반도체산업 근로자를 위한 건강관리 길잡이

2012.9

KOREA OCCUPATIONAL SAFETY & HEALTH AGEN

 산업재해예방

 안전보건공단

 산업안전보건연구원

차 례

반도체산업 근로자를 위한 건강관리 길잡이

I . 건강관리 길잡이란?	4
Ⅱ . 반도체 제조공정 개요	8
Ⅲ . 공정별 유해요인 및 작업환경관리	14
1. 웨이퍼 가공라인	14
1.1. 확산공정	14
1.2. 포토공정	19
1.3. 식각공정	24
1.4. 증착공정	29
1.5. 이온주입공정	32
1.6. 연마공정	36
2. 칩 조립라인	39
2.1. 후면연마공정	39
2.2. 웨이퍼 절단공정	42
2.3. 칩 접착공정	45
2.4. 몰드공정	48
2.5. 인쇄공정	52
2.6. 도금공정	56
2.7. 솔더볼 부착공정	58
2.8. 열적테스트공정	60
2.9. X-선 검사공정	62
Ⅳ. 근로자 건강관리	66
1. 주요 건강영향과 증상	66
2. 근로자 건강진단과 사후관리	70
3. 야간작업 근로자 건강관리	74/
참고문헌	78
부록	80
1. 용어의 설명	80
2. 물질별 유해위험성 정보	84

반도체산업 근로자를 위한 건강관리 길잡이

l . 건강관리 길잡이란?

- 1. 건강관리 길잡이의 필요성
- 2. 건강관리 길잡이의 특징
- 3. 활용상의 주의사항

건강관리 길잡이란?

1. 건강관리 길잡이의 필요성

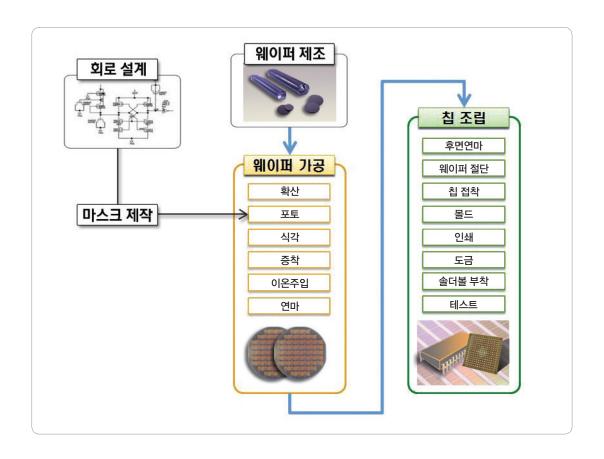
- 반도체는 다양한 공정으로 이루어진 웨이퍼 가공 및 조립 과정을 거쳐 제조되며 각각의 공정에서는 다양한 화학물질과 설비들에 의한 건강상 유해위험요인이 상존하고 있음
- 이와 관련하여 「국제반도체 장비 및 재료협회(SEMI)」는 여러 형태의 안전지침서를 개발하여 제시하고 있고 이를 국내반도체 회사에서 활용하고 있으나 주로 생산설비의 안전관리에 초점이 맞춰져 있어 근로자 건강관리에 활용하기에는 한계가 있음
- 따라서 공정별 유해요인 노출특성 등을 고려한 건강관리 가이드를 제공함으로써 노사가 능동적으로 작업환경관리와 건강관리를 할 수 있도록 하고자 함

2. 건강관리 길잡이의 특징

- 이 자료는 각 공정별 근로자뿐만 아니라 안전보건관리자 및 안전보건관리책임자가 쉽게 이해하고 활용할 수 있도록
 - 각 공정별로 모듈형으로 작성하여 공정별 유해요인 노출특성과 그에 따른 작업환경 관리요령, 건강관리상의 주의사항을 쉽게 찾아 볼 수 있도록 하였음
 - 전문용어에 대해서는 각 페이지 하단과 부록에서 자세하게 설명하였음
 - 각 공정별 사용물질에 대해서는 부록에 「물질별 유해위험성 정보」를 첨부하였음
- 아울러 공정별 각종 유지보수 작업시 유해위험요인에 대해서도 살펴봄으로써 해당 작업을 수행하는 설비엔지니어나 PM작업자의 건강관리에도 활용할 수 있도록 하였음

