

Grandmaster level in StarCraft II using multi-agent reinforcement learning

Oriol Vinyals*1†, Igor Babuschkin*1, Wojciech M. Czarnecki*1, Michaël Mathieu*1, Andrew
Dudzik*1, Junyoung Chung*1, David H. Choi*1, Richard Powell*1, Timo Ewalds*1, Petko
Georgiev*1, Junhyuk Oh*1, Dan Horgan*1, Manuel Kroiss*1, Ivo Danihelka*1, Aja Huang*1,
Laurent Sifre*1, Trevor Cai*1, John P. Agapiou*1, Max Jaderberg1, Alexander S. Vezhnevets1,
Rémi Leblond1, Tobias Pohlen1, Valentin Dalibard1, David Budden1, Yury Sulsky1, James
Molloy1, Tom L. Paine1, Caglar Gulcehre1, Ziyu Wang1, Tobias Pfaff1, Yuhuai Wu1, Roman
Ring1, Dani Yogatama1, Dario Wünsch2, Katrina McKinney1, Oliver Smith1, Tom Schaul1,
Timothy Lillicrap1, Koray Kavukcuoglu1, Demis Hassabis1, Chris Apps*1, David Silver*1†
1 DeepMind, 6 Pancras Square, N1C4AG, London, United Kingdom
2 Team Liquid, Huis te Zuylenlaan 75, 3554 JE, Utrecht, Netherlands
* equal contributions
†	corresponding	author

Many real-world applications require artificial agents to compete and coordinate with
other agents in complex environments. As a stepping stone to this goal, the domain of
StarCraft has emerged as an important challenge for artificial intelligence research,
owing to its iconic and enduring status among the most difficult professional esports,
and its relevance to the real world in terms of its raw complexity and multi-agent
challenges. Over the course of a decade and numerous competitions1–3, the strongest
agents have simplified important aspects of the game, utilised superhuman capabilities,
or employed hand-crafted subsystems. Despite these advantages, no previous agent has
come close to matching the overall skill of top StarCraft players. We chose to address
the challenge of StarCraft using general-purpose learning methods that are in principle
applicable to other complex domains: a multi-agent reinforcement learning algorithm
that uses data from both human and agent games within a diverse league of continually
adapting strategies and counter-strategies, each represented by deep neural networks5,6.
We evaluated our agent, AlphaStar, in the full game of StarCraft II, through a series of
online games against human players. AlphaStar was rated at Grandmaster level for all
three StarCraft races and above 99.8% of officially ranked human players.

StarCraft is a real-time strategy gamea in which players balance high-level economic
decisions with individual control of hundreds of units. This domain raises important game-
theoretic challenges: it features a vast space of cyclic, non-transitive strategies and counter-
strategies; discovering novel strategies is intractable with naive self-play exploration
methods; and those strategies may not be effective when deployed in real-world play with
humans. Furthermore, StarCraft has a combinatorial action space, a planning horizon that
extends over thousands of real-time decisions, and imperfect information7.

Each game consists of tens of thousands of time-steps and thousands of actions, selected in
real-time throughout approximately ten minutes of gameplay. At each step 𝑡, our agent
AlphaStar receives an observation 𝑜# that includes a list of all observable units and their

a StarCraft is a franchise from Blizzard Entertainment. The franchise comprises StarCraft:
Brood War and StarCraft II. In this paper, we used StarCraft II.

attributes. This information is imperfect; the game includes opponent units seen by the
player's own units, and excludes some opponent unit attributes outside the camera view.

Each action 𝑎# is highly structured: it selects what action type, out of several hundred (for
example, move or build worker); who to issue that action to, for any subset of the agent's
units; where to target, among locations on the map or units within the camera view; and when
to observe and act next (Fig. 1A). This representation of actions results in approximately 1026
possible choices at each step. Similar to human players, a special action is available to move
the camera view, so as to gather more information.

Humans play StarCraft under physical constraints that limit their reaction time and the rate of
their actions. The game was designed with those limitations in mind, and removing those
constraints changes the nature of the game. We therefore chose to impose constraints upon
AlphaStar: it suffers from delays due to network latency and computation time; and its
actions per minute (APM) are limited, with peak statistics substantially lower than those of
humans (Figs. 2C, 3G for performance analysis). AlphaStar's play with this interface and
these constraints was approved by a professional player (see ‘Professional player statement’
in Methods).

Learning Algorithm

To address the complexity and game-theoretic challenges of StarCraft, AlphaStar uses a
combination of new and existing general-purpose techniques for neural network
architectures, imitation learning, reinforcement learning, and multi-agent learning. Further
details about these techniques are given in the Methods.

Central to AlphaStar is a policy 𝜋&(𝑎#|𝑠#, 𝑧) = ℙ[𝑎#|𝑠#, 𝑧], represented by a neural network
with parameters 𝜃 that receives all observations 𝑠# = (𝑜2:#, 𝑎2:#42) from the start of the game
as inputs, and selects actions as outputs. The policy is also conditioned on a statistic 𝑧 that
summarises a strategy sampled from human data (for example, a build order).

Our agent architecture consists of general-purpose neural networks components that handle
StarCraft's raw complexity. Observations of player and opponent units are processed using a
self-attention mechanism8. To integrate spatial and non-spatial information, we introduce
scatter connections. To deal with partial observability, the temporal sequence of observations
is processed by a deep long short-term memory (LSTM) system9. To manage the structured,
combinatorial action space, the agent uses an auto-regressive policy7,10,11 and recurrent
pointer network12. Extended Data Fig. 3 summarizes the architecture and Fig. 3F shows an
ablation of each component.

Agent parameters were initially trained by supervised learning. Games were sampled from a
publicly available dataset of anonymized human replays. The policy was then trained to
predict each action 𝑎#, conditioned either solely on 𝑠#, or also on 𝑧. This results in a diverse
set of strategies that reflects the modes of human play.

The agent parameters were subsequently trained by a reinforcement learning algorithm that is
designed to maximize the win rate (that is, compute a best response) against a mixture of
opponents. The choice of opponent is determined by a multi-agent procedure, described
below. AlphaStar's reinforcement learning algorithm is based on a policy gradient algorithm
similar to advantage actor-critic13. Updates were applied asynchronously14 on replayed

experiences15. This requires an approach known as off-policy learning5, that is, updating the
current policy from experience generated by a previous policy. Our solution is motivated by
the observation that, in large action spaces, the current and previous policies are highly
unlikely to match over many steps. We therefore use a combination of techniques that can
learn effectively despite the mismatch: temporal difference learning (TD(l))16, clipped
importance sampling (V-trace)14, and a new self-imitation17 algorithm (UPGO) that moves
the policy towards trajectories with better-than-average reward. To reduce variance, during
training only, the value function is estimated using information from both the player's and the
opponent's perspectives. Figure 3I, K analyses the relative importance of these components.

One of the main challenges in StarCraft is to discover novel strategies. Consider a policy that
has learned to build and utilize the micro-tactics of ground units. Any deviation that builds
and naively uses air units will reduce performance. It is highly improbable that naive
exploration will execute a precise sequence of instructions, over thousands of steps, that
constructs air units and effectively utilizes their micro-tactics. To address this issue, and to
encourage robust behaviour against likely human play, we utilize human data. Each agent is
initialized to the parameters of the supervised learning agent. Subsequently, during
reinforcement learning, we either condition the agent on a statistic 𝑧, in which case agents
receive a reward for following the strategy corresponding to 𝑧, or train the agent
unconditionally, in which case the agent is free to choose its own strategy. Agents also
receive a penalty whenever their action probabilities differ from the supervised policy. This
human exploration ensures that a wide variety of relevant modes of play continue to be
explored throughout training. Figure 3E shows the importance of human data in AlphaStar.

