x/∂Γσab) required for gradient

regularization during training and for self-consistent calculations after training. The gradients

of ρσ, ∇ρσ and τσ can all be easily computed on-the-fly from the atomic orbitals and their

derivatives on the grid. However, naı̈vely precomputing ∂eωHF
σ (r)/∂Γσ

′

ab produces objects that

scale with size O(GB2) where G is the number of grid points and B is the size of the basis

set. This amount of data is prohibitively large to store and move during training, so instead we

precompute and store a O(GB) sized object

χσ,ωa (r) = Γσbdψb(r)

∫
erf(ω|r− r′|)
|r− r′|

ψa(r
′)ψd(r

′) d3r′, (S4)

such that the full gradient ∂eωHF
σ /∂Γσ

′

ab = −ψaχω,σb δσσ′ can be computed on-the-fly. By com-

bining ∂x/∂Γσab with the factor (dE/dx) computed by automatic differentiation, we obtain the
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exchange-correlation contribution to the Fock matrix.

S1.2 Network architecture

The 11-dimensional feature vector x(r) at each grid point is independently passed through a

shared neural network with the following architecture (here we drop the r argument for clarity).

First x is passed through an element-wise squashing function log(|xi| + η) where η is a small

constant 10−4 to ensure numerical stability. The squashed result is then passed through a linear

layer and a tanh non-linearity to produce a 256 element activation vector which is fed into a 6

layer MLP of width 256 at each layer (roughly 4 × 105 parameters in total). The MLP has elu

nonlinearities (to encourage smooth derivatives) and layer normalisation between layers. We

also find a small benefit in initialising the weight matrices close to the identity. The final layer

of the MLP is projected to a vector of 3 elements by a linear layer and then passed through

a scaled sigmoid to produce the enhancement factors fθ in equation (S1) that are bounded by

0 < fi < 2: a range inspired by the Lieb-Oxford bound and then empirically tuned. The final

integral over all grid points is performed by quadrature.

The architecture is made spin symmetric by running the same network twice – once for each

spin ordering of the input features – and then averaging the two sets of enhancement factors. In

practice we found that the network can also learn to become approximately spin symmetric in a

single pass by simply random flipping of spin channels per molecule during training, and both

approaches to spin symmetrisation achieve similar benchmark scores.

S1.3 Training objective

The overall objective function is the sum of a regression and gradient regularization term, both

with units of [energy]2.

L = Er[(∆EDM21
xc,r −∆E∗xc,r)

2] + λEs[δE2
SCF,s]. (S5)
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Here E denotes the expectation over the dataset of reactions (r) or systems (s), and the hy-

perparameter λ controls the weighting of the gradient term (we use a value λ = 1 through-

out). ∆EDM21
xc,r denotes our model’s prediction for the total reaction exchange-correlation en-

ergy (product minus reactant exchange-correlation energy) and ∆E∗xc,r denotes an accurate

exchange-correlation energy for the reaction computed from literature or CCSD(T) total en-

ergies.

The network is trained to convergence at 3×106 steps of an Adam optimiser with a learning

rate that decays from 10−4 to 10−6 during training. At each step the regression and gradient

components of the loss are computed on minibatches of size ∼ 60 and 8, respectively. We train

the model using TPU accelerators at FP32 precision with careful implementation of pairwise

summation to retain accuracy in the final quadrature integral over the grid.

S1.3.1 SCF loss

A common concern with deep learned functionals is that the functional derivatives may be noisy,

prohibiting use in self-consistent optimization. We solve this by regularizing the functional

derivative using a cheap second-order perturbation theory result, and we find that this enables

SCF calculations on all the benchmarks that we have run in this work. The spirit of our approach

is to construct the Roothan-Hall equations using a Fock matrix F constructed from the neural

network’s derivatives, and to demand that the solution is close to reasonable Kohn-Sham orbitals

from a traditional functional. More specifically, we use the Roothan-Hall equations to derive

an approximate expression for the change in energy after a single SCF iteration starting from

orbitals from a traditional functional (B3LYP). In equation (S5) we have a term that keeps this

change, δESCF, small and hence regularizes the network gradients. The expression we obtain

for δESCF is:

δESCF =
1

2

∑
i 6=j

ni − nj
εi − εj

[
C>FC

]2
ij
, (S6)
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where n, ε are the orbital occupations and energies, and C is a reasonable guess for the orbital

coefficients taken from a traditional functional (and we drop the spin index for clarity). The

remainder of this section is a derivation of equation (S6).

To preserve orthonormality an SCF iteration must only result in transformation of C by an

orthogonal matrix. Representing this orthogonal matrix as the exponential of an antisymmetric

matrix A and expanding, we obtain the update to the orbitals as

δC = CeA −C = CA + 1
2
CA2 +O(A3). (S7)

This gives a change in the density matrix Γ = CnC> of

δΓ = CnδC> + δCnC> + δCnδC>, (S8)

where [n]ij = niδij is a diagonal matrix of occupations. Substituting equation (S7) and using

the antisymmetry of A yields

δΓ = C

[
An− nA +

1

2
(nA2 + A2n− 2AnA) +O(A3)

]
C>. (S9)

Using the Fock matrix Fab = ∂E/∂Γab we can convert this into a change in energy:

δE =
∑
ij

[
C>FC

]
ij

[
(ni − nj)Aji +

1

2

∑
k

(ni + nj − 2nk)AjkAki

]
+O(A3). (S10)

To find A, consider that the SCF iteration guarantees that the coefficients C + δC diagonalise

the Fock matrix:

(C + δC)>F (C + δC) = ε. (S11)

Inserting equation (S7) in equation (S11) and solving for C>FC gives[
C>FC

]
ij

= (εj − εi)Aij + εiδij +O(A2). (S12)

The diagonal part of this equation gives a means of estimating the orbital energies to leading

order: [C>FC]ii = εi, and the off diagonal part gives a leading order expression for A

Aji =
[C>FC]ij
εi − εj

i 6= j. (S13)
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Figure S1: Example SCF convergence trajectories. We show the energy at each iteration
relative to the energy at iteration 50, and plot the approach on a log-axis truncated at 10−6

Hartree, which is roughly the accuracy limit of our RI approximation (see section S3.1).

Additionally, equation (S12) simplifies equation (S10) to

δE =
1

2

∑
ij

(εj − εi)(nj − ni)A2
ji +O(A3), (S14)

Note that the first order in A cancels in the overall result and the energy change is second order

in A. Finally using equation (S13) in equation (S14) gives equation (S6).

In Fig. S1 we show example SCF convergence traces from the first two complexes in the

MB16-43 dataset. We run this optimization in the def2-QZVP basis starting from the eigenstates

of the 1-electron Hamiltonian to demonstrate that the stability of DM21 is comparable to B3LYP

during these trajectories. We further analyse the quality of densities from DM21 in section S5.

S2 Training data

We use three types of data to train our functional: molecular properties labelled with energies

from high accuracy wavefunction-based methods, FC and FS exact constraints expressed as

data and data for evaluating the SCF loss in sectionS1.3.1. Each of these datasets is described

below.
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S2.1 Molecular properties dataset

The molecular dataset consists of 1161 energy differences, with most target values and geome-

tries obtained from literature and the remainder computed by us. The reactions taken from

literature include the atomisation energy of small molecules from W4-17 (21), W4-11 (22) and

a set which we collectively refer to as W4-C consisting of 10 carbon-only compounds and 17

alkanes (that do not overlap with W4-17) compiled from Refs. (23, 52). We also include bind-

ing energies of small molecule complexes based on S66x8 (24) and X40x10 (25). For S66x8

we use the target values from (53) and remove the shortest dimers as recommended by those

authors. For X40x10, we exclude systems containing atoms past Kr. We also generated our

own energies for the following 222 systems:

• 20 total energies for atoms H-Ar, and ions K+ and Ca2+.