3. 활용상의 주의사항

- 이 자료는 법상 규제 목적이 아닌 반도체 산업의 유해위험요인에 대하여 정보를 제공하기 위한 것임
- 이 자료에서 언급하고 있는 건강영향은 경미한 증상부터 드물게 발생하는 심각한 건강장애까지 망라한 것임
- 이 자료에서 언급하고 있는 유해요인에 근로자가 항상 노출되고 있음을 의미하는 것은 아니며
 - 정상적인 시설조건을 유지하고 작업수칙을 준수하여 작업을 할 경우에는 유해인자 노출을 예방하고 질병을 예방할 수 있음
- 이 자료에서 현재 반도체 업종에서 사용하는 모든 화학물질을 다 언급하고 있는 것은 아니며
 - 각 사업장에 따라서는 사용하는 물질이나 작업환경이 다를 수 있음을 감안해야 함
- 각종 유지보수작업은 모든 공정에서 이루어지는 일상적인 작업으로
 - 설비엔지니어나 PM작업자의 주의사항이라고 별도로 표시하지 않았더라도 작업의 성격상 유지보수에 해당하는 경우에는 작업시 유의해야 함
- 이 자료는 2009년부터 2011년까지 산업안전보건연구원이 국내 반도체회사들을 대상으로 실시한 「반도체 제조 사업장에 종사하는 근로자의 작업환경 및 유해요인 노출특성 연구」결과를 기초로 하여 웨이퍼 가공(wafer fabrication) 및 조립(assembly 또는 package) 공정을 중심으로 설명하였으며
 - 이 과정에서 「반도체산업 보건관리개선 모니터링위원회」의 논의결과를 반영하였음
 - ※ 이 자료에 포함되지 않은 웨이퍼 제조공정 등에 대해서는 추후 연구를 통해 업데이트 할 계획임


반도체산업 근로자를 위한 건강관리 길잡이

11. 반도체 제조공정 개요

반도체 제조 흐름도

• 반도체는 아래와 같이「웨이퍼 제조」,「회로설계 및 마스크 제작」,「웨이퍼 가공」,「칩 조립」 공정을 거쳐 제조됨

웨이퍼 제조 실리콘(Si)을 고순도로 정제하여 기둥모양의 잉곳(Ingot)을 만든 후, 얇게 잘라서 원판모양으로 만드는 공정

회 로 설 계 「회로설계 프로그램」을 이용하여 전자회로를 설계하는 공정

마스크 제작 설계된 전자회로를 전자빔 등의 설비를 이용하여 유리판에 옮기는 공정 으로, 여기에서 제작된 마스크는 포토공정에서 웨이퍼에 회로를 형성할 때 사용하게 됨

웨이퍼 가공 웨이퍼에 회로를 구성하기 위한 일련의 공정으로 확산, 포토, 식각, 증착, 이온주입. 연마 등의 세부공정으로 구성

친 조립 가공된 웨이퍼를 낱개의 칩(chip)으로 잘라 리드프레임 등에 부착하고, 금선 연결, 몰드, 인쇄, 테스트 등을 통해 제품을 생산하는 공정

웨이퍼가공

웨이퍼 표면에 여러 종류의 막을 형성하거나 마스크를 사용하여 전자회로를 그려 넣고 특정부분을 선택적으로 깍아내는 작업을 되풀이함으로써 전자회로를 구성해 나가는 일련의 과정으로 FAB(fabrication)이라고도 함

확산공정(diffusion)

- 고온(800~1200℃)의 전기로에서 웨이퍼에 불순물(dopant)¹ 을 확산시켜 반도체층 일부분의 전도형태를 변화시키는 공정
 - 무기산, 아르신(삼수소화비소), 실란 등 사용

포토공정(photolithography)

- 반도체 웨이퍼에 감광 성질을 가지고 있는 포토레지스트(PR)²를 도포한 후 마스크³ 패턴을 올려놓고 UV(자외선) 등의 빛을 쬐어 회로패턴을 형성하는 공정
 - 사이클로헥사논, 이소프로필알콜 등 유기용제와 감광성수지 사용

식각공정(etch)

- 웨이퍼에 형성된 회로패턴을 완성하기 위해 산 · 알칼리 용액 등을 이용한 습식방법 또는 반응성 가스를 이용한 건식방법으로 불필요한 부분을 선택적으로 제거해주는 공정 • 무기산, 과산화수소, 할로겐화합물 등 사용

반도체산업 근로자를 위힌 건강관리 길잡이

¹ 불순물(dopant): 반도체의 전도형태를 변화시키기 위하여 사용하는 물질을 말하며 비소, 인, 붕소 이온 등을 의미. 실리콘(Si)과 같이 단일물질로 구성된 웨이퍼에 소량의 다른 물질을 주입하기 때문에 불순물이라고 불림

² 포토레지스트(PR): 빛을 받았을 때 화학적 변화가 생기는 물질로 웨이퍼에 도포하고, UV(자외선)를 쬐어 원하는 회로패턴을 얻을 수 있음

³ 마스크(mask): 회로패턴이 새겨진 유리판

증착공정(deposition)

- 화학적 반응 또는 물리적인 방법으로 전도성 또는 절연성 박막을 형성시키는 공정
 - 디보란, 암모니아, 실란, 삼불화염소 등 사용

이온주입공정(ion implantation)