To address the game-theoretic challenges, we introduce league training, an algorithm for
multi-agent reinforcement learning (Fig. 1B, C). Self-play algorithms, similar to those used in
chess and Go18, learn rapidly but may chase cycles (for example, where A defeats B, and B
defeats C, but A loses to C) indefinitely without making progress19. Fictitious self-play
(FSP)20–22 avoids cycles by computing a best response against a uniform mixture of all
previous policies; the mixture converges to a Nash equilibrium in two-player zero-sum
games20. We extend this approach to compute a best response against a non-uniform mixture
of opponents. This league of potential opponents includes a diverse range of agents (Fig. 4D),
as well as their policies from both current and previous iterations. At each iteration, each
agent plays games against opponents sampled from a mixture policy specific to that agent.
The parameters of the agent are updated from the outcomes of those games by the actor-critic
reinforcement learning procedure described above.

The league consists of three distinct types of agent, differing primarily in their mechanism for
selecting the opponent mixture. First, the main agents utilize a prioritized fictitious self-play
(PFSP) mechanism that adapts the mixture probabilities proportionally to the win rate of each
opponent against the agent; this provides our agent with more opportunities to overcome the
most problematic opponents. With fixed probability, a main agent is selected as an opponent;
this recovers the rapid learning of self-play (Fig. 3C). Second, main exploiter agents play
only against the current iteration of main agents. Their purpose is to identify potential
exploits in the main agents; the main agents are thereby encouraged to address their
weaknesses. Third, league exploiter agents use a similar PFSP mechanism to the main agents,
but are not targeted by main exploiter agents. Their purpose is to find systemic weaknesses of
the entire league. Both main exploiters and league exploiters are periodically reinitialized to

encourage more diversity and may rapidly discover specialist strategies that are not
necessarily robust against exploitation. Figure 3B analyses the choice of agents within the
league.

In StarCraft, each player chooses one of three races — Terran, Protoss or Zerg — each with
distinct mechanics. We trained the league using three main agents (one for each StarCraft
race), three main exploiter agents (one for each race), and six league exploiter agents (two for
each race). Each agent was trained using 32 third-generation tensor processing units (TPUs23)
over 44 days. During league training almost 900 distinct players were created.

Empirical Evaluation

We evaluated the three main Terran, Protoss and Zerg AlphaStar agents using the
unconditional policy on the official online matchmaking system Battle.net. Each agent was
assessed at three different snapshots during training: after supervised training only (AlphaStar
Supervised), after 27 days of League training (AlphaStar Mid), and after 44 days of league
training (AlphaStar Final). AlphaStar Supervised and AlphaStar Mid were evaluated starting
from an unranked rating on Battle.net for 30 and 60 games, respectively, for each race;
AlphaStar Final was evaluated from AlphaStar Mid's rating for an additional 30 games for
each race. The Battle.net matchmaking procedure selected maps and opponents. Matches
were played under blind conditions: AlphaStar was not provided with the opponent's identity,
and played under an anonymous account. These conditions were selected to estimate
AlphaStar's strength under approximately stationary conditions, but do not directly measure
AlphaStar's susceptibility to exploitation under repeated play.

AlphaStar Final achieved ratings of 6,275 Match Making Rating (MMR) for Protoss, 6,048
for Terran and 5,835 for Zerg, placing it above 99.8% of ranked human players, and at
Grandmaster level for all three races (Fig. 2A and Extended Data Fig. 7 (analysis),
Supplementary Data, Replays (game replays)). AlphaStar Supervised reached an average
rating of 3,699, which places it above 84% of human players and shows the effectiveness of
supervised learning.

To further analyze AlphaStar we also ran several internal ablations (Fig. 3) and evaluations
(Fig. 4). For multi-agent dynamics, we ran a round-robin tournament of all players
throughout League training, and a second tournament of main agents against held-out
validation agents trained to follow specific human strategies. The main agent performance
improved steadily across all three races. The performance of the main exploiters actually
reduced over time and main agents performed better against the held-out validation agents,
both of which suggest that the main agents grew increasingly robust. The league Nash
equilibrium over all players at each point in time assigns small probabilities to players from
previous iterations, suggesting that the learning algorithm does not cycle or regress. Finally,
the unit composition changed throughout league training, which indicates a diverse strategic
progression.

Conclusion

AlphaStar is the first agent to achieve Grandmaster level in StarCraft II, and the first to reach
the highest league of human players in a widespread professional esport without
simplification of the game. Like StarCraft, real-world domains such as personal assistants,

self-driving cars, or robotics require real-time decisions, over combinatorial or structured
action spaces, given imperfectly observed information. Furthermore, similar to StarCraft,
many applications have complex strategy spaces that contain cycles or hard exploration
landscapes, and agents may encounter unexpected strategies or complex edge cases when
deployed in the real world. The success of AlphaStar in StarCraft II suggests that general-
purpose machine learning algorithms may have a substantial effect on complex real-world
problems.

References

1. AIIDE StarCraft AI Competition. Available at:
https://www.cs.mun.ca/~dchurchill/starcraftaicomp/.

2. Student StarCraft AI Tournament and Ladder. Available at:
https://sscaitournament.com/.

3. Starcraft 2 AI ladder. Available at: https://sc2ai.net/.

4. Churchill, D., Lin, Z. & Synnaeve, G. An Analysis of Model-Based Heuristic Search
Techniques for StarCraft Combat Scenarios. in Artificial Intelligence and Interactive
Digital Entertainment Conference (2017).

5. Sutton, R. & Barto, A. Reinforcement Learning: An Introduction. (MIT Press, 1998).

6. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).

7. Vinyals, O. et al. StarCraft II: A New Challenge for Reinforcement Learning. arXiv
Prepr. arXiv1708.04782 (2017).

8. Vaswani, A. et al. Attention Is All You Need. in Advances in Neural Information
Processing Systems 5998–6008 (2017).

9. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–
1780 (1997).

10. Mikolov, T., Karafiat, M., Burget, L., Cernocky, J. & Khudanpur, S. Recurrent Neural
Network based Language Model. in INTERSPEECH 1045–1048 (2010).

11. Metz, L., Ibarz, J., Jaitly, N. & Davidson, J. Discrete Sequential Prediction of
Continuous Actions for Deep RL. arXiv Prepr. arXiv1705.05035 (2017).

12. Vinyals, O., Fortunato, M. & Jaitly, N. Pointer Networks. in Advances in Neural
Information Processing Systems 2692–2700 (2015).

13. Mnih, V. et al. Asynchronous Methods for Deep Reinforcement Learning. in
International Conference on Machine Learning 1928–1937 (2016).

14. Espeholt, L. et al. IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures. in International Conference on Machine Learning 1406–
1415 (2018).

15. Wang, Z. et al. Sample Efficient Actor-Critic with Experience Replay. in International
Conference on Learning Representations (2017).

16. Sutton, R. Learning to predict by the method of temporal differences. Mach. Learn. 3,
9–44 (1988).

17. Oh, J., Guo, Y., Singh, S. & Lee, H. Self-Imitation Learning. in International
Conference on Machine Learning 3875–3884 (2018).

18. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362, 1140–1144 (2018).

19. Balduzzi, D. et al. Open-ended Learning in Symmetric Zero-sum Games. in
International Conference on Machine Learning 434–443 (2019).

20. Brown, G. W. Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc. 13,
374–376 (1951).

21. Leslie, D. S. & Collins, E. J. Generalised weakened fictitious play. Games Econ.
Behav. 56, 285–298 (2006).

22. Heinrich, J., Lanctot, M. & Silver, D. Fictitious Self-Play in Extensive-Form Games.
in International Conference on Machine Learning 805–813 (2015).

23. Jouppi, N. P., Young, C., Patil, N. & others. In-Datacenter Performance Analysis of a
Tensor Processing Unit. (2017).