• 48 single, double and triple ionisation potentials for atoms He-Ar.

• 11 electron affinities for atoms H-Ar.

• 31 bounded cation dimers for H, He, Li, Be, Na, Mg and Al at 90%, 95%, 100%, 105%

and 110% of the equilibrium bond lengths.

• 112 atomisation energies from the G3 set (54) filtered for systems where the contribution

of perturbative triples in CCSD(T) is less than 5% as recommended in Ref. (21).

For these systems, we carried out all electron CCSD(T) calculations with extrapolation to the

complete basis set limit. The extrapolation is based on (aug-)cc-pCV(Q+d)Z and (aug-)cc-

pCV5Z, where aug- is used for systems containing an anion. The Hartree Fock, CCSD corre-

lation energy and perturbative triples contribution are separately computed. Correlation and

triples correction are extrapolated using a 2 point method with a Z−3 power law, whereas

Hartree-Fock energies are extrapolated based on an exponential Karton-Martin scheme (55).
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Figure S2: Data sets used in this study. The area of each set is proportional to the number
of chemically distinct reactions in the set, and counts are shown in square brackets. Overlaps
between GMTKN55 and the training set are computed by geometry matching and enumerated
in grey. The UEG dataset is used in Supplementary section S4.2.

A summary diagram of the final dataset and any overlaps between the training and test sets

is provided in Fig. S2. We measure overlaps between the training data and the GMTKN55

benchmark using a graph isomorphism test of all reactants and products. This test is run by

generating a fully connected graph for each molecule with atoms at the nodes and all edges

labelled with their length. We then test for isomorphism between graphs with a resolution of

0.01Å. An overlap is detected when two reactions are found where all reactants and products

have isomorphic partners and the reaction stoichiometries agree (or the reaction is reversed).

We find 178 reactions duplicated in both the training set and GMTKN55. Additionally we find

13 reactions that appear in both W4-17 and QM9, but for clarity we do not show this overlap in

Fig. S2 since this represents less than 0.01% of the QM9 set.

S2.1.1 Accuracy vs. dataset size

We performed a preliminary experiment to investigate how the final model accuracy varies with

training set size as follows: We took the W4-C, W4-17 and G3 sets and created a validation set
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Figure S3: Mean absolute error dependence on train set size. Different models are trained
with varying numbers of examples from the W4-C, W4-17 and G3 sets. Displayed is the MAE
for held-out validation examples and the MAE for GMTKN55.

by selecting 20% of the data at random. The total atomic energies for H-Ar were always in-

cluded in the training data and the remaining data was used to generate training sets of different

sizes. We sampled 10 training sets for each dataset size and carried out a training run. Gradient

training was always supervised with the same fixed SCF dataset from section S2.3. Figure S3

shows the dependence of functional error on train set size for the held out validation set and

GMTKN55 (evaluated post-B3LYP). As the training dataset size increases, the validation error

decreases and approaches chemical accuracy (1 kcal/mol) with around 300 examples. The error

on GMTKN55 does not fall as low indicating that there is a distribution shift between the train-

ing data used in this investigation and GMTKN55. This provides evidence that our benchmark

results are a test of generalization out of distribution.
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S2.2 FC and FS datasets

Here we describe the FC and FS datasets and the Wu-Yang algorithm used to generate both.

FC dataset: From the linearity of energy with fractional electron number, the energy change

in the reaction Xf+ → (1 − f)X + fX+ is exactly zero for 0 ≤ f ≤ 1 at a fixed geometry X.

To construct a dataset of such reactions we use either a single neutral atom or monatomic anion

(where bound) from H-Ar in the place of X and enumerate f in steps of 0.01. From the linearity

of the density, we construct densities for Xf+ from a linear combination of densities for X and

X+, and then use the Wu-Yang (56) method (see below) to provide Kohn-Sham orbitals for the

fractional system with one fractional occupation for the frontier orbital.

FS dataset: Here we consider a linear combination of the two degenerate spin states with

total spin, S, and mS = ±S as in (18)

ρ[S, γ] =

(
1

2
+

γ

2S

)
ρ[S, S] +

(
1

2
− γ

2S

)
ρ[S,−S], (S15)

with ρ[S,mS] denoting the density of each spin state and all states −S ≤ γ ≤ S being degen-

erate in energy. We use symmetry labels to ensure that the total occupation of each symmetry

channel is the same for the two interpolation limits ρ[S,±S]. For example, in the case of the car-

bon triplet we have occupations ρ[1, 1] : [Be]2p1x↑2p
1
y↑ and ρ[1,−1] : [Be]2p1x↓2p

1
y↓, which leads

to the γ = 0 occupation ρ[1, 0] : [Be]2p
1/2
x↑ 2p

1/2
y↑ 2p

1/2
x↓ 2p

1/2
y↓ . Note that this γ = 0 state is seen in

the limit of closed shell stretching of C2, and here we correctly label it with the same energy as

the triplet.

To construct a dataset of zero-energy reactions ρ[S, S]→ ρ[S, γ] we used all neutral atoms,

cations and bounded anions for H-Ar with unpaired electrons. For each nucleus we enumerate

γ in steps of 0.01. We again use the Wu-Yang method to recover Kohn-Sham orbitals with

fractional occupation from the interpolated density ρ[S, γ].

Wu-Yang algorithm and extensions The fractional electron conditions concern densities
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on the linear interpolation between the nearby integer ground states, but to compute the kinetic

energy density τ and the local HF features eωHF we must convert these interpolated densities to

Kohn-Sham orbitals. To achieve this we implement the Wu-Yang inversion algorithm (57) that

given a density ρ∗(r) finds the one-electron potential vs and the corresponding orbitals φi – that

diagonalise (T̂ + v̂s) – by solving the maximisation

vs = argmax
v

(Ws[v(r)])

where Ws[v(r)] =
∑
i

ni〈φi|T̂ |φi〉+

∫
v(r)

(∑
i

ni|φi(r)|2 − ρ∗(r)

)
dr. (S16)

We extend this to fractional electron calculations by constraining the (fractional) orbital occu-

pations ni and the orbital symmetries to those dictated by the interpolations above. In practice

this optimisation is performed by finding optimal expansion coefficients bt for expanding v(r)

with a basis set {gt(r)} as a correction to the external and Fermi-Amaldi potentials:

v(r) = vext(r) +
N − 1

N

∫
ρ∗(r′)

|r− r′|
dr′ +

∑
t

btgt(r), (S17)

where N =
∑

i ni. For this method to converge reliably for all the monatomic systems in our

dataset we find that we must use the large aug-pc-3 basis set for expressing φi and the even

larger basis set generated by PySCF’s aug etb function applied to aug-pc-3 for expanding

v. With these basis sets and the symmetry constraints no additional regularisation is needed to

converge the calculations.

S2.3 SCF dataset

The SCF dataset consists of a set of small individual molecules for which we can efficiently

compute the regularization term in equation S6. To evaluate the Fock matrix F σ
ab = (dE/dx) ·

(∂x/∂Γσab) in this expression during training we can precompute and store the input feature

derivatives (∂x/∂Γσab). The derivatives for the local HF eωHF features are obtained through
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χσ,ωa (r) in equation S4, which have space complexityGB and set the limit for the largest system

that can be handled during training. We include as many of the systems from the molecular

training set as possible, and simply limit the size of the basis set and the grid level for larger

molecules where GB can become impractically large.

