
 

DEVOPS
REVEALED

TRAINING BOOK
THIRD EDITION

BY INTERNATIONAL DEVOPS CERTIFICATION ACADEMY™
www.devops-certification.org

© COPYRIGHT INTERNATIONAL DEVOPS CERTIFICATION ACADEMY™

http://www.devops-certification.org

 

Dedication
To all of the International DevOps Certification Academy™ students, thank you for inspiring
us, keeping us focused, and making sure we do our best to help you grow in your career
with your DevOps skills and knowhow. Without you, your engagement and your loyal
support, International DevOps Certification Academy™ could not come where it is today.

 TABLE OF CONTENTS

WELCOME 6 ...

ABOUT International DevOps Certification Academy™ 7 ..

What Is DevOps? 9 ...

What Are Your Problems In IT Without DevOps? 13 ...

How Does DevOps Solve Your Problems In IT? 17 ...

How Should You Start DevOps In Your Organization? 22 ..

How Should You Build Your DevOps Organization and Design Your Software
Architecture? 27 ...

What Are The Roles In Your DevOps Organization? 34 ..

How Should You Enable Your DevOps Flow? 42 ..

How Should You Design Your DevOps Continuous Delivery And Deployment
Pipeline? 47 ...

CLICKABLE

Why Do You Need Test Automation In Your DevOps Organization? 53

How Do You Enable Low Risk DevOps Code Deployments In Your Production? 56 ...

How Do You Protect Your DevOps Deployment Pipeline? 62

How Do You Ensure Your DevOps Information Security? 65

How Should You Enable Your DevOps Feedback? 68 ..

How Do You Create Monitoring (Telemetry) To Manage Your DevOps Software
Life Cycle? 72 ..

Why Should You Enable Feedback For Your Safer Production Deployments? 77 ..

How Do You Improve Your Hypotheses With DevOps And Empower Your
Experiment And Learning-Driven DevOps Organization? 80

Why Do You Establish Your Continuous Review Process To Ensure Quality? 82

How Should You Enable Your DevOps Continuous Learning? 85

Why Does Your DevOps Team Need To Block Time to Enhance The Work? 89

How Do You Enable Organizational Learnings From Daily DevOps Work? 91

Thank you 94...

 6

WELCOME 
Hi! I’m Yeliz.

I love that you are taking your time to read your
DevOps book. I want to briefly share with you why
we wanted to write this book for you and how you
can get the best use out of it.

Within the context of our Official DevOps certification
programs we made a thorough research in DevOps
education space.

The conclusion was: We failed to find one single
textbook, we could sincerely recommend to our
students!

We talked to our successful students and found out
that, almost none of the DevOps books in the market
could really help them make a smooth entry to
DevOps Methodology. Significant number of DevOps
books in the marketplace claim that they cover all
details of DevOps, but what they are not telling is
that, they don't have understandable, clear and
logical content to help their readers comprehend
and most importantly love DevOps!

Therefore, we wrote for you DevOps Revealed and
brought it for your service!

We are absolutely confident that DevOps Revealed
will make you proficient in DevOps Methodology, so
that you will have an outstanding opportunity to love
DevOps and keep on taking the tangible benefits of
being a DevOps professional.

Take some coffee to enjoy and some paper to
take your notes, and spend some quiet time to
read your DevOps book!

Afterwards you will have a great understanding
about DevOps framework and be prepared to pass
your Official DevOps certification exam. You will be
ready to deliver great products and services to your
clients and employers and to build your bright career
and future!

Yeliz Obergfell
Vice President - Student Experience

International DevOps Certification Academy™  

 7

ABOUT International DevOps Certification Academy™ 
Have you ever wondered why your IT department
falls often short of its goals, your organization is
dissatisfied with the performance of your IT,
resulting in frustrated customers and unhappy IT
professionals who feel powerless? This challenge
you and most of IT departments face perfectly
illustrates why DevOps had to emerge. DevOps is a
methodology and as well as a culture to develop
and deliver software. DevOps enables you and your
organization to develop great products and services
that your customers love.

International DevOps Certification Academy™ is
an independent Institute which helps IT Organi-
zations and Professionals get accredited with
worldwide renowned and recognized Official
DevOps Certifications and prove their competen-
ce in DevOps domain. We empower DevOps
Professionals worldwide to build their Careers,
and Companies to become High Performers in
their industries by engineering Outstanding
Products and Services.

Your Official Certified DevOps Generalist™, DevOps
Executive™, DevOps Project Manager™, DevOps

Product Owner™, DevOps Architect™, DevOps
Developer™, DevOps Operations Engineer™, DevOps
Quality Assurance Engineer™, DevOps Information
Security Engineer™, DevOps Release Manager™,
DevOps Trainer™ and DevOps Coach™ Certification
Programs have proven their worldwide Acceptan-
ce and Reputation by being the choice of more
than 961'000 DevOps Professionals in 143
Countries.

Your Official DevOps certifications resonate and work
very well in the market, and they create value for its
students which is at least as important as having an
official certification. The best proof for this global
recognition and acceptance is that: Every single day
we receive success stories from our students who
found new jobs or secured promotions. Beside
their focus and willingness to succeed, these
women and men demonstrate confidence with
DevOps skills and knowhow we have been
helping them to learn.

DevOps is an open Software Development and
Delivery Framework, and yet before Inter-
national DevOps Certification Academy™ was

 8

founded for you, there has been no reasonable
way for DevOps Professionals like yourself to
obtain DevOps Certifications and to prove your
competence in DevOps domain. DevOps Professi-
onals had to pay expensive fees for the one way
profit-driven DevOps Certification Programs of other
Certification Entities.

International DevOps Certification Academy™
aims to remove these barriers set in front of the
DevOps Professionals in developed and emerging
markets by saving them from paying unreason-
able fees for DevOps Classroom Trainings and
DevOps Certification Examinations before they
certify their knowhow in DevOps. Moreover, feel
free to check out "What makes Your DevOps
Certifications Best of the Industry?" section on our
www.devops-certification.org web portal to read
why we perform and serve you far more better than
our competition.

IT Professionals all over the world are passionate
about DevOps. However, DevOps is not another
hype which will soon fade away. DevOps is a
natural and logical continuation of agility to
manage your work beyond the goal of "potentially
shippable code", extending it to have your software

in "deployable state" in production-like environ-
ments, or even further in "deployed state" in your
production environments.

DevOps is the process to build their engineering
horse powers for companies like Google, Amazon,
Apple, Netflix, Facebook, Etsy and many others.
Every single day hundreds of loosely coupled, but
tightly collaborative teams at these companies
perform thousands of production deployments. And
they do these deployments as you enjoy their
services. We want you and your organization to
become a high performer like these companies
and we want you to succeed! Bear in your mind
that your only sustainable competitive advantage is
your ability to learn and execute faster than your
competition. And here we are to help you learn
and execute DevOps!..

International DevOps Certification Academy™ provi-
des 12 major Official Online DevOps Certification
Programs which are designed by our consortium of
renowned Business and People Leaders, DevOps
Coaches, Mentors, Experts and Authorities from all
major Industries. You can check your DevOps
Certification Programs from this List of Official
DevOps Certifications.  

http://www.devops-certification.org
http://www.devops-certification.org/About_International_DevOps_Certification_Academy.php
http://www.devops-certification.org/About_International_DevOps_Certification_Academy.php

 9

What Is DevOps?

DevOps is a process to develop, deliver and operate
Software. As simple as that you shouldn’t really
underestimate understanding what DevOps really is.
There are many DevOps definitions out there all over
bookstore shelves and in the Internet which are
either self-serving or at best missing and confusing.

Some commercially-driven definitions of DevOps
tightly couple DevOps to some certain build and
delivery tools or cloud infrastructure platforms.
Although these tools and platforms could be really
helpful to accomplish your IT and organizational
goals with DevOps, you can’t really plug-in yet
another tool (which you usually don’t have much
control over it because you haven’t written it) or you
can’t migrate your software applications to cloud
computing platforms and then announce that you
and your organization now deliver with DevOps. As
some old but little known saying goes ravens would
laugh at this.

Another misleading, but still better variant to define
DevOps is to see DevOps as an intersection of work
and people in an IT organization which brings

software developers, software testers and software
production operations engineers together. Having
said that, once you reach to the end of this book, you
can’t help but see how dry this definition is.

The best approach to define DevOps is to resemble
DevOps in iterative agile software development and
process improvement frameworks such as Scrum,
Lean, ITIL, IDEAL (Initiate, Define, Establish, Act and
Learn) and Six Sigma DMAIC (Define, Measure,
Analyze, Improve and Control).

Although Agile Scrum, Lean, ITIL, IDEAL and Six
Sigma DMAIC can serve as efficient enablers for
DevOps, DevOps isn’t meant to be seen as an
improved and combined superset of these methodo-
logies and techniques. The very simple reasoning
behind this fact is that none of these methodologies
and frameworks except Agile Scrum have been
introduced to specifically solve the problems and
serve for software industry.

Many DevOps practices and principles have been
derived from Lean Movement after they have been
adapted, experimented, validated and fine-tuned for
software development, delivery and operations.
Moreover, DevOps borrowed and adapted many

 10

techniques and philosophies from Continuous
Delivery Movement, Toyota Improvement Kata,
Theory of Constraints, Agile Manifesto and Agile
Infrastructure.

Lean Movement:
Lean movement can be summarized by seven
principles:

1. You see the whole and you create customer value
with systems thinking.

2. You build the quality in, you create flow and pull
(instead of push).

3. You deliver as fast as possible (short lead times to
convert raw materials into finished products, or in
software terms to convert ideas into running
benefits and features in production systems).

4. You amplify learning and you embrace scientific
thinking.

5. You empower your team, you lead with humility
and you respect every individual.

6. You eliminate waste (tools, systems, most
importantly your time you may spend for
unproductive activities).

7. You decide as late as possible (You give just in
time decisions).  

Continuous Delivery Movement:
You enable continuous delivery through the
deployment pipeline. Deployment pipeline has three
important missions: visibility, feedback, and
continuous deployment.

• Visibility - You make all aspects of the delivery
system including building, deploying, testing, and
releasing visible to every member of your team
and other teams, so you promote collaboration in
your team, and you offer transparency to your
clients and stakeholders.

• Feedback - You and your team members learn
about problems as soon as they occur so that
you’re able to quickly fix them before you put
another brick onto an already collapsed block.

• Continuous Deployment - You deploy and
release any version of the software to any
environment including test and production
environments through a fully automated process.

Toyota Improvement Kata:
You use Toyota improvement kata as a routine to
move from the current situation to a new situation in
a creative, directed, meaningful way. It’s based on a
four-part model:  

 11

1. In your consideration of a greater vision or
improved direction...

2. You grasp the current conditions.
3. Then you define the next target conditions.
4. Ultimately, you continuously and iteratively

attempt to move toward that target condition.
Along this route you uncover obstacles that need
to be worked on and you sort them out.

In contrast to other improvement approaches that
you attempted to predict the path and focus on
implementation, with Toyota improvement kata you
learn and build on discovery that occurs along the
way. You and your teams use the Toyota improve-
ment kata to learn as you strive to reach a target
condition, and you adapt based on what you’re
learning.

Theory of Constraints:
In an organization including yours which delivers any
kind of software, there is always an ongoing conflict
between your IT and your business. Quickly
responding business needs whereas still ensuring
stable and predictable production environments is a
continuous tradeoff faced by your IT. Assuming that
you’re already fully aware that there isn’t no risk

production release, in a complex system like yours
you can’t be quick enough if you want to ensure a
low risk production release. And you can’t ensure a
low risk release if you want to quickly release your
code to your production systems.

You cope with this conflict when:

• You divide your IT organization into many small,
autonomous, independent, self-sufficient and
highly collaborative teams (You should start to see
your teams as “intelligent units” with mission).

• You reduce your batch size (the size of your work
in progress) given to each team.

• You reduce your lead time (time required to
convert ideas and requirements into running
benefits and features in production systems).

• You build faster, reliable and continuous feedback
loops to ensure readiness for deployment.

Agile Manifesto:
With DevOps you adhere to the cornerstones
defined by the agile manifesto:

• You respect individuals and interactions over
processes and tools.

 12

• You respect working software over comprehen-
sive documentation.

• You respect customer collaboration over contract
terms and negotiation.

• You respect responding to change over following
a plan.

Agile Infrastructure:
Our organizations large and small including probably
yours are relying on hybrid cloud infrastructures,
combining public and private cloud with dedicated
servers. Therefore, you collect the rewards of
colocation security in combination with the flexibility
and scalability of public cloud.

Here’s some of major drivers why an agile infrastruc-
ture is beneficial for DevOps:

• You pay for what you use with transparent and
simple pricing.

• You can quickly provision and de-provision your
test and production environments from your code
base (IaC - Infrastructure as Code).

• You have architectural flexibility.
• You can easily expand other geographies.
• You probably have better security.

• You stay compliant without audits and additional
costs.

CONCLUSION
In this section we explained you what DevOps is and
what it isn’t. For you we have also covered the major
movements and principles which DevOps was
derived from.

A small caveat: Like many agile practitioners have
been unfortunately doing in their agile practices
since years, you shouldn’t stick to any stone-grained
definition of DevOps to dictate how your particular
organization, your product, your service and most
importantly your team should use DevOps. There is
no one-size-fits-all solution. Neither in agile nor in
DevOps.

Never forget that it is all about learning, experiment-
ation and adaptation. As DevOps will do a lot of good
work for us, it is our role biggest duty as human
minds to identify our correct version and tone of
DevOps. This is what each and every successful
DevOps organization including Google, Amazon,
Facebook, Netflix and Apple have been doing. 

 13

What Are Your Problems In IT
Without DevOps?

In your world of IT without DevOps, development
and operations teams do usually conflict. End-to-end
quality assurance of required client features and
benefits first start after development team begins to
work on a completely different project. Information
security and production readiness audits are
conducted the day before the planned production
roll-out. Solving software problems at this critical
project stage, especially design and security flaws
that must have been already identified and rectified
8 months ago do not only yield challenges for the
successful continuity of your IT, but also for the
continuity of your business. Tired developers,
uncooperative operations, testing and information
security silos, demanding but desperate project and
product managers, angry executives and frustrated
clients and IT stakeholders do not really add much
added value.

Too many hands-off of activities and dependencies in
every possible imaginable direction, countless
uncoordinated, manual, nontransparent work in your
IT department is just another day in business. 

Despite of long lead times to get any work done,
there is no better option available, at least not for
now, and you know that you still need this job to
earn money.

Finally the big day comes. After a problematic and
chaotic production deployment which caused
significant downtime at your business, you wonder if
your deployment broke anything in the existing
production functionality. You start thinking of the
lack of clarity and tangible evidence about what
really have happened and what have been really
impacted in your production systems.

And yet Go-Live celebration already starts in the
corridors of your large IT room. It’s also time for you
to have a drink and mentally recover from the tough
and sleepless night you left behind. What you broke
last night in your production will be anyway the
problem of somebody else. This is not a big deal…

Having said that you must be now wondering how it’s
possible at all that these tough projects can finish in
one or another way although they once have been
really in an ugly and desperate shape. The answer
lies in The Infinite Monkey Theorem. In a nutshell,
the infinite monkey theorem states that a monkey

https://en.wikipedia.org/wiki/Infinite_monkey_theorem

 14

hitting keys at random on a typewriter keyboard for
an infinite amount of time will surely type a given
text, such as the complete works of William
Shakespeare. This is no joke.

Similar to this, beyond any predictability about when
the work can finish, provided that your IT team
sufficiently delays and gains time for a given project,
it will surely deliver the project.

Chronic Conflict Between Development and
Operations
Among many other key responsibilities, there are
two major missions in your IT organization:

1. Your development team has to quickly deliver to
respond changing demands from your clients and
from the market your business serves for.

2. Your operations team has to guarantee stable,
predictable, secure and continuous service to
serve your clients and market.

Given that your IT organization is structured in this
way, your development and operations teams have
conflicting missions and motivations. This conflict
reduces productivity, quality of service, client

satisfaction and outcomes of your IT department and
finally your overall business performance.

Now You’re in Technical Debt
Continuous firefighting, workarounds and unplanned
activities to save your day will only result in
accumulation of more technical debt. This not only
impacts the performance of your development and
operations, but it also negatively impacts all other
units including your architecture, information
security, testing, product management, release
management and your business stakeholders.

You can resemble technical debt in financial debt.
The more financial debt you have, the less options
you have got to reach your desired goals. Ultimately
it becomes almost impossible to give correct decision
to reach the desired outcomes and you would be
more likely to make additional financial debt.