Figure 1

Training setup. A: AlphaStar observes the game through an overview map and list of units.
To act, the agent outputs what action type to issue (e.g. build), who it is applied to, where it
targets, and when the next action will be issued. Actions are sent to the game through a
monitoring layer that limits action rate. AlphaStar contends with delays from network latency
and processing time. B: AlphaStar is trained both via supervised learning and reinforcement
learning. In supervised learning (bottom), the parameters are updated to optimise KL
divergence between its output and human actions sampled from a collection of replays. In
reinforcement learning (top), human data is used to sample the statistic 𝑧, and agent
experience is collected to update the policy and value outputs via reinforcement learning
(TD(𝜆), V-trace, UPGO) combined with a KL loss towards the supervised agent. C: Three
pools of agents, each initialised by supervised learning, were subsequently trained with
reinforcement learning. As they train, these agents intermittently add copies of themselves to
the League. The main agents train against all past players, as well as themselves. The League
exploiters train against all past players. The main exploiters train against the main agents.
Main exploiters and League exploiters can be reset to the supervised agent when they add a
player to the League.

Figure 2

Results. A: On Battle.net, StarCraft II players are divided into 7 leagues, from Bronze to
Grandmaster, based on their ratings (MMR). We played three variants of AlphaStar on
Battle.net: (1) AlphaStar Supervised (2) AlphaStar Mid, and (3) AlphaStar Final. The
supervised agent was rated in the top 16% of human players, the midpoint agent within the
top 0.5%, and the final agent, on average, within the top 0.15%, achieving a Grandmaster
level rating for all three races. B: MMR rating of AlphaStar Final per race (from top to
bottom: Protoss, Terran, Zerg) versus opponents encountered on Battle.net (from left to right:
all races combined, Protoss, Terran, Zerg). Note that per-race data is limited; AlphaStar won
all Protoss versus Terran games. C: Distribution of effective actions per minute (EPM) as
reported by StarCraft II for both AlphaStar Final (blue) and human players (red). Averages
are marked as dashed lines.

Figure 3

Ablations for key components of AlphaStar. These experiments use a simplified setup: one
map (Kairos Junction), one race match-up (Protoss versus Protoss), RL and League
experiments limited to 1010 steps, only main agents, and a 50%-50% mix of self-play and
PFSP, unless stated otherwise. More details in Methods. The first column shows Elo ratings
against Ablation Test Agents. A, B: Comparing different League compositions using Elo of
the Main agents (left) and Relative Population Performance of the whole Leagues (right),
which measures exploitability. C, D: Comparing different multi-agent learning algorithms
using Elo (left) and a proxy for forgetting: the minimum win-rate against all past versions,
averaged over time (right). Naive self-play has high Elo, but is more forgetful. See Extended
Data Fig. 5 for more in-depth comparison. E: Ablation study of the different mechanisms to
use human data. G: APM limits relative to those used in AlphaStar. Reducing APM
significantly reduces performance. Surprisingly, increasing APM also reduces performance,
possibly because the agent spends more effort refining micro-tactics than learning diverse
strategies. F, H: Comparison of architectures using the win-rate of supervised agents (trained
in Protoss vs All) against the built-in Elite bot. J: Elo score of StarCraft II built-in bots.
Ratings are anchored by a bot that never acts. I, K: Reinforcement learning ablations,
measured by training a best response against Fixed Opponents to avoid multi-agent
dynamics.

0% 25% 50% 75% 100%
Supervised win-rate vs. Elite bot

Baseline

+ Action delays

+ Pointer network

+ Transformer

+ Scatter connections

 0%

 7%

 36%

 71%

87%

0 600 1200 1800 2400
Test Elo

0% APM limit

10% APM limit

25% APM limit

50% APM limit

100% APM limit

200% APM limit

No APM limit

0

1145

1419

1536

1540

1411

1392

0 600 1200 1800 2400
Test Elo

FSP

pFSP

SP

pFSP+SP

1143

1273

1519

1540

0% 25% 50% 75% 100%
Min win-rate vs. past

FSP

pFSP

SP

pFSP+SP

 69%

 70%

 46%

 71%

0 600 1200 1800 2400
Test Elo

No-op

Built-in Very Easy Bot

Built-in Elite Bot

0

418

603

0 600 1200 1800 2400
Test Elo

No human data

Supervised

Human init

+ Supervised KL

+ Statistics

149

936

1020

1400

1540

0% 25% 50% 75% 100%
Supervised win-rate vs. Elite bot

Camera interface

Non-camera interface

87%

96%

0 600 1200 1800 2400
Test Elo

Main Agents

+ Main Exploiters

+ League Exploiters

1540

1693

1824

0% 25% 50% 75% 100%
Relative Population Performance

Main Agents

+ Main Exploiters

+ League Exploiters

 6%

 35%

 62%

0% 25% 50% 75% 100%
Avg. win-rate

V-Trace

+ TD()

+ UPGO

 49%

 73%

 82%

0% 25% 50% 75% 100%
Avg. win-rate

Without opponent info

With opponent info

 22%

 82%

F Architectures

G APM limits

C Multi-agent learning D Multi-agent learning

J Bots baselines

E Human data usage

H Interface

A League composition B League composition

I Off-policy learning

K Value function

Figure 4

AlphaStar training progression. A: Training Elo of agents in the League during the 44 days
of training. Each point represents a player, evaluated against the entire League and the Elite
built-in bot (whose Elo is set to 0). B: Proportion of Validation Agents that beat the main
agents in more than 80 out of 160 games. It increased steadily over time, which shows the
robustness of League training to unseen strategies. C: The Nash distribution (mixture of the
least exploitable players) of the players in the League, as training progressed. It puts the most
weight on recent players, suggesting that latest strategies largely dominate the previous ones,
without much forgetting or cycling. For example, player 40 was part of the Nash since its
creation at day 20, until 5 days later, when it was completely dominated by newer agents. D:
Average number of each unit built by the Protoss agents over the course of League training,
normalised by the most common unit. Unlike the main agents, the exploiters rapidly explore
different unit compositions. Worker units are removed for clarity.

Methods

Game and Interface

Game Environment: StarCraft is a real-time strategy game that takes place in a science fiction
universe. Since StarCraft was released by Blizzard Entertainment in 1998, there has been a
strong competitive community with tens of millions of dollars of prize money. The most
common competitive setting of StarCraft II is 1v1, where each player chooses one of the
three available races, Terran, Protoss, and Zergb which all have distinct units and buildings,
exhibit different mechanics, and necessitate different strategies when playing for and against.
Players begin with a small base and a few worker units, which gather resources to build
additional units and buildings, scout the opponent, and research new technologies. A player is
defeated if they lose all buildings.

There is no universally accepted notion of fairness in real-time human-computer matches, so
our match conditions, interface, camera view, action rate limits, and delays were developed in
consultation with professional StarCraft II players and Blizzard employees. AlphaStar's play
under these conditions was professional-player approved (Supplementary Data Professional
Player Statement). At each agent step, the policy receives an observation ot and issues an
action at (detailed in Extended Data Tables 1 and 2) through the game interface. There can be
several game time-steps (each 45 ms) per agent step.

Camera View: Humans play StarCraft through a screen that displays only part of the map
along with a high-level view of the entire map, to e.g. avoid information overload. The agent
interacts with the game through a similar camera-like interface, which naturally imposes an
economy of attention, so that the agent chooses which area it fully sees and interacts with.
The agent can move the camera as an action.

Opponent units outside the camera have certain information hidden, and the agent can only
target within the camera for certain actions (e.g. building structures). AlphaStar can target
locations more accurately than humans outside the camera, although less accurately within it
because target locations (selected on a 256x256 grid) are treated the same inside and outside
the camera. Agents can also select sets of units anywhere, which humans can do less flexibly
using control groups. In practice, the agent does not seem to exploit these extra capabilities
(Supplementary Data Professional Player Statement), because of the human prior. Ablation
Fig. 3H shows that using this camera view reduces performance.