For all the atoms and diatomic molecules in the regression set we generate the features for

the SCF loss at PySCF grid level 2 and use the largest basis set in the aug-pc-X family such

that the number of basis functions is less than 128. For larger neutral molecules we use grid

level 1 and the largest basis set with less than 128 basis functions from cc-pCV(Q+d)Z, cc-

pCV(T+d)Z, cc-pV(T+d)Z or cc-pV(D+d)Z. Any system with more than 32,000 grid points

is excluded. With these filters we produce an SCF dataset of 931 systems, which we also

ran using the same four radial schemes as above (Treutler, Mura-Knowles, Delley, and Gauss-

Chebyshev). When training on FC or FS data, the fractional orbitals obtained from the Wu-Yang

procedure described above are used to generate inputs for the SCF loss.

S3 Benchmark evaluation

Here we describe our procedure for running the large scale GMTKN55 and QM9 benchmark

calculations. We additionally provide details of the resolution of the identity (RI) approach

we use for accelerating computation of the local HF features and an alternating optimization

scheme used to enable fractional occupation of the frontier orbitals in Fig. 2 in the main text.

Finally we also give details of the calculations used to run compressed H24 in Fig. 3B.

All GMTKN55 and QM9 benchmark calculations are run using the aug′-def2-QZVP basis

set and started from B3LYP initial guess orbitals with a restricted ansatz for closed shell systems

and unrestricted otherwise. The functional to benchmark is run from this guess on a Treutler

grid at PySCF level 3 for up to 25 SCF cycles, or until a convergence tolerance of 10−7 Hartree

is reached. If the energy at the end of the SCF cycles is higher than at the start we revert back
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to the initial guess and run a new SCF calculation with a level shift of 0.5. If we again see

an increase in energy then we run with the first order gradient descent algorithm described in

section S3.2. The majority of the calculations reach the convergence tolerance in the first SCF

run. We find that even if the strict tolerance is never met for a system, all calculations are at least

converged at the sub kcal level, so we take the energy at the final cycle and do not exclude any

calculations. All calculations use resolution of the identity (see supplementary section S3.1) to

accelerate exchange and coulomb integrals.

S3.1 Resolution of the identity

Computation of the local HF features dominates the execution time of our functional. Resolu-

tion of the identity (RI) approaches (58), significantly accelerate this step. After feature com-

putation, running the MLP on all grid points only scales linearly with grid size, so in practice

the runtime of our method in PySCF (19) is comparable to existing hybrid functionals.

Here we provide the details of the resolution of the identity method for efficiently evaluating

the local HF features eωHF
σ and the component of their gradient χσ,ωa in equations (S3) and (S4).

For this discussion we consider the ω → ∞ limit for clarity, but the finite ω case is simple

to recover by inserting erf(ω|r|)/|r| as the kernel in the integrals in place of 1/|r| as appro-

priate. Additionally we drop the σ label to compact the notation and use Einstein summation

throughout.

First we analyse an inefficient but exact approach for calculating these quantities (which is

used to generate the features for the molecules in the training set). We can write χa as

χa(r) = Γbcψc(r)νab(r) where νab(r) =

∫
ψa(r

′)ψb(r
′)

|r− r′|
d3r′. (S18)

Each of the the elements of νab(r) requires expensive computation of an integral, and there are

GB2 elements in total, were G is the number of grid points and B the size of the basis set.

These integrals dominate the exact computation of both χa and eHF.
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The approximate resolution of the identity (RI) approach with careful precontraction im-

proves the run time as follows: We compute the following B′B2 integrals using an auxiliary

basis Ψm of size B′ � G:

Inab =

∫∫
ψa(r)ψb(r)Ψn(r′)

|r− r′|
d3rd3r′. (S19)

Now we can approximate an atomic orbital-atomic orbital pair as (ψaψb) ≈ AmabΨm using the

fitting coefficients Amai given by

Amab = [S−1]mnInab, where Smn =

∫∫
Ψm(r)Ψn(r′)

|r− r′|
d3rd3r′. (S20)

The matrix elements of the potential from the HF exchange term is then

kab = Γcd

∫∫
ψa(r)ψc(r)ψb(r

′)ψd(r
′)

|r− r′|
d3rd3r′

≈ ΓcdAmacImbd = (CdiImbd) [S−1]mn (CciInac) . (S21)

The leading complexity in the optimal contraction order of the final expression is O(B′2BN),

where N is the number of occupied orbitals. Now expanding χa(r) using the AO basis ψa(r)

with least-squares coefficients gives:

χa(r) ≈
(
kab
[
s−1
]
bc

)
ψc(r) where sab =

∫
ψa(r)ψb(r) d3r. (S22)

The dominant complexity remains in the computation of kab. Overall the quartic scaling of

this approach is worse than the exact route to χa(r) above. However the number of integrals

to compute is reduced by a significant factor B′/G and the prefactor for the runtime of the

remaining linear algebra steps is small.

We could then go on to compute eHF = −(1/2)Γabψaχb without altering the dominant

complexity. However, we were cautious of the approximation in equation (S22) because it is

not clear that the AO basis is sufficiently expressive to accurately expand χa. We considered
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that this approximation (in a large basis set) suffices for χa itself (which is only used to compute

the gradient that directs steps in an SCF optimisation loop) but eHF
x is fed as a feature directly

into the neural network, so we decided to avoid the AO expansion approximation for computing

eHF. Instead, we compute eHF as follows:

eHF(r) = −1

2
ΓabΓcd

∫
ψa(r)ψc(r)ψb(r

′)ψd(r
′)

|r− r′|
d3r′ (S23)

≈ −1

2
[Caiψa(r)] [Ccjψc(r)] [CbiCdjImbd]

∫
Ψm(r′)

|r− r′|
d3r′, (S24)

This requires only GB integrals and a linear algebra leading order complexity of GB′N2. As

future work we could investigate whether this additional care is necessary for eHF, or whether

the ‘free’ computation of eHF from the approximate χa would suffice.

Additionally we use similar methods to evaluate the matrix elements of the Coulomb term

required to evaluate the total energy. Concretely, we perform the contraction

jab = Γcd

∫∫
ψa(r)ψb(r)ψc(r

′)ψd(r
′)

|r− r′|
d3rd3r′ = (CciCdiImcd) [S−1]mnInab. (S25)

The optimum ordering for this contraction has complexity of O(B′B2N), and this can be re-

duced by recycling the intermediate (CciImcd) computed in equation (S21).

For all benchmarking, we use the large aug′-def2-QZVP basis set (43) for the AOs and

we use PySCF’s aug etb function to generate a corresponding even-tempered auxilary basis

set. We compared the exact approach with the RI approach on the diet-GMTKN55-100 (59)

(excluding the 5 longest-running reactions) and found that the mean error only changed at the

0.01 kcal/mol level.

S3.2 Alternating optimisation for fractional occupation

The usual SCF optimization procedure assumes that Kohn-Sham orbitals have integer occupa-

tion. Here we describe a simple first-order method to extend this to fractional occupation that
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we found can eliminate the ’hump’ in restricted binding curves shown in Fig. 2D in the main

text.

Given an energy function E that can be evaluated on an density matrix, the minimisation

problem to solve is

min
C,n

E (Γ) s.t. C>SC = 1, 0 ≤ ni ≤ 2,
∑
i

ni = N, (S26)

where we have used notation from S1.3.1 and N is the total electron count. We perform this

optimisation by alternating between optimisation of C at fixed n, and n at fixed C as described

below.

First order orbital optimisation: In an orthogonal basis C̄ = S1/2C, the first order gra-

dient descent step to optimize the energy is given by ∆C̄ = −ηJ̄, where J̄ij = ∂E/∂C̄ij . In

general, this step does not preserve the orthonormality of C̄, so we instead make a projected

step as follows. We first write the step as a multiplicative transformation

C̄ + ∆C̄ = C̄ exp(A + M) (S27)

where A and M are antisymmetric and symmetric matrices to be found. Inserting the definition

of ∆C̄ and matching first order terms in the series expansion for small A and M we obtain

A = −η
2

(
C̄>J̄− J̄>C̄

)
(S28)

M = −η
2

(
C̄>J̄ + J̄>C̄

)
. (S29)

Then to enforce that the step preserves orthonormality we project the multiplicative transforma-

tion to an orthogonal matrix by dropping the symmetric M term.