Technical debt has no difference. The more technical
debt you have, the less options you have to build and
deliver correct solutions. Finally, you end up building
workarounds on the top of workarounds, house of
cards on house of cards. And it is a matter of time
before they all collapse. You already know this. 

 15

Your Business Earns From Most Fragile Systems
A non-surprising but concerning fact about your
business is that your most critical and revenue-
generating systems are most prone to errors,
crashes and downtimes.

These systems are usually in the center of your
business and you have yet to participate a meeting
that they are not somehow part of discussions. They
are the most critical systems impacted by almost all
projects. Due to the their severity in your business,
they deserve continuous work, urgent changes,
unplanned fixes, and yet these systems are never
tired of producing Priority-1 incidents.

You Promise Bigger If You Break One
As your IT organization constantly breaks promises
and frustrates its stakeholders, your stakeholders
become more demanding to compensate the past.
You and your leaders have often say nothing, but
“why not” unless there is a better job offer lined up.

Then your software development and delivery
organizations are assigned a larger challenge than
usual. As your critical systems and IT architecture are
not even in a close proximity to cover these

requirements in given “urgent” timelines, you set out
designing your new workarounds on the top of your
existing set of workarounds.

You Have No More Fun At Work
And finally everyone gets little bit busier. Your
calendar have no more free space to perform an
hour of uninterrupted work for the position you are
hired and paid for. Emails rain to your inbox, so you
are now using mostly unproductive time at your
meetings to clear and scan your mostly unclear and
pointless incoming emails. You are curious why there
is no mandatory training at your organization to
teach how to use and write emails.

You’re usually dependent on other teams to be able
to continue your own work. And yet the expectations
you communicated a couple of weeks ago are not
even in the radar of the other team yet because they
just started their new “Horizon 2400” project while
they had to solve 9 Priority-1 incidents caused by
their fragile software applications.

You are slowly little bit impatient because you need
some answers from your designated single point of

 16

contact person at the other team to get your own
work going.

You couldn’t stop and sent another email to remind
your request. This time you put her boss in CC and
you thought you should have done this when you
sent your request for the first time.

A couple of seconds haven’t passed yet and two out-
of-office notifications popped up on your screen.
Your single point of contact at the other team will be
at “Horizon 2400” workshops until the end of this
week. And her boss is sick at home today.

CONCLUSION
In this chapter we explained the challenges most of
businesses and IT professionals face. The downward
spirals and vicious cycles almost every business and
every professional live with.

Gartner estimates that companies worldwide waste
yearly about 600 billion USD for non-budgeted and
non-scheduled IT maintenance work to keep
revenue-generating IT systems up and running. Just
to express this number with digits to see how it looks
like: $600,000,000,000.- 

As it might have been clear for you until this point,
this level of waste in a highly cognitive profession
such as information technology is not trivial to
comprehend.

This is a good challenge to tackle with. DevOps have
some answers for some companies and may be for
your company too. Of course, if your company is
ready to experiment, learn and adapt. 

 17

How Does DevOps Solve Your
Problems In IT?

You Continuously Deploy
Companies from fresh start-ups to Fortune 100 and
any other size in between, companies with any type
of software product and service portfolios have
already proven that: With DevOps your independent,
small and self-sufficient teams deliver tens of
production deployments each and every day. You
design, build, deliver and test on production-like
environments. You no longer release your code to
your production systems in every third month after
midnight while everyone else is sleeping. You release
your code many times every day, and most
importantly during your typical working hours, while
your clients and market you are serving for still enjoy
and get the benefits from your software.

DevOps does not only enable you to frequently
deliver tiny software features, but also with the help
from DevOps Dark Launch techniques you can
frequently deliver small pieces of high-volume giant
software features to your production. These small
pieces wait in dormant (inactive) mode in your
production until you switch the giant feature on from

a configuration setting. Even only this one small
technique can significantly improve the life quality of
your team by avoiding big bang code roll-outs and
their unpredictable adverse effects in your existing
production systems, chaos and finger-pointing in
your organization.

You Organize Your Teams around Your Mission
To serve your market, as you and your organization
have a bigger mission than your competitors do, you
organize your IT department with long-term teams
around your client-serving (either internal or external
clients) products, services, capabilities and micro-
services. Instead of temporary project teams which
dissolve as soon as or even before projects are done.

With the model of temporary project teams,
individual project members neither have proper
ownership of their own contributions because they
rarely know where their project stands in the big
mission of their organization nor they properly
receive feedback about their work. Their work is
constantly pushed to them in their area of expertise
(database developer, front-end designer, translator,
etc.) from various different projects, and they live in a
world of continuous interruptions.

 18

With the model of long-term teams, your teams
willingly have the ownership of their work, IT and
business performance enabled by their throughput.
They are totally aware where their contributions
stand and how important they are in the big mission
of their organization.

You Build Systems to Achieve Business Goals
You and your teams are fully aware that you are
getting paid to serve your clients and to accomplish
the mission of your organization. Therefore, you are
respectful to everyone’s time and resources from
your organization and clients. Before you commit
any long-term project, you test drive and validate
proposed and envisioned business value you expect
from your IT solution. You show your clients the
models, prototypes, various A/B variations or
lightweight versions of what you intend to build.
Then you measure and record their reactions and
feedback to understand how you fine-tune your
product and service, and if your clients like it at all.

You don’t add features to your product just because
you have a good feeling about them. You test your
ideas and build tangible, demonstrable and
reproducible evidence that what you are building

and investing the resources from your organization
will most probably add the bottomline and positively
differentiate your employer from its competitors.

You Create with Built-in Quality and Monitoring
You build fast, reliable and amplified feedback loops
in all stages of your software delivery and operations
lifecycle. Because quality is not a monopoly which
belongs to a certain team, everyone strives for built-
in quality. In order to make sure you have correctly
done your job, you don’t wait for feedback from
another team. Or you don’t ask somebody else’s
permission to deploy your code in production. You
trust your team with peer reviews of your design,
code, test and infrastructure.

You always build test automation and monitoring
(telemetry) for every possibly measurable and
testable feature. You are conscious that if a feature
deserves your time to be coded and delivered, it also
deserves continuous, reliable, fast and consistent
testing with test automation. Moreover, it also
deserves continuous monitoring and built-in
analytics in your software to validate what you win
from this feature matches why you built it in the first

 19

place. In all environments including production and
non-production.

Every check-in in your code repository automatically
adapts, restructures or if necessary rebuilds your
operational environments, automatically rebuilds
impacted applications and ultimately executes all
automated tests to validate existing features and the
purpose of your latest check-in. Once validation is
successful, the same changes are automatically
adapted to your production.

Your built-in analytics and telemetry in your
applications continuously monitor and record key
events in your software and in its operational
environments. The key metrics (such as number of
orders, number of log-ins, CPU usage, RAM usage,
CPU load, number of errors, length of database
queries and many others) are continuously recorded
and presented in real-time, so it is a matter of
minutes, if not seconds before your team discovers a
negative impact triggered by a deployment. This is
why fast feedback loops are vital to get your job
done fast.

Thanks to Errors You Learn and Teach
If an error occurs, you solve it calm and confidently.
You identify root cause of an incident by relying on
scientific evidence obtained and observed from your
automated tests and telemetry. If you identify a
missing test case or missing telemetry after the
resolution of the issue, you add them to your code
repository together with your fix.

In a complex system like yours, no single person can
know and foresee everything. Therefore, everyone in
your organization believe that errors are not bad
surprises, but they are part of maturity process of
your products and services. Errors are opportunities
to learn and grow. You and your organization
conceive errors as a mean of new personal and
organizational learnings.

Blameless post-mortems of errors will also enable
you to even better identify root causes of incidents
and discover techniques to avoid same and similar
errors in the future. Thanks to your incident, you
now convert your local learnings from your team and
software into organizational memory which will serve
everyone in your organization.

 20

You and your team are never punished because of
this error, but you are awarded due to the lessons
you learnt and shared after this incident. Thanks to
your contribution, many teams in your organization
know how to avoid such an incident in the future.

Your Teams Scale Even Better while Your
Business Gets Bigger
Now imagine an average organization which evolves
from 1 to 1,000 developers. As the organization was
small, developers were continuously building and
deploying their code to production. However, as the
organization gets bigger, there is now a much larger
organizational and bureaucratic hierarchy, more fear
from mistakes. There is now more coordination and
communication effort required to deploy your code
in production. Therefore, average number of code
deployments per day per developer usually reduces
and at best remains same while organizations grow.

However, DevOps high performers play in a different
league and they manage to increase average number
of code deployments per day per developer as they
have more developers. With correct software
architecture, correct teams, correct mission, correct
leadership and correct culture, DevOps high

performers such as Google, Amazon, Facebook,
Netflix and Apple have already proven that this is
possible. Your organization can be the next one to
become one of these DevOps High Performers.

Number of Code Deployments per Day per
Developer (Source: DevOps Handbook)

 21

CONCLUSION
High Performer DevOps organizations outcompete
their rivals in following dimensions.

• 46 times more frequent code deployments.
• 440 times faster lead time from commit to deploy.
• 96 times faster mean time to recover from

downtime.
• 5 times lower change failure rate (meaning

changes are 1/5 as likely to fail). 

• Improved productivity and throughput.
• Improved code and operational reliability.
• Improved organizational performance and client

satisfaction.
• Improved market penetration, market share and

profitability of organization (2 times more likely to
accomplish).

• Improved market capitalisation growth.

DevOps High Performers IT Performance Metrics (Source: P-Labs) 

 22

How Should You Start DevOps In
Your Organization?

How you start your DevOps journey in your
organization will dictate how successful your DevOps
initiative will become. Therefore, let’s get the best out
of your first and probably one single shot.

You Avoid Big Bang and Start Small
As you already know you can’t really shake the status
quo in one go and announce an organizational
DevOps transformation on day one. You should first
identify teams which continuously tackle with issues
and unmet goals. The teams which are definitely
conscious about the necessity of improvements and
who are the most receptive to consider a different
way of working. And teams which are unconditionally
willing to serve their organization and clients.

Demonstrate Quick and Early Wins
Your mission is to demonstrate quick and early wins
from your DevOps initiative and prove to skeptics
and naysayers the problems you solve and the value
you create with DevOps. And then you will step-by-

step replicate these improvements in the other areas
of your organization.

This is pretty much how a leader ERP, CRM and SaaS
manufacturer from Germany set out its DevOps
journey. Their maintenance team was doing one
single delivery per year which was quickly resulting in
an accumulation of non-released code in various
different incident code branches. This made for them
extremely difficult to merge their code and to release
fully tested and reliable maintenance releases.

Their maintenance development team was first
combined with maintenance delivery planning,
quality assurance and operational environments
management teams. They also started using a joint
task and ticket management system to simplify
coordination and communication efforts. Then they
set out monthly and shortly after two-weekly
releases.

Within the first year of this new practice in
maintenance group, the team managed to resolve 6
times more incidents compared to the year before.
As important as that, the ratio of reopened incidents
and associated rework reduced from 39% to 4%.

 23

Having had this significant improvement and
demonstrable improvement metrics in the pocket, a
small DevOps initiative won major support and
credibility in the organization and executive
sponsorship for the further expansion to other
product and service teams.

Identify an Appropriate Greenfield or BrownField
Product and Service
Another consideration to get started with your
DevOps initiative is whether you should choose a
Greenfield or Brownfield product and service.

A greenfield product and service is new in your
organization. Therefore, it is for your best interest to
build a new, separate team which works in isolation,
especially while you are getting started. Thanks to
this isolation, your team members will have better
chance to break the existing status quo and think out
of the box. Furthermore, your team will be hopefully
less frequently interrupted due to their former
responsibilities in the organization. You task your
new DevOps team with tangible IT and business
performance metrics and outcomes such as
improved sales, improved client engagement, or
reduced time to deliver etc. As your greenfield

DevOps initiative don’t rely on legacy code and
dependencies, it poses less risk for you and your
team to start a successful DevOps initiative.
However, your success will be less impactful in your
organization as your DevOps initiative in greenfield
will not prove whether DevOps can solve existing
problems in your organization and whether your
success can be replicated in the other areas as well.

On the other hand, you can start your DevOps
journey with a brownfield product and service too.
Many brownfield products and services do already
run in your production systems, and they serve your
business and clients. If you are from the same planet
as we are, your brownfield software application is
most likely to have significant technical debt and it
doesn’t have much reliable test automation. Due to
this nature, starting your DevOps initiative with a
brownfield product and service could be more
challenging and yet positive throughput from a
brownfield DevOps initiative will be more awarding,
convincing and impactful at your organization.

 24

DevOps is for Large Organizations with Lots of
Running Legacy Systems too
Many people wrongly believe that DevOps is not
tailored for brownfield products and services. Their
wrong belief goes even further to state that DevOps
is only for start-up companies. And yet some of the
most exemplary DevOps initiatives started in
companies with giant and mature IT organizations
which have countless business-critical legacy
systems and thousands of employees. Amazon, Easy
and Facebook are a few examples to name. As
described with the SaaS manufacturer case study
above, you can initiate DevOps in an already existing
organization with brownfield products and services
too. In fact, because most brownfield products and
services have major gap between their performance
throughput and client expectations, they are usually
the best candidates to take benefits from your
DevOps transformation. For you a good piece of
advice to get started with your brownfield DevOps
initiative is: To begin with, invest your time to remove
or at least reduce the technical debt and then build
missing test automation for existing product features
and benefits. Otherwise, your brownfield product
and service will never allow you to do reliable
production deployments in shorter cycles.

Identify an Appropriate System of Records or
System of Engagement
During your first DevOps initiative, you can feel free
to choose either a system of records or a system of
engagement. Systems of records are centralized
systems to manage single source of truth in your
organization. They heavily master on management of
your data including clients, transactions, security and
privacy. Systems of engagement are mostly
decentralized applications to enable and encourage
your clients and users to interact with your
organization via omni-channel responsive portals or
mobile, tablet and desktop applications.

With your preference of a system of record, your
advantage will be that you are going to demonstrate
how your DevOps team competently handles time
consuming and highly bureaucratic tasks such as
compliance, security and privacy. You and your team
accomplish this by generating scientific and tangible
evidence and by using test automation and telemetry
during the whole development and operations life
cycle of your product and service. A typical example
can be a migration program of your geographically
distributed data from your on-premise database
servers to cloud by ensuring that your single source

 25

of truth still remains compliant to legal, industrial,
local and international rules and regulations.

If you prefer a system of engagement, you are going
to demonstrate how rapidly and reliably you
innovate with quick delivery cycles. This is because
most of the visible innovations which result in
commercial successes today are originated from
systems of engagement. A typical example can be a
more intuitive and simplified check-out flow in your
e-commerce portal which improves your sales 25%.
The moment you accomplish this, your executives
will not only adore DevOps, but they will adore you
too.

Your Recipe to Successful DevOps Transformation
In the beginning of your DevOps journey, don’t waste
your time to win conservative teams for your DevOps
initiative. Identify the most innovative, open-minded,
well-connected and influential teams which believe
in the necessity of DevOps methodology and
principles. Start small with one or two teams. By
using the tips provided above, identify the most
appropriate greenfield or brownfield product and
service… And appropriate system of records or
system of engagement to get started.

After your first success stories these teams you have
on board will be your biggest supporters to spread
DevOps across your entire organization. Then you
extend your coalition to other groups and you
increase the number of success stories. These
successes will create more and more social proof
and trust for your DevOps initiative. Once they see
the measurable benefits, you will have more support,
sponsorship and attention from your management
too.

DevOps Adoption Curve illustrated as Sneezer-

Curmudgeon Curve (Source: write/repeat)

In the final stage you identify influential destroyers
and strong naysayers (Curmudgeons). You can

 26

probably beat them by using their own technique
which is spreading around risk and fear. You explain
them how bad their teams and products will appear
and become the last weak chain in your organization
if they deny learning and using DevOps.

CONCLUSION
It is not an easy task to drive any organizational IT
transformation. DevOps is no exception. However, by
starting small, you won’t be taking much risk. On the
other hand never forget that it is one of the most
profound duties of any young or seasoned leader to
be able to motivate and mobilize her or his team to
act for the sake of improved business performance…
And to take some calculated risks for the best
professional satisfaction. 

 27

How Should You Build Your DevOps
Organization and Design Your
Software Architecture?

According to Conway’s law, organizations which
design systems are constrained to produce systems
which are copies of their own communication
structures. In other words, your software cannot do
any better than how efficiently your teams
communicate and interact. Therefore, how you
structure your teams will surely impact your software
architecture, IT and finally business performance as
well.