APM Limits: Humans are physically limited in the number of actions per minute (APM) they
can execute. Our agent has a monitoring layer which enforces APM limitations. This
introduces an action economy that requires prioritising actions. Agents are limited to
executing at most 22 non-duplicate actions per five second window. Converting between
actions and the APM measured by the game is non-trivial, and agent actions are hard to
compare with human actions (computers can precisely execute different actions from step to
step). See Fig. 2C and Extended Data Fig. 1 for APM details.

Delays: Humans are limited in how quickly they react to new information; AlphaStar has two
sources of delays. First, in real-time evaluation (not training), AlphaStar has a delay of about
110 ms between when a frame is observed and when an action is executed due to latency,

b There is also a Random race, where the game selects the race at random.

observation processing, and inference. Second, because agents decide ahead of time when to
observe next (on average 370 ms, but possibly multiple seconds), they may react late to
unexpected situations. The distribution of these delays is shown in Extended Data Fig. 2.

Related Work

Games have been a focus of artificial intelligence research for decades as a stepping stone
towards more general applications. Classic board games such as chess24 and Go25 have been
mastered using general-purpose reinforcement learning and planning algorithms18.
Reinforcement learning methods have achieved significant successes in video games such as
Atari26, Mario27, Quake III Arena Capture the Flag28, and Dota 229.

Real-time strategy (RTS) games are recognised for their game-theoretic and domain
complexities30. Many sub-problems of RTS games, e.g. micro-management, base economy,
or build order optimisation, have been studied in depth in the literature7,31–34, often in small-
scale environments35,36. For the combined challenge, the StarCraft domain has emerged by
consensus as a research focus1,7. StarCraft: Brood War has an active competitive AI research
community37, and most bots combine rule-based heuristics with other AI techniques such as
search4,38, data driven build order selection39, and simulation40. Reinforcement learning has
also been studied to control units in the game7,33,41–43, and imitation learning has been
proposed to learn unit and building compositions44. Most recently, deep learning has been
used to predict future game states45. StarCraft II similarly has an active bot community3 since
the release of a public API7. No StarCraft bots have defeated professional players, or even
high-level casual players46, and the most successful bots used superhuman capabilities, such
as executing tens of thousands of actions per minute or viewing the entire map at once. These
capabilities make comparing against humans hard, and invalidate certain strategies. Some of
the most recent approaches use reinforcement learning to play the full game, with hand-
crafted, high-level actions47, or rule-based systems with machine learning incrementally
replacing components42. In contrast, AlphaStar proposes a model free, end-to-end learning
approach to playing StarCraft II which sidesteps the difficulties of search-based methods due
to imperfect models, and is applicable to any domain that shares some of the challenges
present in StarCraft.

Dota 2 is a modern competitive team game that shares some complexities of RTS games such
as StarCraft (like imperfect information and large time horizons). Recently, OpenAI Five
defeated a team of professional Dota 2 players and 99.4% of online players29. The hero units
of OpenAI Five are controlled by a team of agents, trained together with a scaled up version
of PPO48, based on handcrafted rewards. However, unlike AlphaStar, some game rules were
simplified, players were restricted to a subset of heroes, agents used hard-coded sub-systems
for certain aspects of the game, and agents did not limit their perception to a camera view.

AlphaStar relies on imitation learning combined with reinforcement learning, which has been
used several times in the past. Similarly to the training pipeline of AlphaStar, the original
AlphaGo initialised a policy network by supervised learning from human games, which was
then used as a prior in Monte-Carlo tree search25. Similar to our statistic z, other work
attempted to train reward functions from human preferences and use them to guide
reinforcement learning49,50 or learned goals from human intervention51.

Related to the League, recent progress in multi-agent research led to agents performing at
human-level in the Capture the Flag team mode of Quake III Arena28. These results were
obtained using population-based training of several agents competing with each other, which
used pseudo-reward evolution to deal with the hard credit assignment problem. Similarly, the
Policy Space Response Oracle framework52 is related to League training, although League
training specifies unique targets for approximate best responses (i.e. PFSP and exploiters).

Architecture

The policy of AlphaStar is a function 𝜋&(𝑎#|𝑠#, 𝑧), mapping all previous observations and
actions 𝑠# = 𝑜2:#, 𝑎2:#42 (defined in Extended Data Tables 1 and 2) and 𝑧 (representing
strategy statistics) to a probability distribution over actions 𝑎# for the current step. 𝜋& is
implemented as a deep neural network with the following structure.

The observations 𝑜# are encoded into vector representations, combined, and processed by a
deep LSTM9 which maintains memory between steps. The action arguments 𝑎# are sampled
auto-regressively10, conditioned on the outputs of the LSTM and the observation encoders.
There is a value function for each of the possible rewards (see Reinforcement Learning).

Architecture components were chosen and tuned with respect to their performance in
supervised learning, and include many recent advances in deep learning
architectures7,8,12,53,54. A high-level overview of the agent architecture is given in Extended
Data Fig. 3, with more detailed descriptions in Supplementary Data Architecture. AlphaStar
has 139 million weights, but only 55 million weights are required during inference. Ablation
Fig. 3F compares the impact of scatter connections, transformer, and pointer network.

Supervised Learning

Each agent is initially trained through supervised learning on replays to imitate human
actions. Supervised learning is used both to initialise the agent and to maintain diverse
exploration55. Because of this, the primary goal is to produce a diverse policy that captures
StarCraft's complexities.

We use a dataset of 971,000 replaysc played on StarCraft II versions 4.8.2 to 4.8.6 by players
with MMR (Blizzard's metric similar to Elo) greater than 3500, i.e. from the top 22% of
players. The observations and actions are returned by the game's raw interface (described in
Extended Data Tables 1 and 2). We train one policy for each race, with the same architecture
as the one used during reinforcement learning.

From each replay, we extract a statistic z encoding each player's build order, defined as the
first 20 constructed buildings and units, and cumulative statistics, defined as the units,
buildings, effects, and upgrades that were present during a game. We condition the policy on
z in both supervised and reinforcement learning, and in supervised learning we set z to zero
10% of the time.

To train the policy, at each step we input the current observations and output a probability
distribution over each action argument (Extended Data Table 2). For these arguments, we
compute the KL divergence between human actions and the policy's outputs, and apply

c Instructions for downloading replays can be found at https://github.com/Blizzard/s2client-
proto

updates using the Adam optimiser56. We also apply L2 regularisation57. The pseudocode of
the supervised training algorithm can be found in Supplementary Data Pseudocode.

We further fine-tune the policy using only winning replays with MMR above 6200 (16,000
games). Fine-tuning improved the win-rate against the built-in Elite bot from 87% to 96% in
Protoss versus Protoss. The fine-tuned supervised agents were rated at 3947, 3607, 3544
MMR for Terran, Protoss, and Zerg, respectively. They are capable of building all units in the
game, and are qualitatively diverse from game to game (Extended Data Fig. 4).

Reinforcement Learning

We apply reinforcement learning to improve the performance of AlphaStar based on agent
versus agent games. We use the match outcome (−1 on a loss, 0 on a draw and +1 on a win)
as the terminal reward 𝑟=, without a discount to accurately reflect the true goal of winning
games. Following the actor-critic paradigm14, a value function 𝑉&(𝑠#, 𝑧) is trained to predict
𝑟#, and used to update the policy 𝜋&(𝑎#|𝑠#, 𝑧).

StarCraft poses several challenges when viewed as a reinforcement learning problem:
exploration is difficult due to domain complexity and reward sparsity; policies need to be
capable of executing diverse strategies throughout training; and off-policy learning is difficult
due to large time horizons and the complex action space.

Exploration and diversity

We use human data to aid in exploration and to preserve strategic diversity throughout
training. First, we initialise the policy parameters to the supervised policy and continually
minimise the KL divergence between the supervised and current policy58,59. Second, we train
the main agents with pseudo-rewards to follow a strategy statistic 𝑧, which we randomly
sample from human data. These pseudo-rewards measure the edit distance between sampled
and executed build orders, and the Hamming distance between sampled and executed
cumulative statistics (see Supplementary Data Detailed Architecture). Each type of pseudo-
reward is active (i.e. non-zero) with probability 25%, and separate value functions and losses
are computed for each pseudo-reward. We found our use of human data to be critical in
achieving good performance with reinforcement learning (Fig. 3E).