C̄t+1 = C̄t exp(A), (S30)

where t indexes the optimization steps. This procedure matches (60) to first order.
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For robust convergence, we adaptively change η at each step by recursively halving it from

an initial value 0.1 until E(Γt+1) < E(Γt) and E(Γt+1) − E(Γt) ≤ kC
∑

ij J̄ij[C̄t+1 − C̄t]ij .

The second condition states that the magnitude of the true energy change is not less than a factor

kC = 0.5 of the first order approximation, and thus that the optimisation step stays within a trust

region where the first order approximation is qualitatively valid.

Line search for occupations: The updated orbitals have energies εi = ∂E/∂ni and we

construct a candidate new occupation ñ by Aufbau filling of these orbitals. To improve on

this candidate, consider that all points along the convex sum nt+1 = λñ + (1− λ)nt obey the

constraints on n required by equation (S26), and therefore the task is reduced to finding an

optimal λ. We start this search at λ = 1 and recursively halve it until the true energy is reduced

and the magnitude of the reduction is not less than a factor kn = 0.1 of the first order prediction.

Orbital and occupation optimisation are alternated until the total energy is converged to within

a given tolerance (10−5 Hartree).

S3.3 Evaluation of compressed H24

To run H24 with a compressed H-H bond length of 0.48Å in Fig. 3B we found that it was

necessary to optimize a custom even-tempered basis (expressed as αβi. Specifically the basis

we used is a 10s3p basis set with exponents αβi, i = 0, ..., n, ns = 10, αs = 35.0, βs = 0.54

and np = 3, αp = 0.58, βp = 0.42. This is generated in PySCF using

pyscf.gto.expand_etbs([(0, 10, 35.0, 0.54),

(1, 3, 0.58, 0.42)])

We used a quasi-Newton method and projected out linear dependence in the basis set with a

threshold of 10−6 to optimize the orbitals in this basis and plot the spin density ρ↑(r) − ρ↓(r).

Additionally we show the line density nσ(z) in each spin channel σ along the z-direction aligned
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with the chain, computed as

nσ(z) =

∫
ρσ(r) dxdy. (S31)

21



Supplementary Text

S4 Further data and constraint studies

S4.1 Constraint ablation

To assess the effect of training using fractional electron constraints, and to highlight the flexi-

bility of our framework for enforcing different exact constraints, we have also developed three

other variants of DM21. All of these variants, named DM21m, DM21mc and DM21mu, were

trained on the molecular dataset described in section S2.1 with additional constraint data as

follows:

FC FS UEG

DM21 X X

DM21m
DM21mc X
DM21mu X

The UEG constraint set imposes the uniform electron gas exact limit (see section S4.2). We

find that all of these variants show state-of-the-art performance on the large benchmark sets

GMTKN55 and QM9, and we provide further analysis of the particularly strong performance

of DM21mu on QM9 by studying behaviour on a recurring carbon cage motif in section S4.2.

Fig. S4 gives a summary of the performance of these variants on the archetypal stretched

H+
2 and H2 systems together with benchmark statistics. Here we see that both FC and FS are

required to solve the BBB benchmark set, and in section S7 we further see that only DM21

gives a correct description of the diradical transition states considered in the main text.
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Figure S4: Ablation of constraints. A Stretching of the archetypal H+
2 and H2 systems to

illustrate FC and FS behaviour. DM21 and DM21mc correctly describe H+
2 , but only DM21

correctly describes H2. B GMTKN55 MoM performance and benchmark summaries for the
DM21 variants. We include reference performance of the best hybrid (PW6B95:D30) and dou-
ble hybrid (DSD-PBEP86:D3BJ) from (43).

S4.2 UEG Constraint

DM21mu serves as an example to demonstrate how our approach can be applied to incorporate

different constraints, and specifically DM21mu obeys the UEG limit. To enforce this this we

supply a dataset of infinite-extent uniform systems represented to the network as individual grid

points with density (ρ↑, ρ↓) in each spin channel. The dataset contains elements of the (ρ↑, ρ↓)

plane from (10−4, 10−4) to (10−1, 10−1), and we supply 4950 unique examples evenly spaced in

a log space grid inside the lower half plane. These are augmented to cover the full plane by spin
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flipping. Additionally we supply 100 examples of fully polarised gas 10−4 ≤ ρ↑ ≤ 10−1; ρ↓ = 0

(which are again augmented by spin flipping) and 100 examples lying exactly on the unpolarised

diagonal. The features for these systems are computed as:

|∇ρσ| = 0 (S32)

τσ(r) =
3

10
(3π2)2/3ρσ(r)5/3 (S33)

eωHF
σ = −aσ

(
6

π

)1/3 [√
π erf

(
a−1σ
)

+ aσ(bσ − cσ)
]
ρσ(r)4/3 (S34)

where aσ = ω/(6π2ρσ)1/3, bσ = exp(−a−2σ ) − 1 and cσ = (a2σbσ + 1)/2. Equation (S34) is

taken from (61) and gives the correct ω →∞ limit to recover the expression for eLDA
x .

The performance of DM21m and DM21mu on the plane for 2× 10−4 ≤ ρσ ≤ 50 is shown

in Fig. S5A. Without the UEG data, DM21m shows a few 10s of percent deviation from the

LDA functional over this region. This can be reconciled with the good performance of DM21m

on most molecular systems because such systems contain very few UEG-like regions at high

ρ, and the absolute scale of the energy at small ρ is negligible. DM21m has therefore learned

that only loose agreement with the UEG is sufficient to explain the small molecules that it saw

during training.

However, strained rings and cage systems are exceptions where training on the UEG con-

straint can lead to improvements at the kcal/mol level. We investigated why DM21mu sig-

nificantly outperforms DM21m on the QM9 benchmark (error of 1.0 kcal/mol vs. 1.3) and

found that the largest energetic differences arise from a recurring strained hydrocarbon cage

motif that has an unusual C-C non-bonded distance of around 1.9 Å. An example is shown in

C8H9N in Fig. S5B. Plotting ρ vs. the reduced gradient s = (24π2)−1/3|∇ρ|/ρ4/3, we find that

this strained system has regions with low gradient (and low hessian) at reasonably high density

(ρ ∼ 0.1 bohr−3) in the cage centre. At these densities DM21m under-predicts the magnitude of

Exc for the unpolarized UEG by up to 10%, whereas DM21mu has < 0.01% error. This means
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that DM21mu moves density into the cage centre and the energy predictions are improved at the

kcal/mol level. Similar effects are seen on the strained propane ring, but the effect is reduced in

unstrained rings such as cyclopentane where the UEG-like low gradient region appears at lower

density and therefore lower absolute energy scale.
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Figure S5: The UEG constraint. A Performance of DM21m and DM21mu on the UEG relative
to the LDA functional. The dashed black line indicates the training region for DM21mu beyond
which the functional is being asked to extrapolate. B The reduced gradient s vs. the density ρ
coloured by the difference between the DM21mu and DM21m densities. Isosurfaces at a density
difference of 0.001 (atomic units) show that DM21mu puts more density in low gradient (low
hessian) regions that occur at ring and cage centres. The effect is more pronounced in strained
structures and correlates with the atomisation energy error (err.) shown vs. G4(MP2) labels.
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S4.3 Density vs. Energy Functional