How You Configure Your Organization Defines
What Kind of Software You Get
Most companies, probably including your company
too, compartmentalize their software delivery
organizations in a number of teams, and they end up
producing their software architected with the very
same number of layers. The controlled experiments
have also proven that when an organization of 6
teams was asked to build a software, their teams
came up with an architecture of 6 layers. When

another organization with 3 teams was asked to
build the very same software, they came up with an
architecture of 3 layers. In fact, there are many
similar examples.

A renowned insurance company with 86,000
employees worldwide was coincidentally structured
in 2 major functional teams for one of their IT
organizations which delivers the backend to manage
their customers, contracts, invoices and services.
One of these functional teams was oriented in Java
programming language and the other functional
team was oriented in PL/SQL stored procedures.
Furthermore, they were dependent on organization-
wide and centralized IT operations, database admins,
IT infrastructure, IT networking, IT security and IT
quality assurance service desks which made their
lives even more challenging to be able to safely
deliver their software.

The other challenge of this organization was that:
Although the teams were separate, in their
architecture they couldn’t competently separate
business orchestration logic in Java from data access
logic in PL/SQL. They delivered hundreds of features,
each feature being a spaghetti of Java and PL/SQL
codes. Therefore, every change and new feature

 28

request required tens of handovers from one team
to another, and they resulted in long waiting queues
and lead times to get even minor changes done.
Moreover, in this complex environment, as overall
impact of even minor changes was very difficult to
foresee, they continuously broke existing features in
production and caused downtimes which also
required long lead times, rework, escalations and
stress to resolve.

To recover from this modus operandi, these two
functional teams merged into one single product
team. They gradually redesigned their software by
converting their data access layer into a set of API
functions. In addition, they built a new business
system completely decoupled from the internal
dynamics of their data access API. Even in its early
stage, this initiative improved the team morale
because both Java and PL/SQL experts started
working for the success of their joint product team
instead of motives of their past functional silos. As
they built a loosely-coupled architecture, now the
impact of changes are easier to identify, changes are
easier and quicker to implement and defects are
more straightforward to locate and fix. As a result,
average lead time of new features reduced from 4
months to 3 weeks, and incident queue of the team

is now almost empty, so they profit from this free
capacity by further reviewing, refactoring and
improving their codebase.

Matrix Organizations, Functional Teams and
Illusion of Cost Optimization
Your companies are organized with a number of
functional teams around various different subject
matter expertises such as databases, networking,
operations, information security, quality assurance,
release management, project management, product
management and so on. Project teams are built by
people from different functional silos. In these matrix
project organizations which attempt to deliver
business products and services, project managers
are usually responsible for getting something
delivered, and product managers are responsible for
ensuring that correct thing is being delivered.

Your problem in this organizational configuration is
that functional teams have no to little understanding
about the the extent of the work they contribute. In
extreme but often typical cases, your functional
teams neither care the big picture nor the overall IT
and business throughput of the product and service
they contribute. What they care is to make sure that

 29

none of their doors are left open after projects will
go nasty and everyone starts to finger-point.

As your functional teams usually have to manage
long queues of tickets, they usually require long lead
times to support your project. Because projects fight
for functional resources, escalations are the only way
to get quick attention for your project. Escalations
over escalations obviously pollute the working
climate and trust between your teams.

Multiple handovers from one team to another,
delays, quality issues, reworks, bottlenecks and
stress are now part of your daily job. This is because
your matrix organizations are not meant to do any
better than that, as long they continue focusing on a
opaque and fake illusion of cost optimization. In fact,
due to quality issues, reworks and delays, functional
organizations are probably even more expensive
than any other random reorganization you can ever
imagine. In addition to this, if your organization has
already managed to outsource some of its vital
functional skills such as quality assurance and IT
operations to geographically remote locations, then
your IT organization must be now barely surviving to
safely deliver and fulfill demands which are critical
for your business continuity. 

This is indeed a Big Problem. How Does DevOps
Solve This? Answer: With Product and Service
Oriented Teams
In order to solve this problem, DevOps suggests you
to switch gears from cost optimization illusion of
functional teams to DevOps’ valid and proven speed
optimization. In fact, done correctly, DevOps will
anyway enable you to save costs while you and your
team quickly and continuously deliver.

For you DevOps’ suggestion is product and service
oriented teams. Product and service oriented teams
are independent, cross-functional, autonomous, self-
sufficient and usually small teams which are able to
cover all phases of software engineering life cycle of
a given product and service (but not a temporary
project) including architecting, designing, coding,
testing, experimenting, deploying, operating and
maintaining software. Yes. You read it right. Who else
can operate and maintain software better than their
own creators? The answer is of course: No one.
Therefore, it is no surprise that the most successful
DevOps teams at Amazon and Netflix do not
abandon their products and services once they
release them. They are also in charge of operating
and maintaining their software in their own
production systems. 

 30

Functional Teams vs Product and Service Teams
(Source: Lean Enterprise, DevOps Handbook)  

Your Organization Does No Longer Finance
Temporary Projects, But It Finances Products and
Services
To make its business performance flourish, your
organization does no longer finance temporary
projects whose tangible business outcomes are not
trivial to evaluate in long run. Now with DevOps, your

organization finances its own mission, its own
purpose and its own products and services
associated with this mission and purpose. The
success of your teams are now assessed and
evaluated based on their IT and business
performance. Based on return of investment within
their particular business domains where they serve

 31

their products, services and micro-services to their
internal and/or external clients. Your teams now act
like owners of products and services they create and
provide, instead of merely being members of
functional silos who don’t pay much attention to
business outcomes.

How Can You Build Your DevOps Teams and
Software Architecture?
DevOps does not of course suggest you to break and
reorganize all ongoing projects at your organization
in one go. A non-disruptive, but still impactful way of
adapting your teams for DevOps methodology is to
inject functional experts into projects teams. Once
your teams get functional experts in their desired
domains such as quality assurance, information
security, databases, networking, servers, operations
and so on, then you can expect these teams to
independently and self-sufficiently design, deploy
and maintain their software products and services.

In these new product and service oriented DevOps
teams, availability, quality, performance, information
security and compliance are everyone’s daily job.
How can your teams build highly available, secure
and high quality software applications which are able

to cope with stress and load demanded by your
clients if the teams never pay attention to these non-
functional requirements until they finish their design
and development? How good can external experts
judge and validate the security and quality of your
software applications without being involved at any
software engineering stage of your products and
services? This is why high performer DevOps teams
rely on external subject matter experts only to get
consultancy, but they still fully own all non-functional
requirements at every stage of their software
engineering lifecycle.

There is an Alternative You Can Consider
One exceptionally successful DevOps organization
which still heavily uses functional teams in
combination with product and service oriented
DevOps teams is Google. At Google DevOps teams
and functional teams see their organizational
mission with their products and services as a shared
goal. Functional teams build blueprints (such as
Templates, Checklists, Application Skeletons, etc.)
and self-service systems (one example: to
independently provision and configure servers and
networking) to make sure that they never become
bottlenecks which slow down DevOps product and

 32

service teams. Functional teams at Google
collaborate and support product and service teams
at early stages of software engineering life cycle, they
constructively perform peer-reviews of designs,
codes and tests, and they continuously provide
consultancy to DevOps product and service teams.

How Big Should Be Your DevOps Team?
The ideal size for a DevOps team is 5 to 10 people.
Such a limited team size reduces complexity of
communication and alignment within your team.
Furthermore, your team lead and team members do
not spend and waste much time with errands and
overhead. This also keeps the size of product and
service your team is responsible for up to a certain
limit which further reduces the complexity,
maintenance and operations difficulty of software
applications. Every team member in such small
teams sees the big picture, and everyone collects
little bit leadership experience by becoming part of a
crucial mission for their organization. Your team lead
works with upper management to understand goals
and translate them to your team members.

What If Your Product and Service Can No Longer
Be Handled by a Team of up to 10 People?
Then your solution is to spin out a new product and
service, and to build another DevOps team which
takes it over. Here you shouldn’t conceive product
and service concepts only as entities served and
provided to external clients who pay for them. But
also you can freely build internal products, services
or so called “micro-service APIs” and their respective
DevOps teams for your internal clients. For instance
if your billing system becomes too big for a team up
to 10 people, then you should spin out another
DevOps team which takes over database access API.
May be another one to take over online payment API.
And then may be another one to take over batch
processes. Of course, all these teams should be
using a common code repository and a joint
deployment pipeline to ensure continuous
integration, quick delivery and success of their
organizations.

As you already know in a tightly-coupled architecture,
small changes in one application can eventually
cause many adverse effects for numerous workflows.
Therefore, products, services and micro-service APIs
in your architecture must be loosely-coupled. Each
DevOps team must be only responsible for one piece

 33

of an loosely-coupled architecture. Each DevOps
team can independently design, develop and deploy
their software. Early alert mechanism built in the
deployment pipeline should automatically and
rapidly inform DevOps teams about potential
adverse effects any code check-in causes.

How Can Such Small Teams up to 10 People Can
Self-sufficiently Handle All Phases in Software
Engineering Life Cycle from Architecture to
Operations by themselves?
To manage this, you should encourage everyone in
your team to become a generalist. You should
encourage and enable them to continuously build
new skills.

You should only hire team members who are eager
to learn and grow regardless their effective level of
knowhow and experience. You should strictly avoid
people who expect to be evaluated in a fixed set of
roles and responsibilities. You already know that
neither your organization, nor your products and
services remain fixed.

The demand will change tomorrow, if not today. 

CONCLUSION
In this chapter, we explained suboptimal outcomes
of matrix organizations, functional silos associated
with them and DevOps’ solution to address this.

DevOps’ suggestion for you is to build product,
service or micro-service API oriented small teams up
to 10 people.

These DevOps teams should constitute generalist
full-stack software engineers which are able to self-
sufficiently cover all phases of software engineering
life cycle from design to maintenance.

DevOps relies on loosely-coupled service oriented
architecture (SOA) in which every DevOps team owns
and operates one piece of your loosely-coupled
architecture.

 34

What Are The Roles In Your DevOps
Organization?

DevOps Generalist
The main role of a DevOps Generalist is to ensure
smooth establishment, efficient and healthy progress
and continuous improvement of DevOps Practices in
a DevOps organization and in its DevOps teams.
Therefore, competence and perspective of every
single employee in a DevOps organization to be able
to act with DevOps teams is a fundamental factor
which determines the success level and lifetime of
DevOps organizations.

Whether you are part of a DevOps organization or
you just collaborate and work together with other
DevOps teams, it is profoundly important for you to
have a clear understanding about how and what
makes DevOps methodology far more successful,
efficient and delightful to work with than other
software development and delivery methodologies.
Therefore, regardless you’re an IT, software and
technology practitioner, leader or manager or not,
every professional at this current digitalization age
(when software and everything around it are king)
are highly recommended to be a DevOps Generalist. 

DevOps Executive
DevOps Executives are responsible for successful
utilization and application of DevOps knowhow
within their organizations. They are key players for
DevOps teams to enable cultural shift of doing and
thinking in DevOps way. They have proven ability to
constructively influence teams and management to
get things done. DevOps Executives support the
alignment of DevOps teams with business strategies,
and they are responsible for identification, selection,
scoping, prioritization and ultimately managing the
penetration of DevOps into their organizations.

DevOps Executives select key members of their
DevOps organizations, and they ensure all DevOps
Professionals have been adequately trained, tasked
and deployed to DevOps projects which best fit to
their skill and experience levels. They work hard to
coach and mentor DevOps teams, support resource
planning, and they remove issues and obstacles to
make the entire DevOps organization successful.

DevOps Executives report to executive management
in terms of preset DevOps business mission
objectives and identified business throughput
metrics. They promote best practice solutions,
achieved improvements, success stories and

 35

leverage them towards their entire DevOps
organization. They work very closely with all DevOps
teams, but with particular emphasis on DevOps
Project Managers, DevOps Product Owners, DevOps
Release Managers, DevOps Trainers and DevOps
Coaches due to their particular organizational
mission they strive to accomplish.

DevOps Project Manager
DevOps Project Manager is the person responsible
for accomplishing the stated project objectives. Key
DevOps Project Manager responsibilities include
creating clear and attainable project objectives,
building the project requirements, and managing the
constraints of the project management triangle,
which are cost, schedule, scope, and quality.

DevOps Project Manager is often a cl ient
representative and has to determine and implement
the exact needs of the client, based on knowledge of
the firm he is representing. DevOps Project Manager
is the bridging gap between the development/
delivery team and client. Therefore, DevOps Project
Manager has a fair knowledge of the industry he is
in, so that he is capable of understanding and
discussing the problems with the delivery team and

client. The ability to adapt to the various internal
procedures of the contracting party, and to form
close links with the nominated representatives, is
essential in ensuring that the key issues related to
cost, schedule, scope and quality can be efficiently
resolved, and above all client satisfaction can be
realized.

The term and title “DevOps Project Manager”
describes the person who is given the responsibility
to complete a project. DevOps Project Manager is the
person with full responsibility and he has the
required level of accountability and authority to
deliver the desired project objectives within project
budget, on time and with the highest possible
quality.

DevOps Product Owner
DevOps Product Owner role is a very unique and
broad role in DevOps which combines all of the
challenging aspects of traditional Project Manager
and Product Manager roles. Moreover, DevOps
Product Owner represents the customer point of
view in a DevOps team by ensuring that the right
work is done at the right time. It needs to be tightly
integrated with the overall DevOps Software

 36

Development and Delivery Teams and Processes to
ensure maximum added value for each and every
Product Release.

The DevOps Product Owners have a number of key
responsibilities. Some of them are:
• Managing the DevOps Product Backlog.
• Support Creations of Product Release Roadmaps,

and Release Plans.
• Identify Product Dependencies and appropriate

Prioritization driven by Organizational Mission.
• Stakeholder Management and Communication.

Whether, you act as a DevOps Product Owner or not
in your DevOps team, as long as you’re directly
working with your customers it is fundamentally
important for you to comprehend the role of DevOps
Product Owner in order to be utmost helpful for your
customers and to create the maximum added value
for them.

DevOps Architect
A Devops Architect owns architecture, design and
development of product deployment tools and
processes. In this role, the DevOps Architect is
expected to architect and develop innovative

solutions to build and maintain product architecture,
its related tools and processes for continuous
integration and continuous deployment pipeline.

DevOps architects are in charge of defining loosely
coupled set of services whose consumers are
minimally impacted by changes to these service or
their environments. Some coupling is obviously
inevitable since the consumer has to make use of the
service but DevOps Architects minimize these
dependencies by means of separation of interface
and implementation, versioning policies, runtime
contracts, platform independence and location
transparency.

DevOps Architects become extremely critical for the
success of DevOps organizations and teams. On the
top of building an optimal loosely coupled
architecture for products and services, DevOps
organizations must possess an extremely reliable
environment that is fully automated and free from
obstacles. With waterfall, everybody had to have 4x4
cars to drive off-road on tough terrain. The DevOps
Architect role is tasked with building the highway so
the rest of us can use faster cars.

 37

DevOps Developer
As a DevOps Developer, you transform the business
goals of your customers into Software Solutions and
Systems. The main difference between an ordinary
developer and a DevOps Developer is that: As a
DevOps Developer, during the full course of your
work, you are conscious of the business goals and
business demands of your customers. You are fully
aware of why your employer has hired you and what
your customers need and expect from you.

Moreover, as a DevOps Developer, you are the
trusted technology partner of your customers. You
give your employers and customers the full
confidence and every reason to keep you on board.
You are the one person who connects business goals
and business requirements to software designs and
lines of runnable software code. You are no longer a
sole designer or programmer. You own the end-to-
end engineering life-cycle of your entire Software
from its requirements analysis, architectural vision
and test automation until its user experience,
extensions, operations, maintenance and end of life.

As a DevOps Developer, you are in charge of
deploying running Software Solutions in small and
frequent iterations. You excel and ensure the

continuous delivery of your Designs and Software to
your clients to create rapid and uninterrupted value
for their and your businesses. You always remember
that: Your mission is to have happy customers while
building software that you and your customers love!

If you are a passionate Developer and a dedicated
DevOps Software Engineering Practitioner to build
efficient, world-class and high-quality systems, it is
highly recommended to be a DevOps Developer.

DevOps Operations Engineer
DevOps Operations Engineers are responsible for
monitoring, maintaining and deploying the state-of-
the-art software and infrastructure behind the
technology of their Products. They deploy and
maintain Network Infrastructures and Servers at
Data Centers. They also participate in DevOps
Delivery and Deployment Teams on installations and
develop product del ivery and deployment
contingency plans.