Value and policy updates

New trajectories are generated by actors. Asynchronously, model parameters are updated by
learners, using a replay buffer that stores trajectories. Because of this, AlphaStar is subject to
off-policy data, which potentially requires off-policy corrections. We found that off-policy
correction methods like V-trace14 can be inefficient in large, structured action spaces like the
one we used for StarCraft, because distinct actions can result in similar (or even identical)
behaviour. We address this by using a hybrid approach. The policy is updated using V-trace
and the value estimates are updated using TD(𝜆)5, which does not apply off-policy
corrections (ablation in Fig. 3I). To decrease variance of the value estimates, we also use the
opponent's observations as input to the value functions (ablation in Fig. 3K). Note that these
are only used during training, as value functions are unnecessary during evaluation.

For the policy 𝜋&(𝑎#|𝑠#, 𝑧), using V-trace off-policy corrections improved learning stability.
To mitigate early trace cutting due to the large action space, we assume independence
between the action type, delay, and all other arguments, and so update them separately.

In addition to the V-trace policy update, we introduce an upgoing policy update (UPGO),
which updates the policy parameters in the direction of

𝜌# @𝐺#U − 𝑉&(𝑠#, 𝑧)C 	∇&log	𝜋&(𝑎#|𝑠#, 𝑧)	,

where

𝐺#U = I𝑟# + 𝐺#J2
U if	𝑄(𝑠#J2, 𝑎#J2, 𝑧) ≥ 𝑉&(𝑠#J2, 𝑧)

𝑟# + 𝑉&(𝑠#J2, 𝑧) otherwise

is an upgoing return, 𝑄(𝑠#, 𝑎#, 𝑧) is an action-value estimate, 𝜌# = min WXYZ𝑎#[𝑠#, 𝑧\
XY]Z𝑎#[𝑠#, 𝑧\

, 1^ is a

clipped importance ratio, and 𝜋&] is the policy that generated the trajectory in the actor.
Similar to self-imitation learning17, the idea is to update the policy from partial trajectories
with better-than-expected returns by bootstrapping when the behaviour policy takes a worse-
than-average action (ablation in Fig. 3I). Due to the difficulty of approximating 𝑄(𝑠#, 𝑎#, 𝑧)
over the large action space of StarCraft, we estimate action-values with a one-step target,
𝑄(𝑠#, 𝑎#, 𝑧) = 𝑟# + 𝑉&(𝑠#J2, 𝑧).

The overall loss is a weighted sum of the policy and value function losses described above,
corresponding to the win-loss reward 𝑟# as well as pseudo-rewards based on human data, the
KL divergence loss with respect to the supervised policy, and the standard entropy
regularisation loss13. We optimise the overall loss with Adam56. The pseudocode of the
reinforcement learning algorithm can be found in Supplementary Data Pseudocode.

Multi-agent Learning

League training is a multi-agent reinforcement learning algorithm that is designed both to
address the cycles commonly encountered during self-play training, and to integrate a diverse
range of strategies. During training, we populate the League by regularly saving the
parameters from our agents (that are being trained by the RL algorithm) as new players
(which have fixed, frozen parameters). We also continuously re-evaluate the internal payoff
estimation, giving agents up-to-date information about their performance against all players
in the League (see Evaluators in the Extended Data Fig. 6).

Prioritised Fictitious Self-Play

Our Self-Play (SP) algorithm plays games between the latest agents for all three races. This
approach may chase cycles in strategy space and does not work well in isolation (Fig. 3D).
Fictitious Self-Play (FSP)20–22 avoids cycles by playing against all previous players in the
League. However, many games are wasted against players that are defeated in almost 100%
of games. Consequently, we introduce Prioritised Fictitious Self-Play (PFSP). Instead of
uniformly sampling opponents in the League, we use a matchmaking mechanism to provide a
good learning signal. Given a learning agent 𝐴, we sample the frozen opponent 𝐵 from a
candidate set 𝒞 with probability

𝑓(ℙ[𝐴	beats	𝐵])
∑ 𝑓(ℙ[𝐴	beats	𝐶])g∈𝒞

,

where 𝑓: [0,1] → [0,∞) is some weighting function.

Choosing 𝑓hard(𝑥) = (1 − 𝑥)m makes PFSP focus on the hardest players, where 𝑝 ∈ ℝJ
controls how entropic the resulting distribution is. Since 𝑓hard(1) = 0, no games are played
against opponents that the agent already beats. By focusing on the hardest players, the agent
must beat everyone in the League rather than maximising average performance, which is
even more important in highly non-transitive games like StarCraft, where the pursuit of the
mean win-rate might lead to policies that are easy to exploit. This scheme is used as the
default weighting of PFSP. Consequently, on the theoretical side, one can view 𝑓hard as a
form of smooth approximation of max-min optimisation, as opposed to max-avg that FSP
imposes. In particular, this helps with integrating information from exploits, as these are
strong but rare counter strategies, and a uniform mixture would be able to just ignore them
(Extended Data Fig. 5).

Only playing against the hardest opponents can waste games against much stronger
opponents, so PFSP also uses an alternative curriculum, 𝑓var(𝑥) = 𝑥(1 − 𝑥), where the agent
preferentially plays against opponents around its own level. We use this curriculum for main
exploiters and struggling main agents.

Populating the League

During training we used three agent types that differ only in the distribution of opponents
they train against, when they are snapshotted to create a new player, and the probability of
resetting to the supervised parameters.

Main Agents are trained with a proportion of 35% SP, 50% PFSP against all past players in
the League, and an additional 15% of PFSP matches against forgotten main players the agent
can no longer beat and past main exploiters. If there are no forgotten players or strong
exploiters, the 15% is used for self-play instead. Every 2 ∙ 10s steps, a copy of the agent is
added as a new player to the League. Main agents never reset.

 League Exploiters are trained using PFSP and their frozen copies are added to the League
when they defeat all players in the League in more than 70% of games, or after a timeout of
2 ∙ 10s steps. At this point there is a 25% probability that the agent is reset to the supervised
parameters. The intuition is that League Exploiters identify global blind spots in the League
(strategies that no player in the League can beat, but that are not necessarily robust
themselves).

Main Exploiters play against main agents. Half of the time, and if the current probability of
winning is lower than 20%, exploiters use PFSP with 𝑓var weighting over players created by
the main agents. This forms a curriculum which facilitates learning. Otherwise there is
enough learning signal and it plays against the current main agents. These agents are added to
the League whenever all three main agents are defeated in more than 70% of games, or after a
timeout of 4 ∙ 10ssteps. They are then reset to the supervised parameters. Main Exploiters
identify weaknesses of main agents, and consequently make them more robust.

For more details refer to the pseudocode in Supplementary Materials.

Infrastructure

In order to train the League, we run a large number of StarCraft II matches in parallel and
update the parameters of the agents based on data from those games. To manage this, we
developed a highly scalable training setup with different types of distributed workers.

For every training agent in the League, we run 16,000 concurrent StarCraft II matches and 16
actor tasks (each using a TPU v3 device with 8 TPU cores23) to perform inference. The game
instances progress asynchronously on preemptible CPUs (roughly equivalent to 150
processors with 28 physical cores each), but requests for agent steps are batched together
dynamically to make efficient use of the TPU. Utilising TPUs for batched inference provides
large efficiency gains over prior work14,28.

Actors send sequences of observations, actions, and rewards over the network to a central
128-core TPU learner worker, which updates the parameters of the training agent. The
received data is buffered in memory and replayed twice. The learner worker performs large-
batch synchronous updates. Each TPU core processes a mini-batch of 4 sequences, for a total
batch size of 512. The learner processes about 50,000 agent steps per second. The actors
update their copy of the parameters from the learner every 10 seconds.