We train our functionals to regress high accuracy energies, but we only supply B3LYP orbital

features as the inputs during training. Table S2 gives justification for our choice to invest more

resource in the energy labels than the densities. Here we computed orbitals for the W4-11

dataset by self consistent calculation with a number of different functionals and also obtained

the more expensive relaxed CCSD densities coupled with a Wu-Yang inversion to generate KS

orbitals. We then ran different energy functionals to compute the energy of each of these den-

sities and report the error on the entire W4-11 set for each density functional/energy functional

combination. For a fixed choice of energy functional, there is not significant variation in the

error between densities, with the M06-2X energy functional showing the greatest standard de-

viation of 0.65 kcal/mol across the combinations we tried. In contrast, the choice of energy

functional for a fixed density has a large effect, e.g. the B3LYP density reveals a large standard

deviation of 4.2 kcal/mol across the energy functionals tried. We include DM21m in our inves-

tigation and confirm that it is largely insensitive to the underlying density functional when used

as an energy functional and its SCF densities fit the trends seen in other functionals when used

as a density functional. This lack of sensitivity on the input density is not specific to W4-11,

but applies in general. For example S1 shows results for the barrier height set BH76 and the

‘mindless benchmarking’ set MB08 (62). These observations show that what drives the error in

density functionals is usually the failure of functionals to represent the energy of a given den-

sity, rather than the fact they are optimized for different densities. This statement is true most

of the time, but it should be noted that errors in the functional, especially related to fractional

charge error can lead to qualitative errors in density as observed in section S5.2 and in figure 2.

Nevertheless, the fact that the functional used to optimize the density has a weak influence on

the predicted energy of a reaction leaves us free to choose the B3LYP functional for generating

input data, but do not expect that this would have significant effect on our results.
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Density basis-set PB
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B

3L
Y

P

D
M

21
m

st.dev.

PBE def2-QZVP 15.50 7.75 4.25 4.26 3.62 4.06 3.75 0.87 4.16
B3LYP cc-pCVTZ 15.73 7.88 4.11 4.03 3.72 3.94 3.69 0.94 4.24
B3LYP def2-QZVP 15.23 7.53 4.15 4.00 3.47 3.42 3.47 0.45 4.19
BLYP def2-QZVP 15.44 7.81 4.10 4.29 3.71 5.12 3.74 1.03 4.09
M06-2X def2-QZVP 14.36 6.53 4.25 4.32 3.39 3.01 3.42 0.84 3.83
DM21m def2-QZVP 15.03 7.43 3.99 4.13 3.45 3.20 3.60 0.48 4.12
CCSD cc-pCVTZ 15.64 7.84 4.28 4.42 4.25 3.67 4.37 1.46 4.08

st.dev. 0.43 0.44 0.10 0.14 0.27 0.65 0.29 0.32

Table S1: Investigation of input density sensitivity. The errors on W4-11 for each density
functional/energy functional combination are shown and we summarise the density sensitivity
by standard deviation down the columns and energy sensitivity at fixed density by standard
deviation across the columns. WY(CCSD) are densities obtained by Wu-Yang inversion of
relaxed CCSD densities to KS orbitals. All values in kcal/mol.
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BH76

PBE 9.30 8.43 3.75 4.39 3.72 1.28 2.65 1.77
BLYP 9.27 8.47 3.87 4.41 3.66 1.29 2.63 1.87
M06 L 9.18 8.50 3.86 4.71 3.98 1.24 3.00 2.24
B3LYP 9.00 8.19 3.91 4.70 4.11 1.09 3.07 2.17
PBE0 8.85 7.97 3.74 4.65 4.16 1.15 3.14 2.15
M06 2X 8.27 7.41 3.33 4.35 3.92 1.21 3.03 2.14
CAMB3LYP 8.56 7.71 3.72 4.57 4.12 1.16 3.18 2.22
DM21m 8.55 7.73 3.68 4.43 3.91 1.13 3.04 2.38

st. dev. 0.38 0.41 0.18 0.15 0.18 0.07 0.21 0.20

MB08

PBE 8.92 10.99 13.42 8.29 8.61 4.35 9.39 3.58
BLYP 8.85 10.91 13.37 8.25 8.40 4.24 9.30 3.65
M06 L 9.12 10.72 13.22 8.28 9.03 4.78 9.39 3.66
B3LYP 8.78 10.94 13.34 8.11 8.49 4.56 8.94 2.92
PBE0 8.72 10.93 13.36 8.08 8.62 4.78 8.92 2.75
M06 2X 8.60 11.28 12.96 8.31 8.13 4.77 8.75 2.58
CAMB3LYP 8.52 11.11 13.61 8.23 8.56 4.69 8.84 2.91
DM21m 8.60 11.29 14.06 8.51 8.83 4.81 9.46 2.73

st. dev. 0.20 0.19 0.32 0.13 0.27 0.22 0.29 0.45

Table S2: Investigation of input density sensitivity. The mean absolute deviation on BH76 and
MB08 (62) for each density functional/energy functional combination are shown and we sum-
marise the density sensitivity by standard deviation down the columns. All values in kcal/mol.
Note that for the MB08 dataset, two reactions were excluded for which M06-2X or DM21m
failed to converge
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S5 Density assessment

S5.1 Self-consistent density

To verify the quality of self-consistent densities from DM21, we follow the procedure from

Fig. 1 of Ref. (63). We compute the RMSD error versus an accurate CCSD reference density

for the systems considered in (63) and compare the maximum RMSD on this set for historic

functionals through time. In Fig. S6 we show that DM21 does not show large density errors of

any of the systems considered in this procedure.
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Figure S6: Self-consistent density error The maximum RMSD error of self-consistent DFT
densities vs. accurate relaxed CCSD reference densities, all calculations use the aug-cc-
pwCV5Z basis set. The systems are a set of 2e−, 4e− and 10e− atomic species: B+, B3+, C2+,
C4+, N3+, N5+, O4+, O6+, F5+, F7+, Ne6+, Ne8+ and Ne. Grey dots are from the conventional
functionals listed in (63).

S5.2 Dipole moment prediction

As a further test for the quality of the charge densities produced, we ran our functionals on

a benchmark set of 152 dipole moments computed at a high level of theory (CCSD(T)/CBS)
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from (64). Following (64) we define the error in terms of relative regularised error η as:

η =
µ− µref

max(µref , 1 debye)
× 100% (S35)

The results are given in Table S3, and show that our functionals are competitive with the best hy-

brid functionals, significantly surpassing performance of the B3LYP functional which supplied

the training densities.

RMSD error (%) MAE error (%) MAX error (%)

DM21m 5.42 3.33 30.58
DM21mu 5.49 3.07 44.24
DM21mc 6.44 4.18 34.65
DM21 4.62 3.20 18.30

PW6B95 5.05 3.26 24.15
wB97X-V 5.52 3.71 22.76
M06-2X 6.58 3.96 35.36
B3LYP 7.13 4.11 45.66
SCAN 8.60 5.67 31.89
PBE 11.70 8.30 45.14

Table S3: Percentage relative regularised error for dipole prediction of several local and hybrid
functionals. Regularised error is defined as in (64).

S6 HOMO eigenvalues

In this section we show the behaviour of DM21 on fractional charge for all atoms and compare

the deviation from linearity with the predictions from the highest occupied molecular orbital.

As explained in the main text, the exact functional predicts that the energy change between a

system with n and n−1 electrons is linear. In contrast, most existing functional approximations

are concave with respect to the exact condition. This concavity means that the energy can be

artificially lowered by delocalising fractions of charges over sub-parts of the molecule. DM21

was explicitly trained such that this condition is enforced. As shown in figure S7, this training
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results in deviation from linearity that rarely exceed tens of meV, whereas a popular hybrid

density functional such as B3LYP has much larger deviations. Recent work has trained an

ML model to tune the range-separation parameter to achieve linearity on a system-by-system

basis (65).