In this role, duties range from the physical
deployment of data center-related technology to
working closely with the various stakeholders,
especially with DevOps Developers to ensure that

 38

availability, maintainability, monitorability and
analytics are embedded into the cores of products.

Behind everything the clients of your organization
see is the architecture built by DevOps Operations
Engineers. And DevOps Operations Engineers are in
charge of keeping these systems up and running.
From developing and maintaining products and
services to building the next generation of your
platforms, DevOps Operations Engineers make
product portfolio of their organization possible.

DevOps Operations Engineers are proud to be
engineers' engineers and love voiding warranties by
taking things apart so they can rebuild them. They're
always prepared to be on call to keep their systems
and networks up and running, ensuring their clients
have the best and fastest experience possible.

DevOps Quality Assurance Engineer
DevOps Quality Assurance Engineers play proactive
role for the processing of Unique Selling Points of
their Product, Requirements, Use Cases, Software
Architecture and various other software design
material to find out desired test types to validate the
quality of Product under Test. They work with

DevOps Developers and DevOps Project Managers to
determine Test Implementation Methodologies and
Tools to run and operate the Testing Work.

DevOps Quality Assurance Engineers write Lists of
creative Test Cases with strong “Break it” attitude.
They also classify Priorities and Difficulty Levels of
their Test Cases. They create and review detailed
Documentation of Test Cases to make sure their Test
Cases correctly perceived by the rest of their DevOps
team.

DevOps Quality Assurance Engineers continuously
follow up and review Test Execution Phases to ensure
that implemented Test Cases realize their goals. They
act as self-confident and dependable Subject Matter
Experts to emphasize the objective and importance
of their Test Cases. They raise and review defects,
and they make sure that there is no compromise
from planned Product Features.

Furthermore, DevOps Quality Assurance Engineers
nurture the entire DevOps Team to review their Test
Designs, and process their Feedbacks to add
additional creative Test Cases and to reduce
redundancies in their Test Designs. Last but not least,
during a significant portion of their times, they

 39

automate, execute tests and they re-execute tests to
validate bug fixes which are coming from Software
Development Teams.

DevOps Information Security Engineer
In traditional configurations of IT organizations
information security is largely an afterthought. It is
yet another nonfunctional requirement that is often
taken care when it is most difficult, expensive and
hectic to identify and fix the problems.

DevOps Information Security Engineers design big
picture security strategy of their organizations while
laying out the details of an implementation plan.
They understand the constant need to balance the
benefits of incremental security measures with the
potential burdens on the business. They proactively
find and fix security problems in designs at early
engineering stages of products, and in running
software systems. They monitor networks, software
telemetry and prioritize efforts based on risk.

DevOps organizations have DevOps Information
Security Engineers working side by side with DevOps
Developers and DevOps Operations Engineers. They
embed their recommendations and subject matter

expert ises much ear l ier on into software
development and delivery process. DevOps
Information Security Engineers enable their
organizations to build security into product during its
entire end-to-end delivery life cycle.

DevOps Release Manager
DevOps Release managers work to address the
management and coordination of the product from
development through production. Typically they
work on more of the technical details and hurdles in
which a traditional project manager cannot be
involved. DevOps Release managers oversee the
coordination, integration, and flow of development,
testing, and deployment to support continuous
delivery. They're focused not just on creating, but
also maintaining the end-to-end application delivery
tool chain.

DevOps Release Managers closely work with DevOps
Project Managers and DevOps Product Owners to
create product release roadmaps, release plans,
identify dependencies, make them visible, ensure
prioritization of dependent tasks by DevOps teams,
support management of DevOps Product Backlog,
stakeholder management and communication.

 40

DevOps Trainer
Like all other hyper growth trends in our IT industry,
adoption of DevOps Methodology is also not
immune to potential misunderstandings and
misconceptions. Significant number of DevOps
teams and companies make organizational,
behavioural and operational mistakes which
negatively impact the performance of the DevOps
teams and their fit to the overall -and usually not yet
really agile- organizations. Unfortunately these
inconsistencies sometimes end up with the
abolishment of DevOps practices from organizations
which hurt our industry and the supporters of
DevOps.

DevOps Trainers are talented DevOps supporters like
you to ensure correct training and education of
DevOps practices within organizations.

DevOps Trainers can be independent people from
the DevOps teams in the organizations and they can
be directly sponsored by the executives to enable top
to bottom organisational training of DevOps.
Alternatively, DevOps Trainers can be part of DevOps
teams and work with executives to get the required
support and to consistently train other parts of
organizations to fit to the DevOps teams. If you

would like to help your DevOps teams, business
teams and executive sponsors to properly learn and
implement DevOps practices, it is highly suggested
for you to be a DevOps Trainer.

DevOps Trainers provide training services usually to
their external clients to teach them DevOps in an
educational environment setup. DevOps Coaches
coach DevOps team members usually within their
client organizations and make sure that they
properly understand and operate with DevOps. They
provide tips and tricks to teams as DevOps teams do
their work in the real work environment.

DevOps Coach
Like all other hyper growth trends in our IT industry,
adoption of DevOps Methodology is also not
immune to potential misunderstandings and
misconceptions. Significant number of DevOps
teams and companies make organizational,
behavioural and operational mistakes which
negatively impact the performance of the DevOps
teams and their fit to the overall -and usually not yet
really agile- organizations. Unfortunately these
inconsistencies sometimes end up with the
abolishment of DevOps practices from organizations

 41

which hurt our industry and the supporters of
DevOps.

Similar to DevOps Trainers, DevOps Coaches are also
talented DevOps supporters like you to ensure
correct understanding, penetration and adoption of
DevOps practices within organizations.

DevOps Coaches can be independent people from
the DevOps teams in the organizations and they can
be directly sponsored by the executives to enable top
to bottom organizational and cultural adoption of
DevOps. Alternatively, DevOps Coaches can be part
of DevOps teams and work with executives to get the
required support and to consistently evolve other
parts of organizations to fit to the DevOps teams. If
you would like to help your DevOps teams, business
teams and executive sponsors to properly
understand, adopt and implement DevOps practices,
it is highly suggested for you to be a DevOps Coach.

CONCLUSION
In this chapter we covered the most frequently used
roles in a DevOps organization. Let’s keep in mind
that not every DevOps team in your organization
must have someone with each of these roles. Less is
more. Ensure your team focuses on significant few
and eliminates trivial many to achieve IT and
business performance your organization aims.

The best rule of thumb is your team should have
roles and skills to enable best possible continuous
flow of work. Flow is the subject we will start to cover
from next chapter and onwards.

 42

How Should You Enable Your
DevOps Flow?

In DevOps, Flow means end-to-end manufacturing
chain of software from idea to running lines of codes
in your production systems. You and your DevOps
teams are in charge of building and sustaining a
reliable, consistent and fast flow to meet and exceed
your organizational goals and to outcompete other
products and services in your particular market.

Define a Mission for Your DevOps Transformation
After you have your DevOps team in place, the next
step is to define a mission. Only by having a common
mission, your team will be equipped to correctly
function. Without a mission your team will never be
able to prioritize the critical work and distinguish
showstoppers from errands. The mission should be
challenging and impressive, but it still needs to be
achievable in a given timeframe.

A mission should be tailored for your own DevOps
team. It is based on organizational characteristics,
challenges and objectives to serve internal and
external clients interacting with your DevOps team.

Some example mission statements to get your
DevOps transformation started can be:

• 75% reduction of average lead time from code
check-in to live production systems in 3 months.

• 33% reduction of average lead time from request
to live production systems in 6 months.

• 50% reduction of number of production incidents
in 12 months.

What is Value Stream and Who are Involved in
Your Value Stream?
In order to improve your work, you need to know
your value stream. A value stream in information
technology systems is a sequence of activities
required to design, build, and operate a specific
software product and service. Furthermore, a value
stream defines human resources, knowhow, utilities
and materials which enable the value stream to flow.

In a complex organizational structure, no one is fully
capable of identifying an end-to-end value stream.
Therefore, it is important that all members of your
DevOps team, stakeholders, providers, client
representatives, if possible your clients themselves
should participate to identify your value stream. 

 43

Build Your Value Stream Map to Find Out the
Improvement Potentials
A value stream map enables you and your DevOps
team to visualize how a typical work in your software
development and delivery organization is performed.
By building a value stream map your goal is not to
make a comprehensive documentation about each
and every step to get your work done. Your goal is to
gain sufficient insight about your typical workflow to
identify where major inefficiencies, constraints,
issues and waste of time and resources lie.

When software development and operations
engineers for the first time sit together and build a
value stream map, it is usually the first time for an
operations engineer to comprehend the negative
effects of misconfigured database servers without
table spaces on development teams. Similarly, it is
usually the first time for a software development
engineer to see the consequences of delivering
software without built-in monitoring, availability,
testability and configuration features.

DevOps Value Stream Mapping Example for Software Engineering Process
(which presents significant improvement opportunities to enable faster flow) 

 44

Eliminate Handoffs, Constraints and Waste As
Much As You Can
Some of the most significant, but overlooked factors
of efficiency are handoffs, waste and constraints.
When an activity is handed off from one team to
another it requires signalling, requesting, scheduling,
prioritizing, deprioritizing and resolving conflicts.

When a work is passed from one team to another,
each handoff will not only result in loss of
information, but it also negatively impacts overall
lead time of your value stream.

To overcome these problems:

• You need to challenge the duration required
for each handoff. For instance according to
above value stream mapping example, it takes 80
hours until a successfully tested code is picked by
deployment team. Why is this like that? Can’t we
automate this process? Of course we can.

• You need to eliminate the waste caused by
repetitive handoffs. According to above value
stream mapping example, test team hands off
65% of features back to the development. Fixes
for some defects need to be delivered up to 3
times until they are approved by testers. Couldn’t

we speed up these iterations by enabling better
integration between development and testing
teams? And high number of defects show that
something does not optimally function for your
development team. The reasons of these quality
issues need to be identified and sorted out.

• You need to challenge and remove handoffs as
much as you can. According to value stream
mapping example above, once a request is
refined, it takes 320 hours until it is processed by
signed-off authority. Why do you need such a
sign-off authority in your organization? What is
the value of this authority for your value stream?
Has this authority got sufficient level of
information and vision to give a good decision?
Why doesn’t this sign-off authority become part of
request refinement team, so it knows far more
better about what is being signed-off and there
will one less time-consuming handoff which takes
320 hours. Unless you remove constraints and
barriers which slow down your flow, you can’t
really expect much from DevOps.

DevOps expects you to ask such questions to break
the status quo. Not everyone in your organization
will be of course happy to hear such questions. But
you are already prepared for this. 

 45

Make Your Flow Visible for Everyone
In order to make sure that your work flows from left
to right, and your DevOps organization accomplishes
its goals, you need to have tools and mechanisms in
place which make your flow visible. In information
technology business, it is a matter of a mouse click to
assign a work from one team to another in your
value stream. However, due to incomplete work,
inconsistent dependencies and misunderstandings,
it is part of your daily business that your work
bounces from one team to another (so called “one
step forward, two steps back”) and it flows too slowly
if it flows at all.  

Therefore, it is important to make sure that your flow
is visible. Not only for your team, but for everyone.
DevOps relies on Product Backlog, Sprint Planning
Backlog and Kanban boards to visualise flows. These
boards do not only involve the works (tasks) which
belong to your own DevOps team, but they should
also make the entire flow visible from the idea
conception of your products and services to
operational maintenance and end of life. In this way,
whenever a work doesn’t flow, it will be quickly visible
for everyone. And it will be the joint responsibility of
everyone to remove roadblocks and impediments to
enable continuous and successful flow of your work.

DevOps Kanban Board Example
(from Design to Development and Operations)  

 46

Limit Batch Size and Work in Progress
Research conducted at Stanford University found
that multitasking is less productive than doing a
single thing at a time. The researchers also found
that people who are regularly bombarded with
several streams of electronic information cannot pay
attention, recall information, or switch from one job
to another as well as those who complete one task at
a time.

What does this mean for your DevOps team? It
means that you need to reduce work in progress and
limit the batch sizes of your code deliveries. As an
illustrative example: Your team can have maximum 6
work in progress tasks in development to avoid
continuous context switching and enable full focus
on work at hand. Alternatively, you can estimate
each task with a story point weighted by Fibonacci
numbers (0, 1, 2, 3, 5, 8, 13, 21, 34, ..) and your
DevOps team processes up to a certain total number
of story points (velocity) in a given timeframe (sprint).

Beside increasing quality and productivity, by limiting
batch sizes of deliveries, you will be quicker to
identify root causes of issues and resolve them. Once
a task is finished, you will check it in your common
code repository, validate it with your continuous

integration platform and subsequently deploy it in
your production. As the batch size is small,
identification of production issues due to code
deliveries will be easier, potentially required
rollbacks will be less cumbersome. Furthermore, by
continuously delivering in production, your team will
have the constant pride of contributing your
organizational mission. We will leave this to you to
compare this mode of working with morale,
motivation and technical challenges of teams who
build their codes for 8 months without delivering one
single line of code to their production systems.

Use 20% of Your Time to Reduce Technical Debt
When your organization doesn’t reserve time to
reduce its technical debt, but continues building
workarounds on the top of workarounds, it will come
to a point where all engineers spend all their times to
fix issues. In financial analogy of debt concept: Your
organization will be only paying debt interests.

CONCLUSION
In this chapter we covered for you what value stream
and flow in DevOps are, why they are important and
what you do to make your work flow in value stream. 

https://news.stanford.edu/2009/08/24/multitask-research-study-082409

 47

How Should You Design Your
DevOps Continuous Delivery And
Deployment Pipeline?

In many organizations, probably including yours,
developers do coding work in isolation in separate
code branches. Although this mode of operation
deceivingly seems to foster individual productivity of
your developers, it makes your team productivity
suffer.

Separate code branches make it difficult for you to
merge codes from multiple developers. To integrate
various different code pieces, make them work in
harmony and delivering benefits and features to
your clients do usually require involvement of
multiple developers, significant reworks, solving
conflicts that had to be solved long time ago.

Your Challenge Gets Bigger if You Don’t
Continuously Integrate
Ironically enough, as merging codes is a challenging
and tiring activity within the code building cycles,
most development teams unfortunately merge their

code before they deliver their application to
integration or user acceptance testers, which makes
the problem even more impactful. They make
successful integration and quality of their joint
coding work sole responsibility of quality assurance
teams. This is not only ridiculous, but this also
perfectly explains why projects delay, project budget
deficits skyrocket, team morale and motivation
suffer, organizational goals and promises fail, and
companies worldwide waste yearly about 600 billion
USD for non-budgeted and non-scheduled IT work.
Or let’s say IT rework or IT workarounds work…

How Can Trunk (Main Code Branch) Based
Development Help You?
Your solution for this challenge is trunk (main code
branch) based development in combination with
continuous integration and test automation. Trunk
based development is a source-control branching
model, where developers collaborate on code in a
single branch called “trunk”. They resist any pressure
to create other long-lived development branches.

Trunk-Based Development is your key enabler for
Continuous Integration and by extension Continuous
Delivery. When your developers commit their

 48

changes to the trunk multiple times a day it becomes
easy to satisfy the core requirement of Continuous
Integration that all of your team members commit to  

trunk at least once every 24 hours. This ensures your
codebase is always releasable on demand and helps
to make Continuous Delivery a reality.

Source Control Illustration of DevOps Trunk Based Development
(Source: Trunk Based Development)

Continuous Integration Enables You To Deliver
Your Code In Smaller Chunks In Deployable State
Furthermore, frequent check-ins from your
developers enable small development and delivery
batch sizes which increase quality, make it easier to

resolve problems and confl icts. Continuous
integration with daily check-ins motivates your team
to build deployable, but still meaningful codes in
smaller chunks without breaking integrity of your
continuous integration & continuous delivery frame- 

 49

works. Updates in this common source code
repository also provides a mean and medium to you
and to your team members for quick alignments,
decisions and feedback.

Each time a code is checked-in, your continuous
integration framework runs automated test cases for
the functions and features dependent on, impacted
from that changed module. If anything is broken, the
owner of this particular check-in is now responsible
for fixing the check-in. With top-priority. Nothing else
is more important at this moment to ensure that the
rest of your team can continue integrating their work
to trunk. Until the erroneous check-in will be quickly
fixed or rolled-back, no other check-ins to this
module of your trunk are allowed to protect the
stability and reliability of your trunk.

If you think different from one of these major
DevOps principles, the question you need to answer
is: Why would you add other new code to a module
which already has errors?