We instantiate 12 separate copies of this actor-learner setup: one main agent, one main
exploiter and two League exploiter agents for each StarCraft race. One central coordinator
maintains an estimate of the payoff matrix, samples new matches on request, and resets main
and league exploiters. Additional evaluator workers (running on CPU) are used to
supplement the payoff estimates. See Extended Data Fig. 6 for an overview of the training
setup.

Evaluation

AlphaStar Battle.net Evaluation

AlphaStar agents were evaluated against humans on Battle.net, Blizzard's online
matchmaking system based on MMR ratings, on StarCraft II balance patch 4.9.3. AlphaStar
Final was rated at Grandmaster level, above 99.8% of human players who were active enough
in the past months to be placed into a league in the European server (about 90,000 players).

AlphaStar only played opponents who opted to participate in the experiment (the majority of
players opted in)60, used an anonymous account name, and played on four maps: Cyber
Forest, Kairos Junction, King's Cove, and New Repugnancyd. Humans also must select at
least four maps and frequently play under anonymous account names. Each agent ran on a
single high-end consumer GPU. We evaluated at three points during training: supervised,
midpoint, and final.

For the supervised and midpoint evaluation, each agent began with a fresh, unranked account.
Their MMR was updated on Battle.net as for humans. The supervised and midpoint

d Blizzard updated the map pool a few weeks before testing. Instead of retraining AlphaStar,
we simply played on the four common maps that were kept in the pool of seven available
maps.

evaluation played 30 and 60 games respectively. The midpoint evaluation was halted while
still increasing because the anonymity constraint was compromised after 50 games.

For the final Battle.net evaluation, we used several accounts to parallelise the games and help
avoid identification. The MMRs of our accounts were seeded randomly from the distribution
of combined, estimated, midpoint MMRs. Consequently, we no longer used the iterative
MMR estimation provided in Battle.net, and instead used the underlying probabilistic model
provided by Blizzard: given our rating r with uncertainty u, and opponent rating ri	with
uncertainty ui ∈ [0.1, 1.0], the probability of the outcome oi ∈ {−1, 1} is

ℙ[oi = 1|r,u,ri,ui] = 1 − ℙ[oi = −1|r,u,ri,ui] = Φ

⎝

⎛ r − ri

400|2 + u} + ui2⎠

⎞ ≈ Φ@
r − ri
568 C	

where f is the CDF of a standard Gaussian distribution, and where we used Battle.net's
minimum uncertainties u = ui = 0.1.

Under i.i.d. assumptions of match results and a uniform prior over MMRs, we can compute
our rating as

argmaxr∈ℕℙ[r|results]=	argmaxr∈ℕℙ[results|r]U(r) = argmaxr∈ℕ ∏ ℙ[oi|r,ri].�
��2

We validated our MMR computation on the 200 most recent matches of Dario “TLO”
Wünsch, a professional StarCraft II player, and obtained an MMR estimate of 6334, while the
average MMR reported by Battle.net was 6336.

StarCraft Demonstration Evaluation

In December 2018, we played two 5-game series against StarCraft II professional players
Grzegorz “MaNa” Komincz and Dario “TLO” Wünsch, though TLO did not play the same
StarCraft II race that he plays professionally. These games took place with a different,
preliminary version of AlphaStar61. In particular, the agent did not have a limited camera,
was less restricted in how often it could act, and played for and against a single StarCraft II
race on a single map. AlphaStar won all 10 games in both 5 game series, though an early
camera prototype lost a follow-up game against MaNa.

Analysis

Agent sets

Validation Agents: We validated League robustness against a set of 17 strategies trained
using only main agents and no exploiters, and fixing z to a hand-curated set of interesting
strategies (e.g. a cannon rush or early flying units).

Ablation Test Agents: Ablation test agents include the validation agents, and the first (i.e.
weaker) 20 main and 20 League exploiter Protoss agents created by full League Training.

Fixed Opponents: To evaluate our RL algorithms, we computed the best response against a
uniform mixed strategy composed of the first 10 League exploiter Protoss agents created by
League Training.

Metrics used in Figures

Elo rating: To compute internal Elo ratings of the League, we added the built-in bots, and
used it to estimate Elo with the following model:

ℙ[r1	beats	r2] =
1

1 + 𝑒4(r14r2)/��� ≈ Φ@
r1 − r2
400 C

where r1 and r2 are the Elo ratings of both players. Since the Elo rating has no intrinsic
absolute scale, we ground it by setting the rating of the built-in Elite bot to 0.

Relative Population Performance (RPP) is the expected outcome of the meta-game between
two populations after they reach the Nash equilibrium19. Given a payoff matrix between all
agents in the Leagues A and B of sizes N and M respectively 𝑃�� ∈ [0,1]�×�:

RPP(𝑃��) = Nash(𝑃��)=	𝑃��	Nash(𝑃��)

where Nash(𝑋) ∈ [0,1]� is a vector of probabilities assigned to playing each agent, in
League X of size K, in the Nash equilibrium. High RPP means that League A consists of
agents that can form a mixed strategy that can exploit agents from B, while not being too
exploitable by any mixed strategy from B.

AlphaStar Generality

To address the complexity and game-theoretic challenges of StarCraft, AlphaStar uses a
combination of new and existing general-purpose techniques for neural network
architectures, imitation learning, reinforcement learning, and multi-agent learning. These
techniques and their combination are widely applicable.

The neural network architecture components, including the new scatter connections, are all
generally applicable to any domain whose observations comprises a combination of images,
lists, and sets, all of which are present in StarCraft.

AlphaStar's action space is defined as a set of functions with typed arguments. Any domain
which defines a similar API can be tackled with the same decomposition of complex,
structured action spaces, whose joint probability is decomposed via the chain rule (akin to
e.g. language modelling10 or theorem proving).

Imitation learning in AlphaStar requires a large amount of human demonstrations to be
effective, and thus is only applicable to those domains which provide such a set of
demonstrations. Using a latent variable z to induce exploration is not specific to StarCraft, but
the particular choice of statistics required domain knowledge. In particular, we chose z to
encode openings and units in StarCraft. Pseudo-rewards were based on appropriate distance
metrics for these statistics, such as edit distance or Hamming distance.

AlphaStar's underlying reinforcement learning algorithm can be applied to any RL
environment. Using an opponent's observations for a lower-variance baseline and new
components, such as hybrid off-policy learning, UPGO, and distillation towards an imitation
policy, are also widely applicable.

Lastly, we propose a new multi-agent training regime with different kinds of exploiters
whose purpose is to strengthen the main agents. Together with prioritised FSP, these are all
general-purpose techniques applicable to any multiplayer domain.

Code and Data Availability Statement

Professional Player Statement

The following quote describes our interface and limitations from StarCraft II professional
player Dario “TLO” Wünsch (who is part of the team and an author of this paper).

The limitations that have been put in place for AlphaStar now mean that it feels very different
from the initial show match in January. While AlphaStar has excellent and precise control it
doesn't feel superhuman - certainly not on a level that a human couldn't theoretically
achieve. It is better in some aspects than humans and then also worse in others, but of course
there are going to be unavoidable differences between AlphaStar and human players.

I've had the pleasure of providing consultation to the AlphaStar team to help ensure that
DeepMind's system does not have any unfair advantages over human players. Overall, it feels
very fair, like it is playing a `real' game of StarCraft and doesn't completely throw the
balance off by having unrealistic capabilities. Now that it has limited camera view, when I
multi-task it doesn't always catch everything at the same time, so that aspect also feels very
fair and more human-like.

Replay Data

All the games that AlphaStar played online can be found in the file replays.zip
(Supplementary Data Replays), and the raw data from the Battle.net experiment can be found
in bnet.json (Supplementary Data Battle.net).