Another well known result in density functional theory is that the energy of the highest

molecular orbital (HOMO) corresponds to the derivative of the energy functional with respect

to number of electrons (Janak’s theorem). As such, if a functional perfectly obeyed the linearity

condition, the HOMO energy would equal the vertical ionization potential measured as the

energy difference between a system with n and n− 1 electrons. For this reason we have added

to figure S7 guides to the eye that show where the HOMO energy would predict the energy of the

ionized molecule to lie. Note that even for DM21 there are discrepancies between the prediction

from the HOMO energy and the actual energy of a ionized atom. This is because, despite the

functional closely obeying linearity, it’s infinitesimal derivative is still rather noisy. DM21 is

therefore still effectively free of charge delocalisation error in the sense that a calculation on a

charged dimer would not spuriously delocalise charge, but the molecular orbital energies need

to be treated with care. We additionally checked the same conclusion is reached for molecular

systems in the G21IP set (Fig. S8).
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DM21 HOMO
B3LYP
B3LYP HOMO

H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar mean
B3LYP     4.9 7.0 2.0 2.8 3.6 4.2 4.9 3.5 4.6 6.1 1.9 2.4 2.4 2.8 3.3 2.7 3.3 4.1 3.7
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Figure S7: Deviation from linearity for DM21 and B3LYP for selected atoms. The full lines
show the results of post-B3LYP fractional charge calculations whereas the dashed line shows
the projection based on the highest occupied molecular orbital (HOMO) for the neutral system.
Values on the x-axis denote the fraction of an electron removed from a neutral system. All
energies are relative to the expected linear change in energy between the charged and neutral
atoms.

31



!h

SC
AN

B3
LY

P

M
06

-2
X

wB
97

X

DM
21

m

DM
21

m
u

DM
21

m
c

DM
21

Functional

0

1

2

3

4

5

6

|H
OM

O 
- I

P|
 [e

V]

Figure S8: Deviation of the HOMO from the ionization potential. Results are presented
for the G21IP set. DM21mc shows improved alignment between the HOMO and the ioniza-
tion potential, but as with traditional functionals, the orbital energy eigenvalues of the neural
functionals should be treated with care.

S7 Diradical transition states

In these sections we provide additional details and examples of reaction transition states with

diradical character and provide evidence that incorporation of the FS constraint leads to better

description.

S7.1 Bicyclobutane reaction barrier heights

The isomerisation of bicyclobutane into butadiene can procede via two mechanisms (66): a

conrotatory movement of the methylene group and a disrotatory one. The disrotatory pathway

in particular is challenging for ab-initio theory as it has strong biradical character. In order to

characterise how accurately different functionals capture this transition state, we consider both

the forward and backwards cyclobutane to gauche-butadiene reaction barrier heights and show
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the error with respect to high accuracy diffusion Monte-Carlo results (42). Note that of all the

functionals presented, only DM21 has no errors greater than 4 kcal/mol. These energies were

computed using an unrestricted ansatz and a def2-QZVP basis set.

conrotatory disrotatory
fwd bwd fwd bwd

DM21m 9.93 7.05 2.53 -0.35
DM21mu 8.64 5.64 2.72 -0.29
DM21mc 10.62 8.73 1.70 -0.19
DM21 2.36 -0.40 0.09 -2.67

M06-L -7.28 1.58 -29.45 -20.58
MN15-L -5.02 10.37 -26.56 -11.17
BLYP -2.32 2.99 -4.43 0.88
PBE 2.55 -3.60 0.40 -5.75
PBE0 8.00 -0.73 -1.13 -9.86
PW6B95 8.60 1.90 3.27 -3.43
M06 8.97 -1.79 2.75 -8.01
ωB97M-V 10.57 5.56 3.08 -1.93
ωB97X-V 11.89 3.57 2.27 -6.05
M06-2X 12.81 4.13 3.74 -4.94

Table S4: Errors (in kcal/mol) for several functionals for the forward (fwd) and backward (bwd)
reactions for the bicyclobutane to gauche-butadiene transition. Errors are based on diffusion
Monte-Carlo calculations from (42).

S7.2 Dehydro-Diels-Alder barrier heights

In the main text we discussed the case of isomerisation of bicylobutane to show cases where

even unrestricted Kohn-Sham can lead to broken bonds which are not fully polarised and thus

can lead to overestimation of barrier heights using hybrid density functionals. In this section we

further investigate this effect by looking at the case of 2+4 dehydro-Diels-Alder reaction bar-

rier heights which have been studied by Aida et al in (67). Dehydro-Diels-Alder reactions can

proceed via either a concerted pathway, where both bonds form at once and a stepwise pathway

where each bond forms sequentially. We computed barrier heights with different functionals,
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our findings are shown in table S5. Note that as is the case for bicylobutane, we find signifi-

cantly lower barrier heights for the stepwise pathway when using the functional trained on both

fractional charge and spin constraints. In this case, reliable reference numbers are not available,

but based on our experience with bicyclobutane, we tend to trust DM21.

〈S2〉 B3LYP PBE B3LYP M06-2X DM21m DM21mu DM21mc DM21

+

TSc 0.00 16.10 26.31 20.66 17.62 18.84 18.65 20.65
TSstep1 0.54 26.43 35.94 36.95 35.45 36.03 37.22 33.29
TSint 0.99 28.60 33.73 30.36 31.53 31.63 32.73 31.68
TSstep2 0.89 31.72 38.60 33.94 34.27 34.87 35.59 35.23
Prod 0.00 -43.14 -34.38 -46.20 -45.63 -44.99 -44.43 -45.63

+

TSc 0.00 15.93 26.10 21.79 19.70 21.10 19.48 22.44
TSstep1 0.45 22.00 32.87 36.39 34.89 34.94 36.39 29.53
TSint 0.96 22.06 28.47 28.43 28.91 29.69 30.01 25.37
TSstep2 0.50 17.83 30.27 30.47 29.09 29.42 30.81 24.19
Prod 0.00 -62.81 -54.00 -61.49 -60.30 -59.92 -59.46 -61.41

+

TSc 0.00 20.44 32.23 28.23 25.10 26.29 25.03 27.47
TSstep1 0.44 21.46 32.40 35.69 34.36 34.71 35.77 30.45
TSint 1.03 23.01 28.92 29.13 30.81 30.89 31.60 29.94
TSstep2 0.52 21.86 34.02 34.38 31.98 32.47 34.25 27.12
Prod 0.00 -21.00 -8.80 -17.29 -19.40 -18.36 -17.72 -19.28

+

TSc 0.00 20.76 32.31 30.00 27.64 29.00 26.35 29.79
TSstep1 0.39 18.08 29.99 35.75 34.36 33.55 35.91 27.86
TSint 1.03 15.47 22.40 25.96 27.42 28.08 28.28 23.06
TSstep2 0.67 14.68 26.24 29.28 27.82 28.34 29.51 19.02
Prod 0.00 -38.10 -25.23 -29.34 -31.80 -30.97 -29.94 -33.12

+

TSc 0.00 25.00 37.27 34.68 31.44 32.66 30.01 33.34
TSstep1 0.42 20.81 31.99 35.37 35.08 35.21 35.60 29.68
TSint 1.01 23.74 30.04 30.95 32.83 32.92 33.50 31.05
TSstep2 0.40 24.83 38.12 39.19 36.93 36.92 38.71 30.54
Prod 0.00 -11.61 2.15 -3.23 -6.94 -5.36 -5.16 -7.75

+

TSc 0.00 25.53 37.12 36.19 33.91 35.29 31.17 35.59
TSstep1 0.37 17.68 29.91 35.88 35.77 35.41 36.41 27.33
TSint 1.04 15.59 22.96 26.75 27.98 28.87 29.67 21.94
TSstep2 0.67 15.85 28.07 31.88 30.48 30.92 31.73 20.86
Prod 0.00 -66.86 -54.02 -56.89 -60.73 -59.66 -58.07 -62.46

Bicyclobutane ∆TS conrotatory 0.29 47.84 47.19 57.06 52.02 52.48 54.61 46.65
∆TS disrotatory 1.00 60.75 55.83 64.05 61.80 62.16 61.41 59.70

Table S5: 〈S2〉 values and energies (in kcal/mol) for the reactions from (67). All systems
are nominal singlets. Reaction labels correspond to the naming in the original paper, for each
2+4 addition reaction we show a concerted pathway with a single transition state TSc and a
step-wise pathway characterised by two transition states TSstep1 and TSstep2 together with an
intermediate state TSint. Note that large deviations between DM21mc and DM21 correlate with
cases with intermediate spin contamination, i.e. in the transition states of the stepwise pathway.
All calculations carried out with a def2-TZVP basis set. For comparison we show the same
analysis carried out on the forward reaction barrier height for isomerisation of bicyclobutane at
the bottom of the table.
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Figure S9: Barrier heights for the automatically generated transitions states. Box plot
showing the difference in energy (in kcal/mol) between M06-2X and DM21 for the reactions
from (68) which displayed diradicaloid character.