- 반도체에 전도성을 부여하기 위해 비소, 인, 붕소 이온 등의 불순물(dopant)을 주입하는 공정
 - 아르신(삼수소화비소), 포스핀, 삼불화붕소 등 사용
 - 이온주입장비에서 전리방사선 4 발생

연마공정(chemical mechanical polishing, CMP)

- 웨이퍼 가공과정에서 생성된 웨이퍼 표면의 산화막 등을 화학적 또는 물리적 방법으로 연마하여 평탄하게 하는 공정
 - 불산, 염산, 질산, 암모니아수, 수산화칼륨 등 사용

칩조립

웨이퍼 가공라인에서 가공된 웨이퍼를 개개의 칩으로 잘라 회로기판에 붙이고 각종 테스트를 거쳐 완제품을 생산하는 일련의 과정

후면연마공정(back grind 또는 back lap)

- 가공라인에서 가공된 웨이퍼의 뒷면을 얇게 갈아주는 공정
 - 비결정실리카, 수산화테트라메틸암모늄(TMAH) 등이 함유된 연마액 사용

웨이퍼 절단공정(wafer saw)

- 가공된 웨이퍼를 낱개의 칩(chip)으로 자르는 공정
 - 계면활성제 등이 함유된 절삭액 사용

칩 접착공정(die attach)

- 잘려진 칩을 리드프레임(lead frame)⁵ 등과 같은 회로기판에 붙이는 공정
 - 에폭시수지, 페놀수지 등이 함유된 접착제 사용

몰드공정(mold)

- 칩을 외부환경으로부터 보호하기 위하여 수지로 감싸주는 공정
 - 에폭시수지, 페놀수지, 실리카 등으로 구성된 에폭시몰딩컴파운드(EMC) 등 사용

인쇄공정(marking)

- 레이저나 잉크를 이용하여 반도체 칩에 고유번호 등을 인쇄하는 공정
 - 레이저(레이저 마킹) / 아세톤, 톨루엔 등의 유기용제가 함유된 잉크(잉크 마킹)

도금공정(plating)

- 리드프레임(lead frame)의 부식을 막고 전기적 특성을 양호하게 하기 위하여 주석 등으로 도급하는 공정
 - 수산화칼륨, 황산, 질산, 주석메탄설포네이트 등이 함유된 도금액 사용

솔더볼 부착공정(solder ball mount 또는 solder ball attach)

- 회로기판에 플럭스(flux)를 도포하고, 솔더볼(solder ball)을 붙여주는 공정
 - 주석 등이 함유된 솔더볼과 폴리에틸렌글리콜 등이 함유된 플럭스 사용

열적테스트공정(test during burn-in, TDBI 또는 monitoring burn-in test, MBT)

- 반도체 칩에 열이나 전기적 스트레스를 주면서 테스트를 하는 공정
 - 열을 가해 테스트하는 과정에서 휘발성유기화합물 발생

X-선 검사공정(X-ray test)

- X-선 장비를 이용하여 제품불량을 검사하는 공정
 - 방사선 발생장치인 X-선 형광분석기 사용

반도체산업 근로자를 위한 건강관리 길잡이

⁵ 리드프레임(lead frame): 반도체 칩과 외부 회로를 연결시켜 주는 전선(lead) 역할과 반도체 패키지를 전자 회로기판에 고정시켜 주는 버팀대(frame) 역할을 동시에 하는 재료

반도체산업 근로자를 위한 건강관리 길잡이 ___

Ⅲ. 공정별 유해요인 및 작업환경관리

- 1. 웨이퍼 가공라인
- 2. 칩 조립라인

1.웨이퍼 가공라인

1.1. 확산공정(diffusion)

가. 공정개요

- 고온의 전기로(확산로) 내에서 웨이퍼에 불순물(dopant) 6을 확산시켜 반도체층 일부분의 전도형태를 변화시키는 공정
- 전기로(확산로)에서는 웨이퍼 표면에 산화막을 형성하는 산화(oxidation)⁷와 반도체 결정의 복원 및 불순물의 활성화를 위한 열처리 (annealing)⁸ 과정 등이 이뤄짐

확산공정-12인치

⁶ 불순물(dopant): 반도체의 전도형태를 변화시키기 위하여 사용하는 물질을 말하며 비소, 인, 붕소 이온 등을 의미. 실리콘(Si)과 같이 단일물질로 구성된 웨이퍼에 소량의 다른 물질을 주입하기 때문에 불순물이라고 불림

⁷ 산화(oxidation) : 실리콘(Si)으로 구성된 웨이퍼 표면에 산화막(Si Q_2)을 형성하는 것을 말하며, 고온의 확산로에서 실리콘 웨이퍼를 노출시켜 산화막을 얻음