Code

The StarCraft II environment was open sourced in 2017 by Blizzard and DeepMind7. All the
human replays used for imitation learning can be found at
https://github.com/Blizzard/s2client-proto. The pseudocode for the supervised learning,
reinforcement learning, and multi-agent learning components of AlphaStar can be found in
the file pseudocode.zip (Supplementary Data Pseudocode). All the neural architecture details
and hyper-parameters can be found in the file detailed-architecture.txt (Supplementary Data
Architecture).

Method References

24. Campbell, M., Hoane, A. & Hsu, F. Deep Blue. Artif. Intell. 134, 57–83 (2002).

25. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484–489 (2016).

26. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518,
529–533 (2015).

27. Pathak, D., Agrawal, P., Efros, A. A. & Darrell, T. Curiosity-Driven Exploration by
Self-Supervised Prediction. in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops 16–17 (2017).

28. Jaderberg, M. et al. Human-level performance in 3D multiplayer games with
population-based reinforcement learning. Science 364, 859–865 (2019).

29. OpenAI. OpenAI Five. (2018). Available at: https://blog.openai.com/openai-five/.

30. Buro, M. Real-Time Strategy Games: A New AI Research Challenge. in International
Joint Conference on Artificial Intelligence 1534–1535 (2003).

31. Samvelyan, M. et al. The StarCraft Multi-Agent Challenge. in International
Conference on Autonomous Agents and MultiAgent Systems 2186–2188 (2019).

32. Zambaldi, V. et al. Relational Deep Reinforcement Learning. in International
Conference on Learning Representations (2018).

33. Usunier, N., Synnaeve, G., Lin, Z. & Chintala, S. Episodic Exploration for Deep
Deterministic Policies: An Application to StarCraft Micromanagement Tasks. in
International Conference on Learning Representations (2017).

34. Weber, B. G. & Mateas, M. Case-based Reasoning for Build Order in Real-Time
Strategy Games. in Artificial Intelligence and Interactive Digital Entertainment
Conference (2009).

35. Buro, M. ORTS: A Hack-Free RTS Game Environment. in International Conference
on Computers and Games 280–291 (2002).

36. Churchill, D. SparCraft: Open source StarCraft combat simulation. (2013). Available
at: https://code.google.com/archive/p/sparcraft/.

37. Weber, B. G. AIIDE 2010 StarCraft Competition. in Artificial Intelligence and
Interactive Digital Entertainment Conference (2010).

38. Uriarte, A. & Ontañón, S. Improving Monte Carlo Tree Search Policies in StarCraft
via Probabilistic Models Learned from Replay Data. in Artificial Intelligence and
Interactive Digital Entertainment Conference (2016).

39. Hsieh, J.-L. & Sun, C.-T. Building a Player Strategy Model by Analyzing Replays of
Real-Time Strategy Games. in IEEE International Joint Conference on Neural
Networks 3106–3111 (2008).

40. Synnaeve, G. & Bessiere, P. A Bayesian Model for Plan Recognition in RTS Games
Applied to StarCraft. in Artificial Intelligence and Interactive Digital Entertainment
Conference (2011).

41. Shao, K., Zhu, Y. & Zhao, D. Starcraft Micromanagement with Reinforcement
Learning and Curriculum Transfer Learning. IEEE Trans. Emerg. Top. Comput. Intell.
3, 73–84 (2018).

42. Facebook CherryPi. Available at: https://torchcraft.github.io/TorchCraftAI/.

43. Berkeley Overmind. Available at: https://http//overmind.cs.berkeley.edu/.

44. Justesen, N. & Risi, S. Learning Macromanagement in StarCraft from Replays using
Deep Learning. in IEEE Conference on Computational Intelligence and Games (CIG)
162–169 (2017).

45. Synnaeve, G. et al. Forward Modeling for Partial Observation Strategy Games - A
StarCraft Defogger. in Advances in Neural Information Processing Systems 10738–

10748 (2018).

46. Farooq, S. S., Oh, I.-S., Kim, M.-J. & Kim, K. J. StarCraft AI Competition Report. AI
Mag. 37, 102–107 (2016).

47. Sun, P. et al. TStarBots: Defeating the Cheating Level Builin AI in StarCraft II in the
Full Game. arXiv Prepr. arXiv1809.07193 (2018).

48. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal Policy
Optimization Algorithms. arXiv Prepr. arXiv1707.06347 (2017).

49. Ibarz, B. et al. Reward learning from human preferences and demonstrations in Atari.
in Advances in Neural Information Processing Systems 8011–8023 (2018).

50. Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W. & Abbeel, P. Overcoming
Exploration in Reinforcement Learning with Demonstrations. in IEEE International
Conference on Robotics and Automation 6292–6299 (2018).

51. Christiano, P. F. et al. Deep reinforcement learning from human preferences. in
Advances in Neural Information Processing Systems 4299–4307 (2017).

52. Lanctot, M. et al. A Unified Game-Theoretic Approach to Multiagent Reinforcement
Learning. in Advances in Neural Information Processing Systems 4190–4203 (2017).

53. Perez, E., Strub, F., De Vries, H., Dumoulin, V. & Courville, A. FiLM: Visual
Reasoning with a General Conditioning Layer. in AAAI Conference on Artificial
Intelligence (2018).

54. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition.
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
770–778 (2016).

55. Hinton, G., Vinyals, O. & Dean, J. Distilling the Knowledge in a Neural Network.
arXiv Prepr. arXiv1503.02531 (2015).

56. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv Prepr.
arXiv1412.6980 (2014).

57. Bishop, C. M. Pattern Recognition and Machine Learning. (Springer, 2006).

58. Rusu, A. A. et al. Policy Distillation. in International Conference on Learning
Representations (2016).

59. Parisotto, E., Ba, J. & Salakhutdinov, R. Actor-Mimic: Deep Multitask and Transfer
Reinforcement Learning. in International Conference on Learning Representations
(2016).

60. DeepMind Research on Ladder. Available at: https://starcraft2.com/en-
us/news/22933138.

61. Vinyals, O. et al. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II.
(2019). Available at: https://deepmind.com/blog/article/alphastar-mastering-real-time-
strategy-game-starcraft-ii.

Acknowledgements

We would like to thank Blizzard for creating StarCraft and acknowledge them for their
continued support of the research environment, and enabling AlphaStar to participate in
Battle.net. In particular, we would like to thank Austin Hudelson, Chris Lee, Kevin
Calderone, and Tim Morten. We would also like to thank StarCraft II professional players
Grzegorz “MaNa” Komincz and Diego “Kelazhur” Schwimer for their StarCraft expertise
and advice.

We also wish to thank Adam Cain, Ali Razavi, Daniel Toyama, David Balduzzi, Doug Fritz,
Eser Aygün, Florian Strub, Georg Ostrovski, Guillaume Alain, Haoran Tang, Jaume Sanchez,
Jonathan Fildes, Julian Schrittwieser, Justin Novosad, Karen Simonyan, Karol Kurach,
Philippe Hamel, Ricardo Barreira, Scott Reed, Sergey Bartunov, Shibl Mourad, Steve
Gaffney, Thomas Hubert, the team that created PySC2 and the whole DeepMind Team, with
special thanks to the research platform team, comms and events teams, for their support,
ideas, and encouragement.

Author Contributions

O.V., I.B., W.M.C., M.M., A.D., J.C., D.C., R.P., T.E., P.G., J.O., D.Ho., M.K., I.D., A.H.,
L.S., T.C., J.A., C.A., and D.S. contributed equally.

O.V., I.B., W.M.C., M.M., A.D., J.C., D.C., R.P., T.E., P.G., J.O., D.Ho., M.K., I.D., A.H.,
L.S., T.C., J.A., C.A., R.L., M.J., V.D., Y.S., S.V., D.B., T.Pa., C.G., Z.W., T.Pf., T.Po., and
D.S. designed and built AlphaStar with advice from T.S., and T.L.

J.M., and R.R. contributed to software engineering.

D.W. and D.Y. provided expertise in the StarCraft II domain.