S7.3 Automatically generated transition states.

In the main text we argued that DM21 tends to predict lower energy barriers for transition states

with partial diradical character compared to hybrid density functionals such as M06-2X and

ωB97X. In order to investigate if this is the case, we looked at a set of 4,000 transition states

from organic reactions automatically generated by Grambow et. al. and based on the GDB-7

dataset (68). We carried out B3LYP calculations with a split valence basis set and identified all

transition state with an 〈S2〉 greater than 0 (we found 537), we then computed barrier heights

for those 537 barrier heights, together with 100 randomly selected barrier heights with 〈S2〉 = 0

with DM21 and M06-2X and a triple zeta basis set (def2-TZVP). The results are shown in figure

S9 and show that indeed the hybrid density functional overpredicts barrier heights compared to

DM21 in cases where S2 is non zero, and that the effect is strongest when spin contamination

has intermediate values.
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S8 Detailed benchmark results

Here we provide additional information for the BBB, GMTKN55 and QM9 benchmark evalua-

tions.

S8.1 Bond breaking benchmark (BBB)

The ground state energy of neutral dimers H2, Li2, C2, N2, F2 were obtained by optimising the

FermiNet wavefunction ansatz with the variational Monte Carlo method (69, 70). FermiNet is

a flexible neural network which can achieve highly accurate energies for small molecules (ex-

ceeding 99% of the correlation energy in the complete basis set limit). We used the architecture

and training schedule as given in Ref. (69): three layers each with 256 hidden units for the one-

electron stream, 32 hidden units for the two-electron stream, and a wavefunction formed from a

linear combination of 16 determinants. We optimised FermiNet using the K-FAC optimisation

algorithm (71), with a learning rate of 1/(104+t), where t is the iteration index, using a batch of

4096 MCMC configurations, and 10 MCMC all-electron steps between parameter updates, each

with a proposal drawn from a normal distribution with standard deviation of 0.02. Optimisation

was performed for 150,000-200,000 iterations and the final energy estimated from 50,000 local

energy evaluations, each separated by 10 MCMC all-electron steps. The auto-correlation was

accounted for using a blocking analysis (72). For the charged dimers H+
2 , He+2 , Li+2 , B+

2 , Ne+2

and Al+2 we obtained UCCSD(T) energies from extrapolation from cc-pVXZ basis sets using

up to quintuple zeta.

The errors were computed by considering stretching from 0.5 to 10 Å in 50 equally separated

steps. Errors are only considered for parts of the binding curve that are bound according to the

oracle (QMC or UCCSD(T)).
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S8.2 GMTKN55

The GMTKN55 collection of benchmark sets is often analysed using three different aggregation

methods that vary in their weighting of the accuracy on NCI systems (43). The simplest of these

is the MoM metric presented in the main text which does not do any weighting and the other

schemes WTMAD-1,2 are presented below:

MoM =
1

55

∑
i

s̄i ;

WTMAD-1 =
1

55

∑
i

wis̄i ;

WTMAD-2 =
1

1505

∑
i

ni
56.84 kcal/mol

t̄i
s̄i, (S36)

where s̄i is the mean absolute error on the ith subset, t̄i is the mean absolute reaction energy in

subset i, ni is the number of reactions in subset i andwi is a weighting of 10 if t̄i < 7.5 kcal/mol

and 0.1 if t̄i > 75 kcal/mol. Note that the values in the denominators reflect the fact that

there are 1505 reactions across 55 sub-benchmarks. A table of all the values of s̄i for DM21

functionals and selected traditional functionals together with the MoM and WTMAD-1,2 scores

is presented in Table S6. We note that all of the DM21 variants outperform or are on-par with

the best traditional hybrid functional on all metrics.

62 reactions in GMTKN55 involve atoms heavier than Kr for which we used the def2-ECP

potential as explained in (36). We did not use resolution of the identity for these reactions and

we used a quasi-Newton optimization method as we found that convergence was not stable for

large atoms using PySCF’s aug etb auxiliary basis. In general we would not recommend

running the DM21 family on atoms beyond Kr since the training data does not contain any

heavy atoms or pseudopotentials. Nevertheless, we were surprised to discover that DM21 has

good performance on these 62 systems in GMTKN55 that use unseen heavy atoms, and scores

on the full GMTKN55 sets are shown in the main text and table S6.
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AL2X6 0.82 0.76 1.64 0.89 2.07 1.35 1.95 0.76 2.71 0.90 1.21 0.31
ALK8 3.42 1.82 4.08 1.90 3.60 3.23 3.12 3.04 2.48 2.31 0.95 2.28
ALKBDE10 4.22 2.60 2.87 2.66 5.16 4.48 19.21 4.05 4.40 4.79 4.07 3.01
BH76RC 1.22 0.64 0.85 0.49 2.76 2.43 3.38 1.48 2.25 1.18 1.81 0.86
DC13 4.23 2.50 4.39 3.05 8.87 8.25 7.30 6.75 10.14 7.08 6.29 2.97
DIPCS10 2.07 1.55 1.27 2.23 4.81 10.46 4.92 2.70 4.73 3.16 4.10 3.90
FH51 1.04 0.81 0.73 0.80 3.34 2.55 2.69 1.57 2.61 1.20 2.30 0.87
G21EA 1.34 1.24 1.28 1.31 2.75 2.40 3.64 1.28 1.91 1.76 1.84 1.50
G21IP 1.81 0.81 1.14 1.02 4.20 3.46 4.69 2.77 3.55 2.64 2.96 2.10
G2RC 1.38 0.84 0.98 0.88 6.16 6.73 6.29 3.01 2.73 1.92 3.91 1.83
HEAVYSB11 3.42 3.15 1.44 3.40 2.72 6.47 6.79 2.09 3.30 8.16 1.39 0.92
NBPRC 1.64 1.97 0.96 2.25 1.98 1.93 2.28 1.76 2.00 0.95 1.43 0.88
PA26 1.74 1.25 1.26 1.47 4.73 2.25 3.14 2.53 2.87 1.23 2.65 1.10
RC21 1.02 1.16 1.53 1.43 4.85 2.00 6.53 2.91 2.44 1.63 3.53 1.77
SIE4x4 4.92 8.43 5.20 7.64 23.43 10.99 17.99 15.43 18.06 8.67 11.49 5.04
TAUT15 0.45 0.41 0.68 0.43 1.55 0.70 1.72 0.87 1.16 0.77 0.72 0.46
W4-11 3.04 0.52 0.80 0.63 7.57 3.41 4.02 2.42 3.40 3.16 2.78 2.72
YBDE18 2.84 2.72 2.07 2.89 4.41 4.20 3.36 3.29 4.72 2.40 2.03 1.53