⁸ 열처리 (annealing): 반도체 결정의 복원 및 불순물을 전기적으로 활성화하기 위한 것

유해위험

- PM작업³시 챔버 내에 남아있는 잔류가스나 부산물 등에 노출될 수 있으므로 챔버를 열기 전에 잔류물질을 충분히 배기한 후 국소배기장치가 가동되는 상태에서 개인보호구를 착용하고 작업해야 함
- 세척작업을 하거나 각종 설비 점검시 불산, 황산, 암모니아수 등산 · 알칼리에 노출될 수 있으므로 개인보호구를 착용하고 작업해야함

나. 유해요인 노출특성

■ 확산 작업

- 각종 부속의 세척, 부품 교체, 그 밖의 PM작업 과정에서 세척액, 잔류가스, 부산물 등에 노출될 수 있음
 - ※ 잔류물질을 충분히 배기하지 않고 확산 챔버를 열 경우 잔류가스나 부산물에 노출될 수 있음

사용물질

• 암모니아, 아르신(삼수소화비소), 포스핀, 디클로로실란, 불소, 수소, 일산화질소, 이산화질소, 옥시염화인, 실란, 세척액(이소프로필알콜, 불산등)

부산물

- 수소. 염화수소 등이 반응 부산물로 발생할 수 있음
- ▶ 부록2 「물질별 유해위험성 정보」참조

■ 세척 작업

- 수동으로 세척조에 웨이퍼를 투입하거나 회수하는 과정, 세척용액 보충작업, 그 밖에 설비를 점검하는 과정에서 암모니아수, 불산, 황산 등에 노출될 수 있음

반도체산업 근로자를 위한 건강관리 길잡이 - - PM 등을 위해 세척조 내부에서 작업을 하는 경우 세척조 내에 잔류하고 있는 물질(암모니아수, 불산, 황산등)에 노출될 수 있음

사용물질

- 불산, 과산화수소, 질산, 황산, 초산, 암모니아수, 불화암모늄 등의 산·알칼리
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■점막및피부자극

- 이 공정에서 사용되는 대부분의 화학물질과 기타 반응 부산물로 인해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적¹⁰)등이 나타날 수 있음
 - ※ 호흡기 자극시 기침, 호흡곤란, 천명음(쌕쌕거리는 숨소리), 흉통 등의 증상이 나타날 수 있으며, 심할 경우 폐부종¹¹이 발생할 수 있음

■ 화학물질에 의한 화상

- 세척조에서 사용되는 불산, 황산 등의 산류 또는 암모니아수 등의 알칼리류에 접촉할 경우 화상을 입을 수 있음
 - ※ 특히 불산에 의한 화상은 노출 후 증상이 천천히 나타날 수 있으며 전해질 불균형을 일으키는 등 전신적인 독성을 나타낼 수 있음

■ 급성중독

- 확산챔버를 열어 PM작업을 하는 경우 아르신, 포스핀 등 독성가스에 의한 급성중독 위험이 있음
 - ※ 아르신(삼수소화비소) 중독시 특징적인 임상소견으로 용혈성빈혈¹²이 나타날 수 있으며, 최초 증상은 보통 두통, 피로, 호흡곤란, 어지러움, 복통, 구역·구토 등 이며 이후 황달, 갈색뇨 등이 나타나고 심할 경우 의식불명, 마비 등이 나타날 수 있음
 - ※ 포스핀 중독시 두통, 설사, 구역·구토 증상이 나타날 수 있으며 폐부종, 중추신경계 억제증상이 발생할 수 있음

¹⁰ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

¹¹ 폐부종: 폐에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태(폐에 물이 차는 것)

¹² 용혈성빈혈: 혈액 내에서 적혈구가 과도하게 파괴되어 생기는 빈혈

■ 만성중독

- 근골격계 영향 : 불화수소 등 불화물에 장기간 노출시 뼈의 약화를 가져올 수 있음
- 신경계 영향: 포스핀에 장기간 노출시 시각 · 운동 · 언어 장해가 나타날 수 있음
- 기타: 포스핀에 장기간 노출시 빈혈, 기관지염, 소화기능 문제 등이 나타날 수 있음
 - ▶ 황산 등 강산의 미스트¹³는 후두암¹⁴을 일으키는 것으로 알려져 있음

라. 작업환경관리

■ 확산작업

- 다음과 같은 작업을 하는 경우에는 호흡용보호구, 보안경 등을 착용하고 작업하도록 해야 함
 - PM 작업 등을 위해 확산챔버를 여는 경우
 - 그 밖에 설비나 배관을 점검하는 경우