You may have legitimate reasons, but let’s make sure
that you avoid technical debt and workarounds on
the top of workarounds.

Gated Commits as an Additional Later of Safety
Net for Your Trunk Based Development
Alternatively, your DevOps team can also rely on
gated commits which further increase the quality
and build another layer of safety net for your trunk.

Each time a developer attempts to check-in a code,
test automation runs first to validate the code. Only
after successful validation, the code is formally
checked-in to your trunk.

Use Production-Like Environments In Every Stage
Of Your Software Engineering Value Stream
One other typical challenge in many IT organizations
is inconsistencies between production and pre-
production (development, integration and testing)
environments. Inconsistencies between your
configurations, versions and patch levels of
operating systems, databases, third party tools and
APIs. Or different versions of your own code
scattered all over in various different production and
pre-production environments. Even very minor
differences in JVM versions between your pre-
production and production environments can make
or break your entire production deployment. Unless
you have the full control of your environments and

 50

you know what they have got inside, you can never
know what you will get out of them.

Embrace Environment Management Part Of Your
Daily Software Development and Delivery Work
Therefore, it is no brainer that your pre-production
systems should be the replications of your
production systems. You need to enable your team
to create self-service environments on demand in
automated manner in order to safely do their daily
software engineering tasks in production-like
environments.

Your IT value stream in your organization does not
only offer value with code of your software, but also
with environments these codes are running. Both
your development and operations specialist need to
embrace the fact that, your IT value stream
constitutes two equally important building blocks:

1. Codes to build your software which serve value to
your internal and/or external clients.

2. Codes to build your pre-production and
production environments to host your software.

Use Your Single Source of Truth (Trunk) to Control
Your Software and Environments
(aka Adopt Infrastructure as Code (IaC))
With DevOps, tasks to build your pre-production and
production environments are now part of your trunk
which is the purest definition of Infrastructure as
Code (IaC). Instead of your isolated operations teams
which hardly know the specifics of software your
environments supposed to host, your development
and operations specialist work together to build your
Infrastructure as Code.

In order to ensure code of your software and code of
your environments are treated equally important,
you use your single source of truth (trunk) to store
the code of your software and as well as your
environments.

To be able to build your entire pre-production and
production systems and your deployment pipeline
including its continuous integration and delivery
frameworks, you and your team do not only store
code of your software in version control system, but
also you store required configurations, scripts and
anything required to build your end-to-end delivery
chain. If you want to permanently change a
configuration setting in an environment you do this

 51

change in your environment building scripts, so next
time a DevOps team member of yours creates an
environment, he or she wouldn’t have to reinvent the
wheel.

Most of detailed documentations become anyway
very quickly obsolete, so for you it will be obviously a
better investment to spend your energy to keep your
environment building scripts up-to-date. This is
mainly because without having self-service and on-
demand environments, your cloud infrastructure will
remain yet another underutilized hosting platform
and your DevOps initiative will be yet another
underutilized process improvement attempt. You
should be able to create entire production and pre-
production environments from your version control
system. With DevOps it is easier and quicker to
rebuild environments than fixing them. Manuel
changes in your environments are no longer allowed.
Only code and configuration should rebuild,
configure and launch your environments.

You Have a New Definition of Done (DoD)
Having your continuous delivery framework and
deployment pipeline up and running, now you need
a new definition of “Definition of Done (DoD)”. 

A task should be now classified as “Done” when its
associated client features and benefits are:

• created from your trunk either automatically or
with a one-click process,

• tested in production like environments with
automated tests,

• demonstrated in production like environments,
• ready to deploy or even better already deployed

in running production environments again either
automatically or with a one-click process.

CONCLUSION
With DevOps, integration of your code happens part
of your daily work instead of in the end of your
projects. Developers, operations teams, information
security specialists endless times rehearse
deployment of their work already during the course
of software engineering lifecycle which undoubtably
improves the chance of smooth live deployments.

Higher business throughput, improved software and
environment stability, higher job satisfaction,
improved quality of service to your internal and
external clients will be also your other benefits as
soon as you adopt continuous integration. 

 52

DevOps Tools Landscape to Build Your Continuous Delivery and Deployment Pipeline
(Source: StackOverDrive) 

 53

Why Do You Need Test Automation
In Your DevOps Organization?

If your software delivery department doesn’t have
decent test automation yet, then there must be a
clear disconnect between your development and
testing efforts. Your developers are just getting late
feedback about the quality of their work while they
are already busy with other tasks. They usually miss
the cause and effect relationship between code they
have written (or they haven’t written) and defects.
The efforts your developers put for this context
switch to turn back to times when they introduced
defects clearly reduce productivity. Because the
connection between systems and defects are
complex and fuzzy after late feedback, getting quality
fixes without workaround flavour is neither realistic
nor expected.

It is very clear that without test automation, your
DevOps organization would need more time and
money to deliver quality products and services. This
is no longer a scalable business model for any
technology organization in 21st century. No matter
what business your organization is in.

You Can Automate Your Tests,
But You Can’t Automate Creating Quality
Your DevOps team should automate as many test
cases as it is possible. Because you can automate
your tests, but you can’t automate the cognitive
ability of your DevOps team to create quality, you
shouldn’t waste your human capital for any repetitive
and repeatable work that software can do for you.

DevOps Principles For Good Test Automation

• Test Automation should give quick and early
feedback about your quality of work.

• Tests should generate consistent, deterministic
and repeatable results provided same conditions
for different test runs.

• Tests shouldn’t generate false positives.
• Small number of automated and reliable test

cases are better than high number of non-
automated, unreliable tests which can give
inconsistent results even though same conditions
for different test runs are provided.

• Test Automation should first focus on the
validation of key features and benefits your
systems provide to their internal and external

 54

clients. Even this level of test automation is far
more better than no test automation.

• Afterwards, focus on automating as many test
cases as it is possible to get the best use out of
your human capital in your DevOps teams.

• With your test automation, avoid slow and
periodic feedback. What you need is fast feedback
whenever you or your developer attempts to
check-in code to your trunk.

• If your automated tests are not fast enough, find
ways to speed your tests and/or your software.
This is not only critical to have a reliable
continuous delivery platform and deployment
pipeline, but also to have a great quality of service
for your clients. To get even faster parallelize your
automated tests.

• Consider Test Driven Development. First write
your automated tests, then build your software.

Test Automation Is Your Major Enabler For
Continuous Delivery and Deployment Pipeline
As we have covered before, DevOps methodology
gives your developers the ability to deploy their code
to your production systems. And yet observations
with early DevOps teams in organizations have
proven that: Although developers are quick enough

to check-in their code to trunk and close tasks and
tickets, they are quite reluctant to push the button to
release their code to production systems. They are
kind of afraid to break production and get blame for
it.

Only after DevOps teams have built comprehensive
and reliable test coverage with test automation,
developers could overcome this fear.

As an example: In Google, when a code is checked-in
to trunk by a developer, after initial checks such as
static code analysis, duplication analysis and test
coverage analysis, this code is validated with almost
a million automated test cases. If all checks and test
cases pass, the build is generated from trunk, put it
to production and replicated to all other production
servers. This is pretty much how 5,000 small and
independent Google teams stay productive and
make ten thousands of production deployment every
day. Without test automation this couldn’t be an
option.

Fast and reliable feedback is the only way to have a
safe deployment pipeline and to protect its integrity.
When deployment pipeline is broken due to failed
automated test cases, your DevOps team fixes

 55

erroneous codes and configuration before they
check-in any other work to your trunk. Furthermore,
whenever you find an error in your deployment
pipeline that could have been identified beforehand
and prevented with an automated test case, you also
create and add this test case to your test automation
repository.

Types of Tests You Can Automate

• Unit Tests: Validate single functions, classes or
modules of your applications.

• Acceptance Tests: Validate features and benefits
your applications provide to their clients.

• Integration (Service) Tests: Validate interplay of
your applications and their end to end service
flows.

• Performance and Stress Test: Validate how your
services scale (or don’t scale) with expected and
unexpected client loads. This is particularly
important for the most frequently used services.

• Non-Functional Tests: To validate security,
availability, capacity and scalability.

If you and your team find it difficult to automate unit
and acceptance tests, but heavily rely on automation

of integration (service) tests, probably you have
tightly couple architecture. You should identify ways
to decouple elements of your architecture.

CONCLUSION
In this chapter we covered the importance of test
automation in DevOps. Test automation is key
element to deliver safely and fast.

Regardless your organization adopts DevOps or not,
without test automation there is no way to have a
world class successful, productive and profitable IT
organization which manages to serve well to its
internal and external clients.

 56

How Do You Enable Low Risk
DevOps Code Deployments In Your
Production?

In many IT organizations you can observe,
production deployments are cumbersome and
stressful. To stay in peace this results to a tendency
to reduce frequency of production deployments as
much as it is possible. Then organizations inevitably
face deployments with larger batch sizes which
cause even larger problems. This vicious destructive
cycle gets only worse and it unfortunately represents
status of most of the largest organizations including
the ones whose core businesses are software and
technology.

Your DevOps Team Has Built-In Control and Risk
Mitigation Mechanisms
In a typical IT organization, development team builds
software and operations team takes care of its
deployment. In contrast, DevOps methodology shifts
reliance of control and risk mitigation mechanisms
from other independent teams to your own self-
sufficient and competent team. To automated

deployment and peer review processes, again within
your own team.

As all production and non-environments are assets
which are as important as software your DevOps
team produces, your DevOps team embraces these
three important principles:

1. Ensure consistency of all environments in terms
of operating systems, components, interfaces,
patch levels, all other dependencies and of
course your own software and configurations.

2. It is a priority number one activity to fix an
impediment which breaks consistency of your
environments.

3. Deploy with the same techniques to all
environments, so rehearsal of production
deployments become one of your daily tasks and
habits.

Your Built-In Self-Service Deployment Mechanism
Your automated self-service deployment mechanism
follows the following pattern.

1. Code and check-in to trunk.
2. Build deployable packages.

 57

3. Validate deployable packages, dependencies and
configuration readiness.

4. Validate environment readiness.
5. Run automated testing.
6. Record all validation and automated test results

for audit and compliance reasons.
7. Deploy packages to target environment.
8. Run automated tests in target environment to

validate deployment.
9. Monitor system, performance and activity metrics

of target environment.
10. Provide fast feedback, correct or roll-back the

deployment if anything goes wrong.

Your Deployments Are NOT Identical To Your
Releases
With automated self-service mechanism to deploy
your code to non-production and production
environments, your DevOps team is now empowered
and enabled to do daily deployments to your
systems. Because every single deployment cannot be
categorized as a feature or benefit release for your
clients your team is serving for, your DevOps team
needs to architect your applications and/or your
environments in a way that releases do not require
code changes and further associated deployments. 

Blue-Green Deployment Pattern
One of the challenges with automating deployment
is the cut-over itself, taking software from the final
stage of testing to live production. You usually need
to do this quickly in order to minimize downtime. The
blue-green deployment approach does this by
ensuring you have two production environments, as
identical as possible. At any time one of them, let's
say blue for the example, is live. As you prepare a
new release of your software you do your final stage
of testing in the green environment. Once the
software is working in the green environment, you
switch the router so that all incoming requests go to
the green environment - the blue one is now idle.

Blue-Green Deployment Pattern
(Source: Octopus Deploy)

 58

Canary Deployment Pattern
(aka The Dark Launch)
Canaries were once regularly used in coal mining as
an early warning system. Toxic gases such as
methane or carbon dioxide in the mine would kill the
bird before affecting the miners. Signs of distress
from the bird indicated to the miners that conditions
were unsafe.

Inspired from canaries in mining industry, Canary
deployment is a pattern for rolling out releases to a
subset of users or servers. The idea is to first deploy
the change to a small subset of servers, test it, and
then roll the change out to the rest of the servers.
The canary deployment serves as an early warning
indicator with less impact on downtime: if the canary
deployment fails, the rest of the servers aren't
impacted.

Canary Deployment Pattern
(Source: Octopus Deploy)  

Facebook and Google, along with many leading tech
giants, use canary deployment pattern called “The
Dark Launch”. They gradually release and test new
features to a small set of their users before releasing
to everyone. This lets them see if you love it or hate it
and assess how it impacts their system’s
performance. Facebook calls their dark launching
tool “Gatekeeper” because it controls consumer
access to each new feature.

The Dark Launch
(Source: TechCo Media)

It is called a dark launch because these feature
launches are typically not publicized, but rather, they
are stealthily rolled out to 1 percent, then 5 percent,

 59

then 30 percent of users and so on. Sometimes, a
new feature will dark launch for a few days and then
you will never see it again. Likely, this is because it
did not perform well or the company just wanted to
get some initial feedback to guide development.

Cluster Immune System Release Pattern
This release pattern is an extension of canary
deployment pattern. It requires performance and
software activity monitoring systems tightly
integrated with your release process.

In the canary deployment pattern depicted above,
once the initial deployment on orange colored server
is done, your monitoring systems record all system,
performance and software activity metrics and
generate early alerts if problems increase over
certain thresholds. This results in automated roll-
back of installed code from orange colored server.

If automated tests on orange colored server and
monitoring system provide positive outcomes, your
DevOps team is now far more confident to deploy
their code to all other blue colored server clusters
too. In summary, Cluster Immune System Release
Pattern offers for your DevOps team:

• Additional safeguard for the issues that could be
missed by test automation.

• Quick feedback and automated roll-back action for
production issues.

Feature Toggles
With feature toggles you can switch on and off
features of your application. Therefore, once all
codes required for a certain feature are deployed in
your production system, release of this feature is
nothing but switching on your toggle. Feature toggles
are usually settings in runtime system configuration
files or system configuration databases.

Thanks to Feature Toggles, your DevOps team is now
able to switch off a feature if a canary deployment
results in errors or suboptimal user experience. With
feature toggles, you also have the ability to disable
resource intensive, but relatively less important
features if your system has challenges to scale.
Therefore, even tough your system may have issues
to scale with all of its features, you can still enable
your clients to get the best throughput from the
most critical features of your software. As an
example, in an e-commerce portal, you can
temporarily switch off the toggle of viewing invoices,

 60

so your checkout flow has more CPU and memory
resources to consume.

Furthermore, in a service oriented architecture, your
DevOps teams can deploy different versions of
services without switching them on. Once all new
versions of services required for a new feature or
service flow are deployed, you can switch on toggles
of these services to enable the new service flow.

Architect for Safer Releases
There is no perfect one size fits all architecture for all
software products and services in all scales.

When IT platform of a startup organization is initially
built, a monolithic architecture is most of the times
the first choice to ensure the quickest and cheapest
entry to the market and to validate the business
case. The problem with monolithic architectures is
that functionally distinguishable aspects (core
functions, supplementary functions, user and
systems interfaces and integrations) are all
interwoven, rather than containing architecturally
separate components. During the lifespan of many
large organizations including Amazon, Google,
Facebook and Ebay, they need to abandon their

monolithic architectures in order to rapidly scale and
enable low risk releases and expansions of their
features they serve for their clients. And their next
direction was service (or micro-service) oriented
architectures with the adoption of Strangler
Application Pattern.

Strangler Application Pattern To Enable Low Risk
Migrations to Micro-Services
Completely replacing your complex system can be a
huge undertaking. Often, you will need a gradual
migration to a new system, while keeping the old
system to handle features that haven't been
migrated yet. However, running two separate
versions of an application means that clients have to
know where particular features are located. Every
time a feature or service is migrated, clients need to
be updated to point to the new location.

Strangler Application Pattern incrementally replaces
specific pieces of functionality with new applications
and services. Create a façade that intercepts
requests going to the backend legacy system. The
façade routes these requests either to the legacy
application or the new services. Existing features can
be migrated to the new system gradually, and

 61

consumers can continue using the same interface,
unaware that any migration has taken place.

Ebay is one of the first organizations which have
used Strangler Application Pattern to migrate their
legacy monolithic architecture into micro-services.
They started their migration by merely putting their
applications behind well defined universal APIs in
Ebay ecosystem, so they didn’t have to rewrite all
existing code in one single migration attempt. They
reorganized their engineering groups with small
teams from 6 to 10 engineers. A team as big as 10
people is now able to handle universal API for the
auction platform which is the most frequently used
auction API in the world.

CONCLUSION
In most of the IT departments, teams are not held
responsible for building future-proof, scalable and
safer deployment patterns and their associated
architectures. And yet, building an architecture and
application features which enable your teams to do
faster and safer deployments is a major prerequisite
to succeed with DevOps.

Only by enabling your teams to do low risk, faster
and daily deployments, you and your teams can reap
the benefits of continuous deployment and smooth
releases.

