Runge Kutta 4Th Order Derivation. D2 = series[k f[t_+c k,y[t_]+a d1],{k,0,2}] f[t_,y[t_]]k+(a f[t_,y[t_]]f(0,1)[t_,y[t_]]+c. D (2) to second order: D1 = series[k f[t_,y[t_]],{k,0,2}] f[t_,y[t_]]k + o[k]3.
from www.youtube.com
D2 = series[k f[t_+c k,y[t_]+a d1],{k,0,2}] f[t_,y[t_]]k+(a f[t_,y[t_]]f(0,1)[t_,y[t_]]+c. D1 = series[k f[t_,y[t_]],{k,0,2}] f[t_,y[t_]]k + o[k]3. D (2) to second order:
Runge kutta Method of fourth order Example 1 Applied Mathematics
Runge Kutta 4Th Order Derivation D2 = series[k f[t_+c k,y[t_]+a d1],{k,0,2}] f[t_,y[t_]]k+(a f[t_,y[t_]]f(0,1)[t_,y[t_]]+c. D (2) to second order: D2 = series[k f[t_+c k,y[t_]+a d1],{k,0,2}] f[t_,y[t_]]k+(a f[t_,y[t_]]f(0,1)[t_,y[t_]]+c. D1 = series[k f[t_,y[t_]],{k,0,2}] f[t_,y[t_]]k + o[k]3.