- 확산챔버를 열고 작업을 해야 하는 경우에는 챔버 내의 잔류가스를 충분히 배기하고 작업하도록 해야 함
- 챔버내 유해가스의 잔류 여부나 각종 배관 등의 이음새에서 가스 누출 여부를 확인하기 위해 실시간 유해가스 측정(모니터링) 장비를 설치하거나 작업시 휴대용 가스검지기를 사용하여 농도를 측정하는 것이 바람직함
 - ※ 측정 결과에 대해서는 기록보존 필요
- 국소배기장치를 사용하여 잔류가스나 누출가스의 확산과 노출을 최소화시키는 것이 바람직함

반도체산업 근로자를 위한 건강관리 길잡이

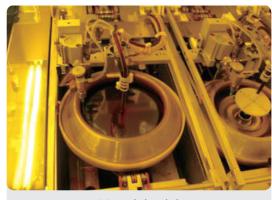
¹³ 미스트: 공기중에 비산된 미세한 액체 입자

¹⁴ 후두암: 후두에 생기는 암, 후두가 좁아지고 음성 장애가 나타나며 호흡이 곤란해짐

PM작업시 이동식 국소배기장치의 사용 모습

■ 세척 작업

- 다음과 같은 작업을 하는 경우에는 호흡용보호구, 보안경, 보호장갑, 보호앞치마(또는 산·알칼리 취급용 보호의) 등을 착용하고 작업하도록 해야 함
 - 수동으로 세척작업을 하는 경우
 - 세척용액을 보충하는 경우
 - PM작업을 하는 경우
 - 그 밖에 설비나 배관을 점검하는 경우



- 세척조 내부에서 PM작업을 하는 경우에는 장비 내의 잔류물질을 완전히 배출(드레인) 하고, 물로 세척조를 충분히 씻어준 이후에 작업하도록 해야 함
 - ※ 물로 세척조를 충분히 씻어주지 않을 경우에는 남아있는 산· 알칼리에 노출될 수 있음

1.2. 포토공정(photolithography)

가. 공정개요

- 웨이퍼에 회로패턴을 형성시키는 공정
- 반도체 웨이퍼에 감광 성질을 가지고 있는 포토레지스트(PR)¹⁵를 도포한 후, 마스크¹⁶ 패턴을 올려놓고 UV(자외선) 등의 빛을 쬐어 회로패턴을 얻음

PR 코팅기-5인치

포토공정-12인치

유해위험

- 포토레지스트(PR) 등을 도포시 휘발성 물질에 노출될 수 있으므로 국소배기장치가 정상적으로 가동되는 상태에서 작업해야 함
- 노광(light exposure) ¹⁷작업시 수지, 감광성 물질의 분해로 부산물이 발생할 수 있으므로 국소배기장치가 정상적으로 가동되는 상태에서 작업해야 함
- 용액보충, 유지보수, 배관 등에 대한 점검시 화학물질에 노출될 수 있으므로 개인보호구를 착용하고 작업해야 함

반도체산업 근로자를 위한 건강관리 길잡이

15 포토레지스트(PR): 빛을 받았을 때 화학적 변화가 생기는 물질로 웨이퍼에 도포하고, UV(자외선)를 쬐어 원하는 회로패턴을 얻을 수 있음

 16 마스크 (mask): 회로패턴이 새겨진 유리판

 17 노광(light exposure): 빛에 노출시키는 것을 말함

나, 유해요인 노출특성

- 밀착향상제(HMDS) 도포작업
 - 회전하는 웨이퍼에 밀착향상제(HMDS)를 도포하는 과정에서 휘발된 밀착향상제 (HMDS, 헥사메틸디실라잔)에 노출될 수 있음

■ 포토레지스트(PR) 도포 및 노광작업

- 포토레지스트(PR) 성분에 함유된 유기용제의 휘발로 인해 노출될 수 있음 ※ 포토공정 등 가공공정에서 발생하는 냄새의 주요 원인임
- UV(자외선)를 쬐는 노광작업 과정에서 수지 및 감광성 물질의 분해로 인해 부산물이 발생할 수 있음

사용물질

- 포토레지스트(PR)는 고분자수지, 유기용제, 감광성 물질 등으로 구성

부산물

- 노광작업 과정에서 포토레지스트의 열분해로 미량의 부산물(벤젠, 톨루엔, 에틸벤젠, 크실렌, 페놀 등)이 발생가능
 - ※ 반도체 사업장에서 널리 사용되고 있는 노보락수지(크레졸-포름알데히드계수지)와 감광성 물질 등이 함유된 포토레지스트(PR)에 대한 열분해 (150~420℃)실험결과, 미량이지만 위와같은 부산물이 발생할 수 있음을 확인
- ▶ 부록2 「물질별 유해위험성 정보」참조