Strangler Application Pattern
(Source: Microsoft Azure Design Patterns) 

 62

How Do You Protect Your DevOps
Deployment Pipeline?

After you and your DevOps team build a working
deployment pipeline for the continuous delivery of
your IT organization, by adhering the principles you
have learnt before, you are now empowered to do
low risk production deployments without external
approvals. Now majority of your production
deployments don’t need to go through a change
approval process. This is because you put your
reliance on proper design of your software delivery
methodology, automated testing, automated
monitoring and intelligent alerts from your
environments instead of merely relying on external
authorities. And yet, bear in mind that security and
compliance is still an important duty of your DevOps
team. This is not only to fulfil requirements from
lawmakers, but also to take good care of your clients.
Of course your DevOps team will still rely on and
collaborate with security and compliance subject
matter experts in your organization, and yet
designing secure systems compliant within the
legislation ecosystem your organization navigates
should be now a daily task and habit of yours. 

Type of Changes in Your Production Systems
• Standard Changes: Low risk changes, require no

approvals, quick deployments because they are
completely automated and logged. Updates of
database look-up tables, content updates, styling
changes, standard operating system, database or
other external component patches are some of
standard changes.

• Normal Changes: High risk changes, require
approval from Change Advisory Board (CAB), CAB
expects Request for Change Form (RFC) to assess
changes, require long lead times because most of
the times CAB members are not knowledgable
enough to assess changes. They hold changes to
give decisions ultimately based on their experience,
intuition and bias on who requested changes.

• Urgent Changes: High risk changes, require
approval from senior management. Critical errors
in production systems which impact clients, fixes of
problematic deployments, security patches, service
restorations are some of urgent changes.

Regardless types of changes, you and your DevOps
team need to document all changes in your change
management and work planning systems (such as
Remedy and Jira), so the work will be visible to
everyone within and outside your DevOps team.

 63

Use Your Track Record of Successful Automated
Deployments History to Convert Normal Changes
into Standard Changes
Only by increasing the ratio of standard changes over
normal changes, you can avoid Change Advisory
Board (CAB) approvals and you can enable faster
flow and higher quality deployment pipeline.

You and your DevOps team now use your history of
successful automated deployments to convert as
many normal changes as it is possible into standard
changes. You show CAB your track record of
deployments, list of production incidents and prove
them your automated production deployments
cause none or only negligible incidents in your
production systems.

Speed up Deployments of Normal Changes
For the changes which must still remain normal,
automate composition process of Request for
Change Form (RFC). Link all automated and non-
automated test results, resolved and non-resolved
incidents, monitoring records and logs from non-
production systems to RFC. Try to simplify CAB’s job
and provide all information they are looking for in

the first version of RFC, so you speed up CAB
approvals as much as it is possible.

Once approved, enable one-click deployments of
normal changes. Regularly review types of normal
changes with CAB, identify and define expectations
which would convince them to convert normal
changes into standard changes, so that you can
automatically deploy majority of your changes in
your DevOps organization.

Reduce Bureaucracy and Reliance on Others in
Your DevOps Organization
The bigger an organization gets, the more food
bureaucracy finds for itself. Bureaucracy has invisible
ability to grow exponentially and live forever. Once
you rely on authority and control mechanisms one
level above you to approve your own job, you’ll no
longer feel empowered and responsible for the
outcomes of your own job. This will make the
authority one level above you regularly fail.

Finally this authority would also require another
authority to rely on and get audited. This downward
spiral gets only longer until the next reorganization
in your company. After reorganization, chances are

 64

almost 100% that a new downward spiral with
slightly other form will replace your actual downward
spiral.

Your company needs to remember that separation of
duties, and reliance and control mechanisms outside
your own team will not only slow down and reduce
the quality of your software delivery flow, but also
they make your organization less secure. A major US
finance organization became victim of an ATM fraud
due to a backdoor a software developer had built in
ATM software. None of external auditors, external
security experts, external compliance officers and
external CAB authority figures could manage to
identify the fraudulent source code deployed to
production systems. This fraudulent could have been
only identified within the team it was developed by
deploying fundamental DevOps techniques such as
inspection of code check-ins and code reviews.

In order to deliver quickly and securely, you need to
reduce reliance on others and separation of duties
because they would only prevent your DevOps team
from taking responsibility. In your DevOps team you
need to deploy other control mechanisms such as
inspection of code check-ins, pair programming, peer
reviews, automated testing and monitoring. If

separation of duties are mandatory due to legal
reasons, your built-in controls in your DevOps team
will still empower auditors and compliance officers to
give better, informed and faster decisions.

CONCLUSION
DevOps brings a new and dynamic dimension for
compliance and information security. Where your
infrastructure is code, when code makes your
systems appear and disappear, and where your code
is automatically deployed, it is not a trivial process
for auditors to understand what is really going on.
This is a new challenge, but as well as an opportunity
to create and deploy leaner and smarter auditing
and compliance mechanisms and officers.

In your DevOps team information security,
compliance, quicker deployment pipeline are
everyone’s job. It is a major goal for your DevOps
team to enable compliance officers to access self-
service information, logs, reports and metrics which
prove high quality delivery of your DevOps team.
These will simplify bureaucratic approval processes
or even better to altogether remove them.  

 65

How Do You Ensure Your DevOps
Information Security?

In most organizations, information security concerns
are one of the most frequent objections against
DevOps adoption. And yet, DevOps methodology is
one of the best techniques to deliver world’s most
secure systems.

In many organizations, perhaps in your organization
too, the ratio of information security specialists over
entire software engineering team is 1/100. In other
words, in a software engineering team with 100
people you usually find only one single information
security specialist. This results in long lead times to
get any software security related problems resolved,
delays of software deliveries and even worse sub-
optimal level of information security for your clients.

If you have learnt one single thing from your
software delivery experience, this must be that
showstoppers at the end of projects are bad, but
showstoppers related to security issues are even
worse. Therefore, every single member of your
DevOps team should embrace information security

part of daily engineering work, rather a checkbox
ticked (or unticked) in the end of your projects.

Involve Information Security Specialists In Early
Stages Of Software Engineering Process
In order to ensure an information security issue does
not become a showstopper and bottleneck just
before your software deployment, involve
information security specialists in early stages of
your software engineering process. You invite them
to demonstrations, early planning and review
sessions, so they get a feeling about business your
software is associated with. In this way they can
better judge potential information security risks and
issues, so they support your DevOps team to define
information security and compliance goals that must
be handled during the course of your software
engineering process.

Information Security Is Part Of Daily Work
You and your DevOps team need to track security
features as well as security incidents with your
standard task planning and incident management
tools instead of dumping them to compliance
management tools which your DevOps team doesn’t

 66

pay much attention to. Whenever there is an
information security related issue in your software
architecture, design or running systems, educate
your DevOps team about these issues. Make them
comprehend root causes of these problems and how
they should think and approach similar situations in
the future in order not to recreate the same issue.

In terms of information security, tactical approach of
your DevOps team is:

• To prevent security mistakes from being repeated.
• To integrate security objectives into project goals,

planning and tracking tools.
• To make security tests part of automated tests in

your deployment pipeline.
• To define reusable self-service tools and software

libraries which combine information security best
practices of your organization, after making
comprehensive information security analysis from
all angles of certain product and service features.

• To educate and trust DevOps Developers and
DevOps Operations Engineers whose core
competences are not necessarily information
security.  

Build Secure Libraries, Procedures, Blueprints,
Architectures and Designs for Your Software
By building such reusable assets, your DevOps team
should standardize information security aspects of
your software in various critical dimensions such as:

• Communication and data transfer between clients
and software.

• Data storage.
• Secure environments.
• Operating systems, databases and configurations

of 3rd party tools, components and other
interfaces to avoid vulnerabilities.

• Password storage.
• Handling of forgotten passwords.
• Handling the logging of sensitive client information.
• Avoiding cross-site scripting (XSS).
• SQL Injections.
• Other information security vulnerabilities specific

to your business and legislation ecosystem your
business operates in.

 67

Recommended Techniques for Information
Security With DevOps Methodology

• Static Analysis: Code analysis to identify
backdoors and security vulnerabilities.

• Dynamic Analysis: Backdoor and vulnerability
analysis while the system is running. Continuous
monitoring and analysis of CPU, RAM, Network I/O
and Disk I/O operations in non-production as well
as in production environments.

• Dependency Analysis: Static and dynamic analysis
for external tools and dependencies which contain
source code you cannot control. When your
organization uses a third party tools, libraries or
services, you also inherit their information security
issues. Don’t forget to review open security
incidents of third party components and vendor’s
track record of how quickly they rectify such issues.

• Security For Source Code Access: Your DevOps
team should use a Public Key Infrastructure where
everyone should possess one public and one
private key. In this way, all check-ins/check-outs
and reads from your code repository are
authorized, monitored, and all changes are signed
by their respective performers.

• Integrate Security Monitoring (Telemetry) in
Your Environments: To check system usage details

to identify security breaches. These breaches are
usually indicated by excessive number of some
critical user-generated events such as failed log-in
attempts, number of password recovery requests
and purchase transactions from same user with
various different credit cards and so on.

CONCLUSION
In this chapter you have been provided some
recommendations about DevOps’ way of information
security. Information security by itself is an art and
science, so the approach articulated in this chapter
doesn’t meant to make you an information security
expert, but to explain you how DevOps software
development and delivery methodology approaches
information security.

It is evident that DevOps empowers and very well
integrates information security and compliance goals
of your organization to the daily work of your
DevOps engineers by making information security
everyone’s job in your organization. World’s most
dynamic companies have already proven that this is
a safe way to securely serve your clients. 

 68

How Should You Enable Your
DevOps Feedback?

In your IT ecosystem where demands and requests
from your clients constantly become more
challenging, you and your DevOps team need to
strive for continuous quality improvement of the
work you are doing. In order to achieve this, you
enable fast, continuous and reliable feedback loops
from right to left in your value stream.

These feedback loops will help you quickly deal with
impediments while they are small, cheap and easy to
remove. They will help you create an organizational
learning culture while you do your work. When
problems occur, you and your DevOps team treat
them as opportunities to learn and improve the
quality of your software products and services.

Why Do You Need Built-In Quality Enabled By
DevOps Feedback Loops?
From your experience in software engineering
industry, you must be so far pretty clear that in a
complex system, no one is able to know everything.
Even doing the exactly same work twice does not

yield the same outcomes. Because this level of
uncertainty of outcomes is not tolerable in any
business, organizations tend to build control and
reliance with quality assurance mechanisms by
deploying checklists, audits, compliance, quality
assurance professionals and micromanagement. And
yet, all these measures are not sometimes sufficient
enough to avoid mistakes and errors.

Therefore, building an organization which builds
built-in quality starts with accepting mistakes and
errors part of your daily job.

Design A Safe System Of Work Culture
You design a safe system of work culture. Nobody in
your DevOps team is afraid of making mistakes
because you and your DevOps team know that
errors are quickly detected and fixed while they are
small and before they cause catastrophes such as
significant defects, downtimes of services and
negative client reviews.

By building a safe system of work culture you, your
DevOps team and your entire IT and business
organization will enjoy following benefits:

 69

1. Complexity of your systems will be managed, so
problems in designs and operations will be
quickly detected.

2. Problems are quickly resolved while they are
small. Resolving problems will result in
spontaneous construction of new organizational
knowledge and experience.

3. New knowledge and experience are spread
around and distributed towards your entire
organization.

4. Leaders in your DevOps organization develop
other leaders who create and continuously
improve safe systems of work.

Identify Problems While They Occur
If feedback mechanism in your organization is slow,
infrequent and late it also late and expensive to
prevent undesirable outcomes. Like good old
waterfall software delivery days when applications
are built for a year before they are for the first time
shown to clients, and then rewritten for another
year, none of businesses today have luxury to work
with this modus operandi.

Your goal is to create fast feedback loops. When your
work moves from left to right in your value stream, it

should continuously provide feedback from right to
left. Building quality in your DevOps organization is
all about building quick feedback cycles. When an
issue is introduced, your DevOps team identifies it
about while it is first time occurring in your value
stream. You and your DevOps team quickly fix issues
and you constantly validate correlation between
client expectations (internal clients, external clients
and all other stakeholders in value stream who are
impacted from your work) and your implementation
to fulfil these expectations. Quick feedback cycles do
not only enable you to quickly fix issues, but they
also enable you to learn from them and prevent from
doing same errors again in the future.

Undo Your Errors When They Are Easier, Quicker
and Cheaper To Fix
Quickly finding problems enable you to quickly fix
them too. Otherwise,

• Cost and effort to fix them exponentially grow and
you allow technical debt (workarounds on the top
of workarounds) to accumulate.

• Errors proceed to downstream work centers in
your value stream which most likely contribute
construction of other errors.

 70

• Errors happen again and again far away from the
work center they were first introduced and they will
require more fixes and work from you to be
undone.

• Memories about why errors did happen in the first
place fade and circumstances contributed
construction of errors change. If errors are first
identified months after they were introduced, you
can’t really find out true root cause and worst of all
you can’t learn from them. You would do a
workaround to save the day and move to the next
workaround. You already know that this is exactly
what you want to avoid with DevOps.

Encourage your DevOps team and yourself to raise
your voice and to build continuous feedback
mechanisms to identify and quickly fix errors. Do
NOT introduce erroneous work on the top of
erroneous work. In other words, don’t let your
DevOps team build new features before fixing errors
which would negatively impact construction of these
new features. Continuously improving quality of your
work and continuously removing errors while they
are happening will ensure that you build best
software products and services in your particular
market.

Don’t Push Quality Control Decisions Further
Away From Where The Actual Work Is Performed
Pushing decisions about quality controls further
away from where the work is performed lowers
quality, increases delivery lead times, decreases the
strength of feedback between cause and effect and
reduces your ability to learn from your mistakes.

In a nutshell:

• Don’t require your teams to do manual quality
control work that can be automated.

• Don’t require approvals from busy people who
have no to limited knowhow about the work that is
being performed.

• Don’t create large documentations for approvals
which will soon become obsolete due to nature of
your work.

• Don’t push large batch of work to authorities for
approvals.

Instead, every single member of your DevOps team
should be finding, fixing, sharing, talking and
teaching about errors in her or his own area of
control. Pair programming, peer reviews, automated
testing, inspection of code check-ins, internal
checkpoints, very frequent demonstrations should

 71

make quality assurance responsibility of everyone
instead of responsibility of a dedicated quality
assurance department.

CONCLUSION
You and your DevOps team are always conscious
that you are getting paid to serve your clients.
Therefore, you should be always working for the best
interest of your internal and external clients.

And yet, the next work center in your value stream is
particularly important. You should optimize your
work for them with empathy. You should build fast
and reliable feedback flows with them to enable fast,
smooth and high quality flow in your value stream,
so that your DevOps team is able to identify and
resolve problems as quick as it is possible. 

 72

How Do You Create Monitoring
(Telemetry) To Manage Your
DevOps Software Life Cycle?

From your experience in IT industry you can already
easily tell that when things go wrong it is not trivial to
identify root causes of issues. The problem can be in
your software applications, in your environments or
in other components your applications and
environments are integrated to.

When you look at the development of relatively
complex client and server platforms during last 50
years, one type of event which has been frequently
occurring is that: When a server starts behaving
suboptimally, throwing errors and it doesn’t deliver,
you simply restart it by hoping that restart will
resolve issues. Indeed a restart can sometimes
temporarily undo a problem that you have never
understood. And yet, if this doesn’t help, your next
stop is developers and testers who didn’t properly
deliver and who didn’t properly identify issues while
the software was tested. All this chaos will not only
impact client satisfaction from your services, but it
will also pollute working climate in your organization. 

Champion DevOps organizations do barely restart
their servers during rectification of their issues. They
deploy systematic approaches to identify and resolve
problems. They rely on production telemetry to
understand root causes and contributing factors to
problems instead of blindly restarting servers. They
have 96 times better MTTR (Mean time to recover)
than other organizations. In other words they solve
their production issues 96 times faster than an
average company. Top technical practice of
champion DevOps organizations is they deploy
telemetry in their software and in their applications.

What is Telemetry?
In pretty simple terms telemetry is the process of
recording the behaviour of your systems.

To make this happen you need to design your
software, your production and pre-production
environments and your deployment pipeline in a way
that they continuously generate records for
telemetry. Your goal is to deploy enough telemetry,
so that you can confirm that your services do
correctly function in your production environments.
When a problem occurs, thanks to viewing your
telemetry records, you can quickly understand what

 73

the problem is and take informed decisions to rectify
it.

