TECHNICAL SPECIFICATION: SPERS ORBITAL LOGISTICS NETWORK

System Designator: OLN-T1 (Orbital Logistics Network - Tether Class 1) Component: Electrodynamic Induction Tether (The "Space Highway") Date: November 24, 2025 Classification: Infrastructure / Propulsion

1.0 SYSTEM OVERVIEW

The OLN-T1 is a propellant-less propulsion system designed to transport heavy cargo between Low Earth Orbit (LEO) and Geostationary Orbit (GEO) / Lunar Transfer Injection.

Instead of chemical rockets, the system utilizes Electrodynamic Tethers (EDTs) to interact with Earth's magnetosphere. By driving current through a conductive tether, the system generates a Lorentz Force, pushing against the Earth's magnetic field to boost or de-orbit cargo without consuming reaction mass.

1.1 Key Advantages

- Zero Fuel Cost: Propulsion is generated purely from electrical energy (Solar/Nuclear).
- Reusability: Tethers are permanent infrastructure, not consumable stages.
- Material Synergy: Constructed from Carbon Nanotubes (CNT) harvested from the SPERS reactor waste stream.

2.0 HARDWARE ARCHITECTURE

2.1 The Tether (The "Rail")

The physical connection and propulsion medium.

- Material: Multi-walled Carbon Nanotube (MWCNT) composite braid.
- Length: 20 km to 100 km (Variable deployment).
- Conductivity: Aluminum-coated core for electron flow.
- Tensile Strength: $> 60~\mathrm{GPa}$ (Derived from reactor carbon output).
- Geometry: "Tape" profile $(50~\mathrm{cm}$ wide, microns thick) to resist micrometeoroid severance.

2.2 The Crawler (The Cargo Tug)

The vehicle that grips the tether and houses the payload.

- Propulsion: Inductive Linear Motor.
- Power Source: Solar Wings + Onboard Supercapacitors.
- Mechanism:
 - Boost Mode: Solar panels drive current down the tether → Lorentz Force pushes the system up (higher orbit).
 - Brake/Harvest Mode: System moves down orbit → Induces current up the tether → Generates electricity (Regenerative Braking).

3.0 PHYSICS OF OPERATION

- *F* (Force): The thrust vector.
- I (Current): Electrical current flowing through the tether (up to 50 A).
- L (Length): The deployed length of the tether (20–100 km).
- B (Magnetic Field): Earth's magnetic field vector.

3.1 Operational Modes

Mode	Action	Current Flow	Result
Boost (Up)	Power Supply drives current.	Against EMF	Orbit raises. (Cargo to GEO)
De-Orbit (Down)	Passive electron collection.	With EMF	Orbit lowers. (Return empty crates)
Station Keeping	Variable pulsing.	Balanced	Maintains altitude against drag.

4.0 INTEGRATION WITH SPERS

The OLN-T1 is the logistical backbone of the Phoenix Protocol.

- 1. Source: SPERS reactors on Earth produce excess Carbon during waste dissociation.
- 2. Fabrication: This carbon is spun into Nanotube ribbons.
- 3. Deployment: Ribbons are launched to build the Tethers.
- 4. **Operation:** Spent SPERS cores are launched to LEO. The Tether system grabs them and "railguns" them to the High Earth Orbit (HEO) detonation zone without using fuel.
- 5. **Return:** Harvested Rare Earth Elements (REE) are loaded into descent capsules. The Tether absorbs their orbital energy to generate electricity, gently lowering them to LEO for retrieval.

5.0 PERFORMANCE DATA

- Thrust: $0.5~\mathrm{N}$ to $5~\mathrm{N}$ continuous (Low thrust, but applied 24/7).
- Specific Impulse (I_{sp}): Infinite (No propellant mass ejected).
- Payload Capacity: 5,000 kg per crawler.
- Transit Time (LEO to GEO): 30 60 days (Slow, efficient freight).

6.0 SAFETY PROTOCOLS

- Severance Protection: The "Tape" geometry ensures that small impacts puncture the tape but do not snap the tether.
- **Discharge Control:** Hollow Cathode Plasma Contactors prevent dangerous charge buildup on the cargo modules.
- Collision Avoidance: The tether is actively rigidized by current flow, allowing it to maneuver slightly to dodge space debris.