■ 현상 작업

- 현상액을 가한 후 웨이퍼에 고르게 퍼지도록 회전하는 과정에서 휘발된 유기용제 등에 노출될 수 있음

사용물질

- 지방족 탄화수소(헥산, 헵탄 등), 1-메톡시-2-프로필아세테이트 (PGMEA), 크실렌(Xylene), 수산화테트라메틸암모늄(TMAH) 등
- ▶ 부록2 「물질별 유해위험성 정보」참조

■ PM작업¹⁸등 기타 작업

- 용액을 보충하거나 PM작업을 위해 포토장비의 문을 여는 경우 유기용제에 노출될 수 있음
- 각종 부속의 세척, 부품 교체, 그 밖의 PM작업 과정에서 잔류 물질, 세척액 (이소프로필알콜, 아세톤 등), 폐액 등에 노출될 수 있음
- 배관 등에 대한 점검시 누출사고가 발생할 수 있음

다. 건강영향

■ 점막 및 피부 자극

- 이 공정에서 사용되는 대부분의 화학물질과 기타 반응 부산물로 인해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적¹⁹)등이 나타날 수 있음
 - ※ 호흡기 자극시 기침, 호흡곤란, 천명음(쌕쌕거리는 숨소리), 흉통 등의 증상이 나타날 수 있으며, 심할 경우 폐부종²⁰ 이 발생할 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 처식

- 이 공정에서 사용되는 수지류에 의해 기침, 천명음(쌕쌕거리는 숨소리) 등의 증상이 나타날 수 있으며 심할 경우 직업성 천식이 발생할 수 있음
 - ※ 작업시 증상이 악화되고 휴식시 호전되는 경향을 보임

반도체산업 근로자를 위한 건강관리 길잡이

¹⁹ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

²⁰ 폐부종: 폐에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태(폐에 물이 차는 것)

■ 중추신경계 영향

- 유기용제에 고농도 노출시 두통. 구역질. 현기증. 졸림 등의 증상이 나타날 수 있음

■ 생식기계 영향

- 2-메톡시-1-프로판올(β -PGME), 2-메톡시-1-프로필아세테이트(β -PGMEA) 등 글리콜에테르 화합물에 의한 잠재적 생식독성 영향이 있을 수 있음 (생리불순, 자연유산, 임신지연 등)

■ 급성중독

- PM작업시에 유해물질에 의한 급성중독 위험이 있으며, 두통, 구역·구토, 복통 등의 증상이 나타날 수 있음
- ※ 대만의 전자회사에서 배관을 점검하던 작업자가 누출된 수산화테트라메틸암모늄(TMAH)에 팔, 다리 등이 노출되어 피부화상, 급성 호흡곤란 등으로 사망한 사례가 있으므로 주의해야 함

■ 만성중독

- 신경계 영향: 각종 유기용제에의 장기적인 노출로 두통, 기억력 감퇴, 피로, 불면증 등의 증상이 나타날 수 있음
 - ▼ 포토공정에서 부산물로 미량의 벤젠이 발생할 수 있으며, 벤젠은 백혈병²¹ 유발요인으로 알려져 있음

라. 작업환경관리

■ 밀착향상제(HMDS) 도포 작업

- 밀착향상제(HMDS) 도포 장비를 밀폐(커버 등)하고 국소배기장치가 정상적으로 가동되는 상태에서 작업하도록 해야 함

■ 포토레지스트(PR) 도포 및 노광작업

- 밀폐형 시스템을 사용하거나 노광기(얼라이너)에 환기설비를 설치하여 부산물이 장비 외부로 발생되지 않도록 관리해야 함
 - ※ 유해 부산물이 발생하지 않는 포토레지스트의 개발연구가 필요함

²¹ 백혈병: 혈액 세포 중 백혈구에 발생한 암으로서, 비정상적인 백혈구(백혈병 세포)가 과도하게 증식하여 정상적인 백혈구와 적혈구, 혈소판의 생성이 억제되어 면역저하, 빈혈 증상, 출혈 등을 일으킴

■ 현상 작업

- 현상액 도포는 유기용제 등이 휘발되지 않도록 가능한 밀폐(커버 및 환기설비 설치)시스템으로 운영하는 것이 바람직함

■ PM작업 등 기타 작업

- 설비 및 배관점검, 용액 보충, 폐액 회수, 부품 교체, 기타 PM작업 과정에서 화학물질에 노출될 수 있으므로 호흡용보호구, 보안경, 보호장갑, 보호의 등을 착용하고 작업하도록 해야 함

1.3. 식각공정(etch)