Furthermore, telemetry helps you validate your
understanding of what is happening in your
production systems compared to what is happening
in your production systems in reality, so you can
easily see if they correlate.

Build Your Telemetry Infrastructure
In order to have telemetry you need to have two
major components in place:

1. Recording of Telemetry Metrics: All High
Performer DevOps organizations constantly
record hundreds of thousands of metrics at every
layer of their applications, environments and
deployment pipeline. A few examples are events
in business logic such as number of sales or
server platform health checks such as monitoring
of operating systems, databases, disk I/O
operations, network I/O operations, RAM, CPU
and Security.

2. A Central Platform to Manage Telemetry
Metrics: This platform stores metrics and events.
It enables visualization, trending, sampling,

alerting, anomaly detection. It converts logs into
metrics such as number of fatal exceptions in a
software application. Furthermore, events in your
deployment pipeline such as commits, rollbacks,
installations, uninstallations, automated test
results in production and pre-production
environments should be also stored in the same
telemetry infrastructure.

You, your DevOps team and all other stakeholders
working together with your DevOps team should be
able to retrieve information from your telemetry
Platform via self-service APIs and GUIs, instead of
opening tickets to send requests to access telemetry
information.

All of your telemetry information must be 100%
accessible to your entire organization except
telemetry metrics which may violate privacy and
jeopardize security of your clients.

Types of Telemetry Metrics
1. Business Layer Metrics: Such as A/B testing

results, profit, revenue, number of new users,
average session durations, number of completed
orders and number of abandoned checkouts.

 74

2. Application Layer Metrics: Such as application
response times, transaction durations, number of
core dumps and number of fatal exceptions.

3. Infrastructure Layer Metrics: Such as server
traffic, disk I/O operations, network I/O
operations, RAM, CPU and disk usage.

4. Client Layer Metrics: Such as client application
response times and client errors on web, mobile,
JavaScript and other client applications.

5. Deployment Pipeline Layer Metrics: Such as
check-ins, deployment lead times, frequencies,
status of environments and green/amber/red
status results after execution of automated tests.

It is profoundly important to build your metrics
within hierarchies under various categories and
nested sub-categories, so you and your DevOps
team can easily interpret them.

Make it easy to understand log entries of your
applications which will be later converted into
telemetry metrics. Just like you group logs under
various event categories, do a similar a grouping for
your telemetry metrics too. An example of such a
grouping is: Debug, Info, Warn, Error and Fatal levels
of telemetry metrics.  

Use Your Telemetry Information To Guide
Problem Solving
If your organization has a culture of blame, nobody
wants to make changes in production systems fully
visible and nobody is willing to display telemetry. In
this atmosphere, root causes of issues are barely
correctly identified and worst of all no new
organizational learnings happen.

In order to ensure you can use your telemetry to
guide problem solving, make sure creation of
telemetry becomes a daily job for your entire
DevOps team. Create easy to use libraries, so that
one line fo code easily creates a telemetry record.

Furthermore, create telemetry records for write
events of your version controlling system and
running environments, so from your telemetry
monitoring, it will be very clear and easy to visualize
the correlation between changes you do in your
systems and their associated impact on your clients.

As an example: From the below chart it is very clear
to see that one of the last deployments on Thursday
evening is a probable root cause which increased the
failed purchase events from your checkout flow.

 75

Deployments vs Key Business Events Chart
Increased Failure and Reduced Success Rates of Purchase Events between Two Deployments

(Source: Measure Anything, Measure Everything, DevOps Handbook)  

Telemetry will help you communicate about issues in
detail. You and your DevOps teams have nothing to
hide from yourselves and from your stakeholders.
Therefore, you constantly monitor and present
charts like above to your stakeholders in realtime to
support quick identification of issues and to see
potential cause & effect relationships between your

deployments and key business events. Business
people become a better understanding and
transparency about the work you and your team
perform. Furthermore, DevOps Developers and
DevOps Operations Engineers see the correlation
between incidents and deployments.

 76

Telemetry enables you to see the problems while are
easy and cheap to fix, so you undo them before they
spread and you build other problems onto them.

With telemetry you and your DevOps team can
identify patterns of key business and technology
metrics and create alerts if anomalies happen. Your
alert thresholds in the beginning can be false and
they may generate false positives. This is totally
normal. Don’t panic. And don’t let anyone undermine
your effort and investment to build your telemetry
infrastructure. Like everything else in your complex
systems, you will figure this out too and fine-tune
acceptable thresholds for your alerts too, so they will
work for you, your clients and business.

CONCLUSION
Champion DevOps organizations identify impact of
problems as measurable business metrics such as
number of lost clients or lost revenue. So everyone in
their DevOps organizations become more sensible
about telemetry. Not only in production, but also in
pre-production environments. They invest time and
resources to build and use telemetry, and they rely
on using telemetry to quickly identify and undo their
errors.

 77

Why Should You Enable Feedback
For Your Safer Production
Deployments?

In competitive markets like yours, having a separate
quality assurance and operations departments from
your development team is not really acceptable if
you want to rapidly serve your clients and constantly
fulfil their demands. And yet, although most of
developers complain about bureaucracy in their
organizations, when they are given a chance to
collaborate quality assurance and operations
specialists in their owns teams, they are still afraid of
doing non-supervised production deployments on
their own. This brings us to techniques and
measures we should put in place in order to ensure
safer production deployments.

How to Enable Continuous DevOps Flow
To enable smooth and continuous flow, the secret
sauce of most successful DevOps organizations is
frequent deployments in small batch sizes of
changes in their production systems. Therefore,

everyone in your DevOps teams can assess and
understand changes, and fix them when necessary.

Building an automated deployment pipeline is not
fully sufficient. You need to integrate operational
telemetry into your deployment pipeline to quickly
get feedback about the results of your changes in
production and pre-production environments.
Furthermore, in your organization you need to create
a common cultural understanding about: Everyone
in your DevOps team is responsible for the health
and successful continuity of entire value stream and
deployment pipeline.

Rely On Telemetry For Your Safer Deployments
You never consider a change and deployment
marked as “done” until you prove that it operates
what it was designed and coded for. After your
deployments you closely monitor metrics of changed
modules, newly created metrics if any and the
metrics of other components in your system which
may be impacted from your change.

Although you use your pre-production environments
to run automated tests and you monitor your system
under test with your telemetry infrastructure, there

 78

will be still issues in your production systems. You
can’t prevent all problems from happening, but you
can be very well prepared to rectify them when they
happen. If a change breaks your deployment
pipeline, you bring all subject matter experts
required to undo the problem and make your
deployment pipeline healthy again. Following are
three of frequently used methods to solve issues:

1. Switch off the Feature: This is easiest way to fix
a problem. It doesn’t require an urgent code
deployment. You just switch off the feature with
feature toggles. You don’t have to quickly correct
erroneous pieces in your deployment, so your
DevOps team can take time to properly identify
root cause of this issue and improve their
techniques to ensure such a problem will not
likely happen again in the future.

2. Fix forward the problem: Deploy a new code to
fix the issue. Although fix forward is a dangerous
way to address production issues in traditional IT
organizations, in DevOps organizations it can
work very well, efficiently and safely if there are
test automation, automated deployment and
comprehensive production telemetry in place.

3. Rollback the Change: You remove erroneous
code, so the problem (hopefully) disappears. 

Make Your Developers Get Feedback From Real
Life Of Operations
Rotate your people in your DevOps team to handle
responsibilities of operations teams, so they handle
and deal with operational incidents. In this way
everyone in your value stream wins a sense of
challenges and responsibilities of downstream work
centers. Put your developers, testers, architects,
designers, managers and directors on operational
non-scheduled duties, so they get incident alert calls
at 3am in the morning. This makes everyone in your
value stream to build a solid opinion about the
consequences of decisions they are giving during
their daily jobs.

Such a rotation encourages operations specialists
not to feel isolated and alone. Everyone in your
DevOps team supports to build a proper balance
between fixing production incidents, reducing
technical debt and developing new features. It is
quite clear that when you wake up architects and
developers at 3am in the morning, incidents will be
fixed faster than ever.

When developers are asked to observe their clients
while clients use their software, they have lots of aha
moments to discover what they should immediately

 79

improve. This is also true when architects, designers,
developers and testers internally monitor other
downstream work centers in software engineering
lifecycle. When they comprehend the impact of their
work on downstream work centers, they gain a new
angle to improve the quality of their work and fine-
tune the outcomes in order to help downstream
work centers perform better. Everyone in your
DevOps team starts to take over non-functional
operational requirements part of their daily work
within their backlogs. And this is only possible by
enabling quick and continuous feedback loops within
your DevOps organization.

Make Your Developers Operate Their Own System
It is very difficult to transfer learning experiences
from real production systems to development teams.
Therefore, some prominent DevOps organizations
including Google make their development teams be
responsible for operations of software during and
after initial product launches. In this developer
managed state of a product, operations engineers
act as consultants. After it is proven that the product
is stable enough in production for about 6 months, it
is handed off to operations teams. This hand off can
only happen if the product in production already

fulfils a number of checks such as past and ongoing
defects, telemetry coverage, out of work hour
incidents, loosely coupled architectural design and
change and deployment safety.

If the product in operations managed state ended up
having uncovered significant design and coding
issues, it can be handed off back to developers. In
developer managed stage, developers are in charge
of stabilizing software whereas operations engineers
act as consultants.

CONCLUSION
In this chapter, various techniques to ensure
successful and safer flow of deployment pipelines in
your DevOps organization are covered.

These techniques demonstrate exemplary mutual
respect and collaboration between developers and
operations engineers in your DevOps teams. 

 80

H o w D o Yo u I m p r o v e Yo u r
Hypotheses With DevOps And
Empower Your Experiment And
L e a r n i n g - D r i v e n D e v O p s
Organization?

In typical IT organizations you used to build, most
likely you are still building multiple releases of
products and product features without validating if
the desired business outcomes from these products
and features are fulfilled or even if they are being
used by some living human beings at all. The most
inefficient way to test a business model or a product
and feature idea is that: You build a complete
software product and service to see whether the
predicted business demand already exists and your
idea can meet this demand.

Before you build a full-blown product and service
you need to ask: “Why should I build this?”, “Is this
really worth of my time and resources?”. You need
to create and run fastest and cheapest experiments

possible to validate if your ideas, products and
features meet your desired business outcomes.

Long time statistical experiments and measurements
with various enterprise product suits have shown
that: Only 1/3 of all performed changes can
considerably improve a key business metric such as
revenues, conversions, orders, subscriptions, new
customer acquisition and so on. In other words 2/3
of changes make from no to negligible improvement
or they make results of the metric even worse. For
these 2/3 of changes, your organization would be
better off giving entire team a vacation, instead of
building these non-value adding features.

Your counter measure to overcome this challenge is
user research by conducting A/B testing. You test
results of your features before you build them. You
integrate feedback from user research to your
software engineering process to make sure that you
are not only correctly building with DevOps
methodology, but also you are building the correct
thing. The faster you can experiment, learn and
integrate client feedback into your software
engineering life cycle, the better ability we will have
to outperform your competitors in your particular
market.  

 81

A/B testing technique became first popular with
direct response marketing via postal mail. By
changing wording, color schema, design layout,
headline, copy text and so on, marketers have been
testing numerous variations of flyers and post cards
in order to find out the versions which perform and
sell more than others. British government has been
doing A/B testing to identify the best performing
letter to collect overdue tax revenue from its citizen.
A/B testing is nowadays a mainstream method not
only to test marketing and communication elements,
but also to identify what ideas, products and features
work and what don’t.

In order to adopt A/B testing in your DevOps team,
you need to be able to quickly and easily deploy
multiple versions of product features and present
them to various different user segments. With your
comprehensive telemetry and business layer metrics
you identify if the feature produces better business
results. If yes, which version of this feature performs
best.

An example: Your DevOps organization wants to
release a new checkout flow for an e-commerce
portal. Before this new checkout flow becomes a
major new work for your DevOps team, it is only a

hypothesis for better business results. Only after this
hypothesis is investigated and validated, your new
checkout flow can turn into a real project which will
consume significant time, resource and energy from
your team. The first work package of your DevOps
team with this checkout flow is:

Validate Hypothesis: We Believe that a new version
of checkout flow, Can Result In improved conversion
rates. We Will Be Confident to fully build and deliver
this feature when we see that one of experimental
check-out flow versions presented to 1% of visitors
increases sales at least 5% during next 7 days.

CONCLUSION
Instead of merely relying on your gut feeling and
best practices you and your DevOps team have been
learning and observing so far, the focus must be
getting real people in the real world to really perform
in your experiments.

DevOps Product Owners should see their product
and feature ideas as hypothesises to be validated.
These hypothesises can be comprehensively
designed, built and tested only after they are
rationally proven to be good ideas. 

 82

Why Do You Establish Your
Continuous Review Process To
Ensure Quality?

Your organizations heavily rely on reviews, audits,
inspections and approvals just before production
deployments. These inspections are usually
conducted by people who are only remotely involved
in your work, if any. Worst of all these inspection and
approval authorities sometimes have incorrect
understanding about your work, so you need to
educate them just before you want to deploy your
code in production.

Problems With External Control Mechanisms
In most organizations building control mechanisms is
easier than building mutual trust. Therefore, adding
more questions to change control forms, adding
additional approval layers in the hierarchy and
requiring extra lead times to understand and
approve changes are typical problems with external
control mechanisms.

Low trust environments of command and control
cultures are doomed to live with a lot incidents which
continuously repeat themselves. A vicious negative
cycle emerges in these organizations because there
is no clear transparency about real work performed,
because there is no transparency about recurring
problems, and because work is performed in large
batches to keep number of painful deployments as
low as it is possible. Longer lead times to deliver
hurts the time-to-market competitiveness. Slow, late
and non-actionable feedback to your teams makes
learning from mistakes impossible.

A competent DevOps organization like yours know
that: People who are closest to real work performed
and its associated problems know the most about
them. Therefore, having additional external control
and approval mechanisms do not bring added value
to your value stream. Which brings us to the largest
management and leadership challenge of our time.
Building high trust cultures where the work
performed is transparent, where genuine respect
and mutual trust are essence of daily work.

You need to shift reliance away from periodic
inspections and start relying on peer reviews part of
your daily work. Make your developers, operations

 83

engineers, quality assurance and information
security specialists in your DevOps team constantly
collaborate and review work of each other to make
safe deployments possible.

Coordination Of Complex Work Without External
Control Mechanisms
It is already complex when one single team works on
a project, but work can become even more complex
when multiple teams work on different components
of the same system. Some measures to keep you
and your DevOps team on the top of your game are:

• Change boards who are subject matter expertises
themselves, not only managers, can help you
identify dependencies of various teams before
changes happen.

• Loosely-coupled architectures based on SOA and
micro services reduce dependencies and
communication effort.

• Technical representatives of DevOps teams should
ident i fy dependencies , development and
deployment sequences.

• Continuous communication with common chat
platforms to synchronize changes and comprehend
and review the understanding of others.

• More impactful and risky changes such as
migrations or infrastructure changes require
rehearsals on test environments and technical
countermeasures such as failover and full-rollback
mechanisms.

High Performer DevOps Organizations Rely On
Peer Reviews And Less On External Approvals
Many prominent DevOps organizations including
Amazon, Netflix, Etsy and GitHub use “Pull Request”
Review & Deployment Process. Here is how it works:

1. The developer creates a separate development
branch from trunk. This branch should not live
more than a few business days and it should
have a clear, descriptive name such as “login-
screen-v2”. The developer works on this branch
locally on her workstation and regularly checks-in
this branch to version controlling system.

2. When the developer thinks that the development
branch is ready for merging trunk, she opens a
“pull request” to ask review feedback.

3. After the developer gets review feedback and
approval from other members of her DevOps
team, she merges her code to the trunk. Then
she deploys her code into production systems.

 84

For high profile changes such as database schemas
or changes that may impact information security of
applications, the developer can also send additional
“pull requests” to get feedback from other subject
matter experts in your organization such as database
administrators or information security specialists.

Small batch size principle ought to be used again
while codes are being viewed. Otherwise reviewing
code takes longer and this puts a lot of burden on
reviewing engineers. When the change gets bigger,
the risk of this change gets exponentially larger and
the review becomes less reliable. If a change is too
big and difficult to understand, the developer can be
asked to split her change into multiple smaller and
understandable chunks.

Everyone in your DevOps team regardless seniority
and experience level must have someone review his
or her own changes. Everyone should monitor
commit streams, so potential conflicts can be quickly
identified and solved before they cause larger issues
in deployment pipeline, even worse during
production deployments.