BSR36 0.51 0.51 1.10 0.53 1.80 3.55 1.48 3.51 3.35 2.48 2.11 1.36
C60ISO 11.35 2.49 6.59 1.42 9.82 5.94 6.05 1.59 2.22 6.88 13.74 7.56
CDIE20 0.35 0.34 0.51 0.33 1.50 1.78 1.47 1.07 1.00 0.54 0.63 0.47
DARC 1.04 1.81 2.08 1.54 3.71 2.78 2.13 3.75 8.03 2.16 4.31 1.32
ISO34 0.58 0.60 0.49 0.55 1.50 1.88 1.30 1.27 1.78 1.23 1.17 0.41
ISOL24 1.56 2.06 1.44 1.76 4.56 3.55 3.34 3.80 5.80 2.74 2.98 1.12
MB16-43 6.65 5.35 5.79 4.46 27.11 20.42 16.56 8.04 24.84 15.68 32.51 6.46
PArel 0.84 0.77 0.74 0.89 1.53 2.19 1.48 1.00 1.18 0.97 0.63 0.50
RSE43 1.45 0.86 0.62 0.51 2.31 1.23 1.29 2.04 1.72 0.63 0.98 0.90

BH76 2.08 2.09 1.90 2.32 8.32 1.81 7.71 4.06 5.70 2.34 1.83 1.28
BHDIV10 1.34 1.72 1.99 1.99 7.83 2.08 6.51 2.43 3.22 1.04 0.85 1.71
BHPERI 0.77 2.12 1.78 1.74 6.29 1.78 5.17 0.98 1.18 1.35 2.07 2.45
BHROT27 0.19 0.38 0.20 0.32 0.37 0.87 0.82 0.54 0.41 0.36 0.31 0.21
INV24 0.90 0.84 0.73 1.34 2.18 2.02 1.16 1.17 1.05 1.28 1.22 0.75
PX13 0.90 2.57 1.07 2.41 8.75 6.38 8.23 1.33 4.33 5.32 2.56 2.51
WCPT18 1.57 1.30 1.98 1.25 7.22 1.81 6.12 1.44 2.28 1.88 1.71 1.77

ADIM6 0.11 0.13 0.13 0.07 0.25 3.88 0.04 0.55 0.11 0.27 0.16 0.06
AHB21 0.24 0.25 0.32 0.21 1.04 2.29 1.61 0.34 0.33 0.95 0.34 0.43
CARBHB12 0.51 0.61 0.53 0.48 1.10 1.21 1.35 0.43 0.88 0.25 0.33 0.61
CHB6 1.06 1.24 1.16 1.40 0.90 0.64 0.44 1.26 1.41 1.42 0.87 1.12
HAL59 0.58 0.40 0.45 0.43 0.72 0.59 0.99 0.32 0.57 0.35 0.30 0.44
HEAVY28 0.17 0.21 0.29 0.24 0.29 0.58 0.32 0.10 0.34 0.33 0.18 0.18
IL16 0.49 0.78 0.84 0.70 0.77 2.40 0.91 0.90 0.76 0.47 1.02 0.23
PNICO23 0.17 0.27 0.27 0.33 0.88 0.40 0.98 0.29 0.48 0.29 0.19 0.40
RG18 0.57 0.33 0.33 0.62 0.09 0.17 0.24 0.24 0.13 0.23 0.10 0.15
S22 0.20 0.30 0.28 0.21 0.43 1.82 0.44 0.35 0.30 0.34 0.22 0.31
S66 0.18 0.19 0.22 0.17 0.28 1.66 0.45 0.22 0.26 0.22 0.12 0.21
WATER27 1.96 1.45 2.60 1.37 3.51 12.00 10.65 0.97 4.07 3.70 1.30 2.26

ACONF 0.13 0.31 0.22 0.17 0.09 0.69 0.15 0.15 0.05 0.27 0.03 0.25
Amino20x4 0.19 0.26 0.22 0.24 0.37 0.92 0.22 0.29 0.21 0.30 0.19 0.13
BUT14DIOL 0.17 0.17 0.35 0.13 0.31 1.10 0.40 0.35 0.31 0.13 0.04 0.05
ICONF 0.18 0.22 0.19 0.19 0.32 0.53 0.31 0.28 0.29 0.32 0.26 0.14
IDISP 1.37 2.34 1.99 1.97 3.14 7.54 2.45 3.46 3.57 2.07 2.59 1.43
MCONF 0.22 0.59 0.28 0.28 0.44 1.60 0.47 0.39 0.22 0.55 0.24 0.38
PCONF21 0.27 0.26 0.44 0.34 0.87 4.10 0.49 0.55 0.53 1.09 0.30 0.27
SCONF 0.36 0.43 0.41 0.16 0.51 0.92 0.60 0.23 0.30 0.26 0.15 0.13
UPU23 0.50 0.48 0.44 0.34 0.47 1.67 0.44 0.54 0.61 0.50 0.59 0.38

MOM 1.50 1.28 1.35 1.25 3.76 3.35 3.6 1.98 2.9 2.09 2.45 1.35
WTMAD-1 1.99 2.15 2.14 2.04 4.67 6.77 4.64 2.99 3.59 2.77 2.31 1.81
WTMAD-2 3.97 3.88 3.95 3.95 8.29 11.49 8.03 5.49 6.36 4.91 3.92 3.16

Table S6: Mean absolute errors for all DM21 functionals and selected traditional functionals on
each of the 55 GMTKN55 subsets considered in the main text.
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Additionally, to justify our use of D3 corrections, we present results for functionals DM21:no-

D3 in the m, mc and mcs cases, which were trained and evaluated without D3 correction on the

energy labels. Excluding the D3 correction reduces performance on WTMAD-1,2 as expected,

and can also reduce performance on the MoM as the functional is disrupted attempting to ex-

plain the training data using features that do not capture the required long range behaviour.

Note that these evaluations to justify D3 were performed in preliminary experiments which did

exclude the 62 GMTKN55 reactions containing atoms larger than Kr. We include ωB97X-V in

Table S7 as a reference for the strongest traditional hybrid functional on this reduced subset of

GMTKN55.

GMTKN55(≤Kr)

MoM WTMAD-1 WTMAD-2

ωB97X-V 2.29 2.34 3.89

DM21 1.50 1.96 3.81
DM21m 1.27 2.11 3.76
DM21mc 1.36 2.09 3.70

DM21:no-D3 1.42 2.70 5.33
DM21m:no-D3 1.48 2.83 5.48
DM21mc:no-D3 1.50 2.88 4.89

Table S7: GMTKN55 Performance of DM21 functionals trained with and without D3 correc-
tions evaluated on the subset of 1443 GMTKN55 reactions containing atoms up to Kr.
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S8.3 QM9

In table S8 we provide mean absolute errors of isomerisation energies versus the G4(MP2)

results from Ref. (38) across the full QM9 benchmark for all the functionals that we ran. This

list includes the best performing functionals on GMTKN55 from Fig. 4(b), and covers ωB97X(-

V), M06-2X, TPSS (73) and TPSSh (74) which were highlighted in Ref. (13).

Functional no-D3 D3 Functional no-D3 D3

DM21m 1.33 DM21mu 1.01
DM21mc 1.36 DM21 1.66

ωB97X 2.12 2.24∗ PBE 3.22
M08-HX 2.17 M05-2X 3.29
M06-2X 2.20 2.21 SCAN 3.57 3.62
PW6B95 2.52 2.24 TPSS 3.66
MPW1B95 2.93 N12 3.98
wB97 3.08 B3LYP 4.43 3.94
MN15-L 3.13 revTPSS 4.59
TPSSh 3.15 BLYP 5.57
CAMB3LYP 3.20

Table S8: MAE on the QM9 benchmark for all functionals tested. We ran D3(0) corrections for
selected traditional functionals with no consistent improvement seen on this dataset. ∗ indicates
the ωB97X-V functional with VV10 long range correction rather than D3 corrected ωB97X.
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