가. 공정개요

• 포토공정에서 구성한 회로를 완성하기 위해 불필요한 부분을 제거해주는 공정으로 습식식각과 건식식각으로 나눌 수 있음

- 습식식각: 무기산 및 염기성 물질을 이용하여 식각하는 방식

- 건식식각 : 반응성 가스 등을 이온화하여 식각될 표면과의 충돌 및 반응 등을 통해 식각하는 방식

습식식각조-4인치

식각 세척장비-12인치

건식식각 공정-5인치

건식식각 장비-12인치

유해위험

- 습식식각
- 식각작업, 용액 보충작업, 배관 등에 대한 점검 작업시 불산, 황산, 암모니아수 등 산 · 알칼리에 노출될 수 있으므로 개인보호구를 착용하고 작업해야 함
- 건식식각
- 반응챔버를 열 때 잔류가스, 부산물 등에 노출될 수 있으므로 잔류물질을 충분히 배기한 후 국소배기장치가 가동되는 상태에서 개인보호구를 착용하고 작업해야 함

나. 유해요인 노출특성

■ 습식식각작업

- 수동으로 습식식각작업을 하는 경우에는 식각조에 웨이퍼를 투입하거나 회수하는 과정에서 암모니아수, 불산, 황산 등에 노출될 수 있음
- 용액을 보충하거나 식각조나 배관 등을 점검하는 과정에서도 위와 같은 산·알칼리에 노출될 수 있음

사용물질

- 불산, 염산, 과산화수소, 질산, 황산, 암모니아수, 불화암모늄 등
- ▶ 부록2 「물질별 유해위험성 정보」참조

■ 건식식각작업

- 각종 부속의 세척, 부품 교체, 그 밖의 PM작업²² 과정에서 세척액, 잔류가스, 부산물 등에 노출될 수 있음
 - ※ 잔류물질을 충분히 배기하지 않고 반응챔버를 열 경우 잔류가스나 부산물에 노출될 수 있음

사용물질

• 암모니아, 삼염화붕소, 일산화탄소, 사불화탄소, 황화카르보닐, 염소, 수소, 브롬화수소, 삼불화질소, 오존, 기타 할로겐화탄화수소, 세척액(이소프로필알콜등)

부사물

- 식각 가스들의 상호 반응을 통해 염회수소, 불회수소 등의 부산물이 발생가능
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

- 점막 및 피부 자극
 - 이 공정에서 사용되는 대부분의 화학물질과 기타 반응 부산물로 인해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적²³)등이 나타날 수 있음

반도체산업 근로자를 위한 건강관리 길잡이

²² PM작업(유지보수): "Preventive Maintenance"의 약자로 웨이퍼 가공장비에 대한 "예방적 유지보수" 활동을 의미함

²³ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

- ※ 호흡기 자극시 기침, 호흡곤란, 천명음(쌕쌕거리는 숨소리), 흉통 등의 증상이 나타날 수 있으며, 심할 경우 폐부종²⁴이 발생할 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 화학물질에 의한 화상(습식식각)

- 식각조에서 사용되는 불산, 황산 등의 산류 및 암모니아수 등의 알칼리류에 접촉시 화상을 입을 수 있음
 - ※ 특히 불산에 의한 화상은 노출 후 증상이 천천히 나타날 수 있으며 전해질 불균형을 일으키는 등 전신적인 독성이 나타날 수 있음

■ 급성 중독

- PM작업시에 유해가스에 의한 급성중독 위험이 있으며, 두통, 구역·구토, 복통 등의 증상이 나타날 수 있음

■ 중추신경계 영향(건식식각)

- 할로겐화탄화수소 등 가스류에 고농도 노출시 두통, 오심, 현기증, 졸림 등의 증상이 나타날 수 있음
- 대부분의 유해가스가 질식제로 작용하여 산소부족을 일으키며 심할 경우 의식을 잃거나 뇌손상을 입을 수 있음
- 일산화탄소에 중독시 의식을 잃거나 경련, 심장부정맥이 나타날 수 있으며 심할 경우 사망에 이를 수 있음

■ 만성중독

- 근골격계 영향 : 불화수소 등 불화물에 장기간 노출시 뼈의 약화를 가져올 수 있음
 - ▶ 황산 등 강산의 미스트²⁵는 후두암²⁶을 일으키는 것으로 알려져 있음

라. 작업환경관리

■ 습식식각

- 다음과 같은 작업을 하는 경우에는 호흡용보호구, 보안경, 보호장갑, 보호앞치마

²⁴ 폐부종: 폐에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태(폐에 물이 차는 것)

²⁵ 미스트: 공기중에 비산된 미세한 액체 입자

²⁶ 후두암: 후두에 생기는 암. 후두가 좁아지고 음성 장애가 나타나며 호흡이 곤란해짐

(또는 산·알칼리 취급용 보호의) 등을 착용하고 작업하도록 해야 함

- 수동으로 습식식각 작업을 하는 경우
- 식각용액을 보충하는 경우
- PM작업을 하는 경우
- 그 밖에 설비나 배관을 점검하는 경우

- 식각조 내부에서 PM작업을 하는 경우에는 작업 전 식각조 내 잔류물질을 완전히 배출(드레인)하고, 물로 식각조를 충분히 씻어준 이후에 작업하도록 해야 함
 - ※ 물로 식각조를 충분히 씻어주지 않을 경우에는 남아있는 산· 알칼리에 노출될 수 있음