Pair programming by itself and pair programming in
combination with test-driven development (TDD)

(one developer writes code of application and
another developers writes automated test) can
enable your DevOps team to conduct peer reviews
while the code is being written. Given the same team
size and project requirements, it is measured and
proven that pair programming takes 15% more time,
but it reduces 85% of coding errors. Therefore, pair
programming is an important practice you and your
DevOps team should evaluate to use.

Furthermore, over-the-shoulder reviews, automated
notifications of check-in steams and tools to assist
code reviews and increased code quality are other
alternatives you should be considering to implement.

CONCLUSION
Make every DevOps team in your organization be
responsible for own quality of its deliverables. Build a
culture that values continuous and high quality code
reviews as much as writing high quality code. 

 85

How Should You Enable Your
DevOps Continuous Learning?

From your software projects you already know that:
Even though you have checklists, peer reviews,
control, audit and compliance mechanisms, you still
have problems. This is inevitable. It is time for your
DevOps team and organization to build a self-
diagnostics, self-learning and self-improvement
culture. Your culture accepts problems and your
teams are ready when problems occur. Solving
problems is not an exceptional state of work. But
they must be part of your daily work to contribute on
continuous learning and improvement journey of
your organization. And you multiply the effects of
these solutions for the problems you solve, by
making them transparent, available and easily
accessible within your entire DevOps organization.

One of the prominent DevOps organizations, Netflix,
has built an in-house software (Chaos Monkey) to
simulate catastrophic events in their cloud-based
data centers. Chaos Monkey randomly destroys
servers in production systems, so Netflix team can
build additional assurance on their operational
ability for resilience, stability and uninterrupted

service quality for their clients. From each failure
they learn new lessons and they exploit these
lessons to make their systems even more stable and
resilient.

Understanding Importance of Building a Learning
Culture
In your organization if there is finger-pointing after
incidents, this will create a fear culture for engineers.
Thus, your organization simply becomes slow,
bureaucratic and a political slippery landscape.
Instead of consciously learning from errors, being
organically more resistant and resilient against errors
and being more mindful and careful to prevent
errors. Everyone in such organizations care about
self-protection. Work, problems and even solutions
themselves are never fully transparent.

Because problems are inevitable in complex systems,
instead of finger-pointing, blaming and shaming the
ones who cause problems, your organization should
value actions to make problems visible in your daily
work. It should encourage organizational learnings
from errors and inefficiencies, so everyone in your
DevOps organization can also learn and profit from
these problems, solutions and knowledge. 

 86

When engineers in your DevOps organization feel
safe about giving details about mistakes, they
voluntarily go extra mile and spend a lot of energy to
make sure that a similar problem will not happen
again in their own work center and in other work
centers in your organizational value stream. If
engineers are punished or even if they feel that they
are punished when they do mistakes, then they will
be afraid of making mistakes, so

1. They produce less work to do less mistakes.
2. They are not transparent about work, problems

and solutions.
3. They are not incentivized to convert solutions of

problems into organizational learnings.
4. It is guaranteed that the same or very similar

problem will happen again because nobody ever
spends time and energy to learn, share and teach
about problems/solutions and make them visible.

Run Post-Mortems As Soon As Incidents Happen,
Before Memories About Problem Causes Fade
The goals of a post-mortem review are very simple:

• To identify the things you did right, so that you can
remember to try them again in similar situations.

• To note the things that should have been done
differently, so that you can refine your techniques
in the future.

• To note the things that you did wrong, and to
suggest alternative approaches or safety measures
that you should employ the next time you face a
similar problem.

• To find out why it did make sense to take (or not to
take) the action which caused in the incident.

Exploring what you did wrong is frightening and in
some organizations it is dangerous. If admitting
having made mistakes opens you to criticism or
discipline, you are unlikely to make such admissions.
This strategy is ultimately self-defeating, since failing
to understand a past mistake usually condemns you
to repeating it again in the future. Organizations that
are serious about improvement understand this, and
take trouble to create a process and culture wherein
it is safe to explore mistakes.

When you enter into a post-mortem review process,
you must accept a few basic premises:

• Everybody tries to do their best, as best they
understand it.

 87

• You make our decisions in stressed situations, with
imperfect information.

• You are often called upon to carry out tasks for
which you have not been trained, with whatever
tools and resources happened to be at hand.

• Mistakes are inevitable in such situations.
• The goal of this process is not to find fault with any

individual or their actions. Rather it is to look at
what happened and see what lessons you can
learn from it.

• The output of this process will not be an
assessment of any person or group of people, but
rather an assessment of our processes, and how
they can be improved.

It is absolutely essential that everyone involved
completely accept this "No blame, We are here to
learn model". Many organizations go to great
trouble to create such safe environments. The FAA,
for instance, has an Aviation Safety Reporting
System, whereby pilots who make "mistakes" can
gain immunity from regulatory discipline if they
report those incidents.

Post-mortem reviews must always define actionable
measures to prevent the incident from happening
again in the future. New Telemetry metrics, new

automated test cases, identification of type of
changes that require additional code reviews,
refactoring code or decoupling complex system
components which cause frequent problems can be
examples of such preventative measures.

Publish post-mortem review protocols and lessons
learnt widely in your organization. This will help you
convert your local learnings from one work center in
your value stream into organization-wide global
learnings. And this will be a clear message in your
DevOps organization to nurture transparency,
openness and learning culture.

Organize Game Days To Improve Your Systems
A game day is not one of your typical boring team
events where extraverts enjoy the show and
introverts play with their mobile phones to speed up
the flow of time.

In a game day catastrophic failures are simulated in
your test systems. And DevOps teams work towards
fixing and learning from these failures.

For instance, a critical server is terminated to validate
the successful operation of failover mechanism

 88

without service interruptions. Then your DevOps
team validates if/how your recovery mechanism
from backups or from your Infrastructure as Code
(IaC) works. Identifying problems in these fail
scenarios helps your DevOps team build resilient,
fault-tolerant systems and create learnings.

During the process of solving problem, your DevOps
team builds relationship with other departments
while they rehearse fail events in non-stress
conditions. You will test and have a visible chance to
improve communication and troubleshooting
processes within your larger global organization.

Furthermore, you will have the ability to observe
weaker signals for potential larger issues that may
reveal themselves in the future. Frequently
happening low priority incidents during these fail
scenarios, or a small side effect that may have come
close to crash another critical component in your
architecture are important week signals that you
should take into account and work out to improve
your systems. 

CONCLUSION
In your DevOps team encourage calculated risk
taking. High performer DevOps organizations like
yours do more often errors. This is not only OK, but
this is also what your organization needs. To learn
and perform better.

Over typical organizations, high performers have
80% less critical failures in their production systems.
In other words they have 5 times less incidents which
impact their clients. This is why your engineers in
your DevOps organization needs to feel free to do
errors and learn from them. 

 89

Why Does Your DevOps Team Need
To Block Time to Enhance The
Work?

It is not a new technique from DevOps to block your
time to enhance your work. Lean Manufacturing
decades ago embraced the motto: “Improvement of
work is more important than the work itself.”

In other words, this implies, without improving the
way you work today, you work will be obsolete
tomorrow. And ultimately this will in return hinder
your competitive strength in your market. This is why
DevOps methodology borrowed this technique from
Lean Manufacturing to make your teams and your
organization continuously learn.

Here are some ideas from DevOps software
development and delivery methodology about how
you and your DevOps team can use your time to
enhance your work and continuously learn:

1. Feedback from External People: Concentrated
support of people outside your business
processes to the individuals inside your own

business processes. Feedback from outsiders can
be really helpful and eye opening to improve
processes and remove inefficiencies.

2. Regularly Reduce Technical Debt: You regularly
bring your team together to stop working on new
features and work towards reducing technical
debt. Engineers whose skills spanning in your
entire value stream work on (not only discuss)
code, environments, tools, components and
architectures to reduce technical debt, so your
new features will be built on a stabler and
stronger foundation.

3. Regularly Reserve Time for Innovation: Free a
certain percent of work time of your engineers,
so they can use this time to innovate your
technology and business. Google is one of
prominent DevOps organizations which use this
practice since years. Google employees have 20%
unallocated time which they use to develop
prototypes, products, features, test suites and
solutions. Gmail, Google Maps and AdSense are a
few of major products innovated within this 20%.

4. Foster Teaching and Learning: Dedicate time
for teaching. Organize internal conferences,
workshops, mentoring, coaching, counselling to
regularly teach your teams. Developers learn
about operational work and their challenges and

 90

operations engineers learn about development.
This will help create and maintain a stronger
mutual understanding about work of each other.
In return your developers and operations
engineers build an informed and personally
connected foundation of cooperation. In
addition, encourage your DevOps teams to go
and join conferences to better understand how
other organizations solve similar engineering and
operational challenges like yours.

5. Make Teachers out of SMEs: Make sure your
subject matter experts have free hours when
anyone can go and ask questions to discuss
matters which may not be even related to an
ongoing project. We are life time learners. Your
team does not only respect this, but also they
know this because they are life time learners too.

6. Organize Hackathons for Innovation: Here is
how Facebook’s Marc Zuckerberg explains this
idea: “Every few months we have a hackathon,
where everyone builds prototypes for new ideas
they have. At the end, the whole team gets
together and looks at everything that has been
built. Many of our most successful products came
out of hackathons, including Timeline, chat,
video, our mobile development framework and

some of our most important infrastructure like
the HipHop compiler.”

CONCLUSION
By regularly scheduling buffers for improvement, you
enable everyone in your organizational value stream
to get ownership of innovation and quality.
Therefore, all engineers in your DevOps team
continuously integrate safety, quality, learning,
reliability and improvement into the daily work which
are in the end integrated into software products and
services your organizations offer to your clients.

By helping each other in your DevOps teams, your
organization will overtake its competitors and your
team members develop their utmost potentials as
humans and engineers.

 91

How Do You Enable Organizational
Learnings From Daily DevOps
Work?

One of main principles you and your team capture
from DevOps is: You learn continuously from your
daily work, and you convert these learnings into
reusable global assets for your entire organization.

Use Chatrooms To Spread Knowledge
Use chatrooms to capture and create organizational
knowledge. Build bots which are integrated to your
chatrooms to quickly perform operational tasks for
you. For instance the following message you address
to your bot in the chatroom can install FrontEndApp
application in TestServer-9 environment, and print
the outcome of this command back in the chatroom
as if you run the command from your command line
interface.

 @bot install FrontEndApp TestServer-9

Thanks to this mechanism everyone in your team
can quickly synchronize on progress of your work.

No information is lost in private instant messages
and emails. This nurtures a culture of collaboration
and transparency with the work you do. And this is a
very effective way to convert local knowledge into
organizational learnings.

Last but not least, using common chartrooms speeds
up onboarding process of new joiners to your
DevOps team or to your company, so they can easily
monitor a substantial part of how the work in their
teams is performed. You can consider using separate
chat rooms for different products, services,
components, tools, libraries or integrations, so it will
be easier to search and find past activities associated
with a certain element in your system.

Put Your Focus On Executables Rather Than
Documentations
Instead of putting your knowhow and expertise into
documents or Wikis, build executable standards and
processes as much as it is possible. One of the best
ways to build and share knowledge in your DevOps
organization is to create a reusable tool and store it
in your code version controlling system, so anyone
who needs something like this can find it. When you
express a standard and the way you work as

 92

executable code instead of static documents which
can wrongly and differently interpreted based on
who reads it, this code will not only speed up and
simplify your business, but it will also support your
DevOps organization to pass various audit and
compliance checks given that the code has at least a
lightweight document which explains how well the
code handles the process which requires audit and
compliance.

For the work, processes and standards which cannot
be automated, create reusable users stories with
clear and distinguishable steps and checklist, so
everyone in your DevOps organization can reuse and
take benefits of such assets. Thanks to these
reusable assets, different teams can consistently do
similar work. And they improve these assets just like
they continuously review, reuse and improve code
libraries.

Create Reusable Software Blueprints
Create ready to use blueprints for components,
applications, services and micro-services which
handle non-functional requirements built-in by
design. In this way, developers will not have to worry

about non-functional requirements each time they
write a new code.

Furthermore, your organization will have a
consistent set of non-functional requirements
implemented across your entire application stack. In
addition, these built-in implementation of non-
functional features will simplify deployment,
monitoring, trouble-shooting and operations of
software in general while it is in running in test and
production platforms. Examples of such non-
functional requirements are:

• Telemetry metrics.
• Runtime configurations.
• Feature toggles.
• Ability to track dependencies.
• Ability to trace requests initiated by users.
• Resilient and fault-tolerant services.
• Services which can be gracefully downgraded on

demand.
• Ability to search log messages.
• Compatibility to backward and forward versions.
• Data archiving and management of production

data sets.
• Management and archiving of logs.

 93

Comprehensive automated testing needs to be part
of your coded blueprints. Automated tests clarify
purpose of your code, they clarify how to use
reusable code most efficiently and they speed up
composition of automated tests for your custom
applications inherited from reusable code blueprints.

Use One Single Code Repository
To make sure that all of your learnings and work are
shared with everyone, you do not only store source
code in your one single repository, but you also store
tools for deployment, code to build and execute
deployment pipeline, automated tests, code to build
and integrate telemetry, standards, tutorials,
documents, wikis, helper tools and configuration
standards for the platforms.

In this way, all assets are transparently shared with
everyone in your DevOps organization. Duplications,
multiple versions of same artefacts, components and
3rd party tools are prevented. One repository also
enables you to compile, link and build everything at
runtime and to use latest version of everything when
you develop, test and deploy your software.

Have Technology Standards, But Stay Flexible
If you want everyone in your DevOps team to read,
review and fix each other’s code, define your main
stream technology standards which everyone in your
development and operations teams can learn and
work with. What you need is: One compile language,
one scripting language and one GUI language. But
still let everyone to explore whatever technologies
they are interested in, to enable your DevOps team
to continuously learn and experiment. How are you
ever going to win with your next innovation if you are
not exploring and testing at the edges?

CONCLUSION
In this chapter we summarized for you some of
widely accepted DevOps techniques which will
enable your DevOps organization to learn and create
assets while you are performing your daily work. By
leveraging these methods, the cumulative experience
and expertise of your entire DevOps organization will
backup and empower professional expertise and
work quality of each individual in your DevOps team.

Good luck with your DevOps journey!..

 94

Thank you
I would like to thank you again for taking the time to
read DevOps Revealed. We hope that you enjoyed
reading this book as much as we had enjoyed while
we were writing it. It is our biggest pleasure if we by
any means manage to help you build a strong
DevOps foundation for yourself.

We know that it's a very complex, overwhelming
and overcrowded world with all DevOps certifica-
tions out there in the market.

And yet we managed to build your Official DevOps
certification programs more concrete, attractive,
helpful, useful and simpler than our competition did.
This is why we believe our valuable students choose
International DevOps Certification Academy™ over
bureaucratic, complex, expensive and half-baked
solutions of our competitors.

Our one-of-a-kind industry leading registration,
examination and certification process is very simple,
quick and completely online. Click on this link to read
all details: Official DevOps Certification Programs.

Yeliz Obergfell,
International DevOps Certification Academy™

http://www.devops-certification.org/Certified_DevOps_Generalist_DevOps_GEN_Certification_Program.php
http://www.devops-certification.org

	WELCOME
	ABOUT International DevOps Certification Academy™
	What Is DevOps?
	What Are Your Problems In IT Without DevOps?
	How Does DevOps Solve Your Problems In IT?
	How Should You Start DevOps In Your Organization?
	How Should You Build Your DevOps Organization and Design Your Software Architecture?
	What Are The Roles In Your DevOps Organization?
	How Should You Enable Your DevOps Flow?
	How Should You Design Your DevOps Continuous Delivery And Deployment Pipeline?
	Why Do You Need Test Automation In Your DevOps Organization?
	How Do You Enable Low Risk DevOps Code Deployments In Your Production?
	How Do You Protect Your DevOps Deployment Pipeline?
	How Do You Ensure Your DevOps Information Security?
	How Should You Enable Your DevOps Feedback?
	How Do You Create Monitoring (Telemetry) To Manage Your DevOps Software Life Cycle?
	Why Should You Enable Feedback For Your Safer Production Deployments?
	How Do You Improve Your Hypotheses With DevOps And Empower Your Experiment And Learning-Driven DevOps Organization?
	Why Do You Establish Your Continuous Review Process To Ensure Quality?
	How Should You Enable Your DevOps Continuous Learning?
	Why Does Your DevOps Team Need To Block Time to Enhance The Work?
	How Do You Enable Organizational Learnings From Daily DevOps Work?
	Thank you