K.K., D.Ha., K.M., O.S., and C.A. managed the project

D.S., W.M.C., O.V., J.O., I.B., and D.C. wrote the paper with contributions from M.M., J.C.,
D.Ho., L.S., R.L., T.C., T.S., and T.L.

O.V. and D.S. led the team.

Competing Interests

M.J., W.M.C., O.V., and D.S. have filed provisional patent application 62/796,567 about the
contents of this manuscript. The remaining authors declare no competing financial or
conflicts of interest.

Materials and correspondence

Correspondence and material requests should be sent to Oriol Vinyals: vinyals@google.com.

Extended Data

Extended Data Fig. 1 | APM limits. (Top) Win probability of AlphaStar Supervised against
itself, when applying various agent action rate limits. Our limit does not affect supervised
performance and is acceptable when compared to humans. (Bottom) Distributions of APMs
of AlphaStar Final (blue) and humans (red) during games on Battle.net. Averages are marked
as dashed lines.

Extended Data Fig. 2 | Delays. (Left) Distribution of delays between when the game
generates an observation and when the game executes the corresponding agent action.
(Right) Distribution of how long agents request to wait without observing between
observations.

0% 50% 100% 150% 200%
Percentage of AlphaStar APM limit

0%

25%

50%

75%

100%

W
in

 p
ro

b
ab

ili
ty

0 300 600 900

APM

0. 00

0. 01

0. 02

0. 03

0. 04

0. 05

Pr
ob

ab
ili
ty

Avg 99.9%Max
200 554 755
260 789 890

Terran

0 300 600 900

APM

Avg 99.9%Max
205 537 621
234 907 1814

Protoss

0 300 600 900

APM

Avg 99.9%Max
259 823 1192
317 1663 4199

Zerg

1

0 50 100 150 200 250 300 350 400

Delay (ms)

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

Fr
ac

ti
on

 o
f f

ra
m

es

 113 ms

0 500 1000 1500 2000

Delay (ms)

0. 00

0. 05

0. 10

0. 15

0. 20

Fr
ac

ti
on

 o
f f

ra
m

es

 369 ms

1

Extended Data Fig. 3 | Overview of the architecture of AlphaStar. A detailed description
can be found in Supplementary Data Architecture.

Extended Data Fig. 4 | Distribution of units built in a game. Units built by Protoss
AlphaStar Supervised (left) and AlphaStar Final (right) over multiple self-play games.
AlphaStar Supervised can build every unit.

Value Network

Value

Value Network

Value

Scalar encoder

MLP

Ent it y encoder

Transformer

Spat ial encoder

ResNet

Deep LSTM

Core

Act ion t ype

Residual MLP

Queued Selected unit s

MLP

Target unit

At tent ion

Target point

Deconv ResNet

Embedding

Pointer Network

Embedding Embedding

Delay

MLP

Embedding

MLP MLP MLP MLP

Scalar features Ent it ies Minimap

Neural network

Act ion

Output

Input

Legend

Value Network

Value

Baseline features

Connect ion

Skip
connect ion

Extended Data Fig. 5 | A more detailed analysis of multi-agent ablations from Figure 3
C and D. PFSP based training outperforms FSP under all measures considered: it has a
stronger population measured by relative population performance, provides a less exploitable
solution, and has better final agent performance against the corresponding League.

Extended Data Fig. 6 | Training Infrastructure. Diagram of the training setup for the entire
League.

31% 96% 94% 96% 99%

3% 50% 61% 88% 99%

3% 39% 45% 84% 99%

2% 12% 12% 50% 85%

0% 1% 0% 15% 50%

46% 95% 88% 95% 95%

43% 90% 85% 97%100%

40% 79% 70% 88% 98%

20% 61% 49% 94% 89%

13% 42% 21% 62% 94%

Learner Actors Environments

Evaluators

Coordinator

Trajectories Observat ions

Parameters Act ions

Match info

Outcomes

Parameters OutcomesMatch info

128 TPU cores 16 tasks

6K tasks

16K tasks

12 copies

Agent

TPU device CPU devices

Extended Data Fig. 7 | Battle.net performance details. (Top) Visualisation of all the
matches played by AlphaStar Final (right) and matches against opponents above 4500 MMR
of AlphaStar Mid (left). Each Gaussian represents an opponent MMR (with uncertainty):
AlphaStar won against green opponents and lost to red. Blue is our MMR estimate, and black
is the MMR reported by StarCraft II. The orange background is the Grandmaster league
range. (Bottom) Win probability versus gap in MMR. The shaded grey region shows MMR
model predictions when varying players' uncertainty. The red and blue line are empirical win-
rates for players above 6000 MMR and AlphaStar Final respectively. Both human and
AlphaStar win-rates closely follow the MMR model.

Extended Data Fig. 8 | Payoff matrix (limited to only Protoss vs. Protoss for simplicity),
split into agent types of the League. Blue means a row agent wins, red loses, and white
draws. The main agents behave transitively: the more recent agents win consistently against
older main agents and exploiters. Interactions between exploiters are highly non-transitive –
across the full payoff, there are around 3,000,000 rock-paper-scissor cycles (with requirement
of at least 70% win rates to form a cycle) that involve at least one exploiter, and around 200
that involve only main agents.

Main Agents
M

ai
n

A
ge

nt
s

League Exploiter 1
Le

ag
ue

 E
xp

lo
it

er
 1

League Exploiter 2
Le

ag
ue

 E
xp

lo
it

er
 2

Main Exploiter
M

ai
n

Ex
p

lo
it

er

Extended Data Table 1 | Agent input space

The observations the agent receives through the raw interface. Information is hidden if it
would be hidden to a human player. For example, AlphaStar will not see most information
about invisible opponent units unless there is a detector; opponent units hidden by the fog of
war will not appear in the list of units; opponent units outside of the agent's camera will only
have the owner, display type, and position; and opponent's cloaked units will only appear in
the list if they are within the agent's camera. Note that this interface displays information that
must be inferred or remembered by humans, like the armour upgrades of a visible opponent
unit, attack cool-downs, or entities occluded by other entities.

Extended Data Table 2 | Agent action space

The action arguments the agents can submit through the raw interface as part of an action.
Some fields may be ignored depending on the action type.

Category Field Description

Entities: up to 512

Unit type E.g. Drone or Forcefield
Owner Agent, opponent, or neutral
Status Current health, shields, energy
Display type E.g. Snapshot, for opponent buildings in the fog of war
Position Entity position
Number of workers For resource collecting base buildings
Cooldowns Attack cooldown
Attributes Invisible, powered, hallucination, active, in cargo, and/or on the screen
Unit attributes E.g. Biological or Armored
Cargo status Current and maximum amount of cargo space
Building status Build progress, build queue, and add-on type
Resource status Remaining resource contents
Order status Order queue and order progress
Buff status Buffs and buff durations

Map: 128x128 grid

Height Heights of map locations
Visibility Whether map locations are currently visible
Creep Whether there is creep at a specific location
Entity owners Which player owns entities
Alerts Whether units are under attack
Pathable Which areas can be navigated over
Buildable Which areas can be built on

Player data

Race Agent and opponent requested race, and agent actual race
Upgrades Agent upgrades and opponent upgrades, if they would be known to humans
Agent statistics Agent current resources, supply, army supply, worker supply, maximum supply, number of idle workers, number

of Warp Gates, and number of Larva

Game statistics Camera Current camera position. The camera is a 32x20 game-unit sized rectangle
Time Current time in game

1

Field Description

Action type Which action to execute. Some examples of actions are
moving a unit, training a unit from a building, moving the
camera, or no-op. See PySC2 for a full list6

Selected units Entities that will execute the action
Target An entity or location in the map discretised to 256x256

targeted by the action
Queued Whether to queue this action or execute it immediately
Repeat Whether or not to issue this action multiple times
Delay The number of game time-steps to wait until receiving

the next observation

1