■ 건식식각

- 다음과 같은 작업을 하는 경우에는 호흡용보호구, 보안경 등을 착용하고 작업하도록해야함
 - PM작업을 하는 경우
 - 그 밖에 설비나 배관을 점검하는 경우

반도체산업 근로자를 위한 건강관리 길잡이

- PM작업을 하는 경우에는 장비 내의 잔류물질을 충분히 배기하고 작업하도록 해야 함
- 유해가스의 잔류 여부나 각종 배관 등의 이음새에서 가스 누출 여부를 확인하기 위해 실시간 유해가스 측정(모니터링) 장비를 설치하거나 작업시 휴대용 가스검지기를 사용하여 농도를 측정하는 것이 바람직함
 - ※ 측정 결과에 대해서는 기록보존 필요
- 국소배기장치를 사용하여 잔류가스나 누출가스의 확산과 노출을 최소화시키는 것이 바람직함

1.4. 증착공정(deposition)

가. 공정개요

- 웨이퍼 상에 화학적 또는 물리적 방법으로 전도성 또는 절연성 박막을 형성시키는 공정으로 박막(thin film)공정이라고도 함
- 화학적 기상증착(chemical vapor deposition, CVD) : 화학반응을 통해 박막을 형성하는 공정
- 물리적 기상증착(physical vapor deposition, PVD) : 기판상에 금속을 물리적으로 증착시키는 공정으로 금속배선이라고도 함

증착공정-작업지역

증착공정-서비스지역

유해위험

- PM작업²⁷ 등을 위해 반응챔버를 열 때 장비내에 잔류하고 있는 반응가스, 부산물 등에 노출될 수 있으므로 작업전 장비 내의 잔류물질을 충분히 배기한 후 국소배기장치가 가동되는 상태에서 개인보호구를 착용하고 작업해야함
- 배관 등에 대한 점검시에는 가스누출로 인한 급성중독을 예방하기 위해 개인보호구를 착용하고 작업해야 함

나. 유해요인 노출특성

- 각종 부속의 세척, 부품 교체, 그 밖의 PM작업 과정에서 세척액, 잔류가스, 부산물 등에 노출될 수 있음
 - ※ 잔류물질을 충분히 배기하지 않고 반응챔버를 열 경우 잔류가스나 부산물에 노출될 수 있음

사용물질

• 아세틸렌, 암모니아, 삼불화염소, 디보란, 디클로로실란, 수소, 염화수소, 불화수소, 삼불화질소, 아산화질소, 오존, 포스핀, 실란, 사염화티타늄, 육불화텅스텐, 세척액(이소프로필알콜 등) 등

부산물

- 물질간 상호반응을 통해 수소. 불화수소 등의 부산물이 발생가능
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■점막및피부자극

- 이 공정에서 사용되는 대부분의 화학물질과 기타 부산물로 인해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적²⁸)등이 나타날 수 있음
 - ※ 호흡기 자극시 기침, 호흡곤란, 천명음(쌕쌕거리는 숨소리), 흉통 등의 증상이 나타날 수 있으며, 심할 경우 폐부종²⁹이 발생할 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 급성 중독 및 질식

- PM작업시에 유해가스에 의한 급성중독 위험이 있으며, 두통, 구역·구토, 복통 등의 증상이 나타날 수 있음

■ 만성중독

- 근골격계 영향 : 불화수소 등 불화물에 장기간 노출시 뼈의 약화를 가져올 수 있음

²⁸ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

²⁹ 폐부종: 폐에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태(폐에 물이 차는 것)

라, 작업환경관리

- 다음 작업시에는 호흡용보호구. 보안경 등을 착용하고 작업하도록 해야 함
 - 반응챔버를 열어 PM작업을 하는 경우
 - 그 밖에 설비나 배관을 점검하는 경우

- 반응챔버를 열고 작업을 해야 하는 경우에는 챔버 내의 잔류가스를 충분히 배기하고 작업하도록 해야 함
- 챔버내 유해가스의 잔류 여부나 각종 배관 등의 이음새에서 가스 누출 여부를 확인하기 위해 실시간 유해가스 측정(모니터링) 장비를 설치하거나 작업시 휴대용 가스검지기를 사용하여 농도를 측정하는 것이 바람직함
 - ※ 측정 결과에 대해서는 기록보존 필요
- 국소배기장치를 사용하여 잔류가스나 누출가스의 확산과 노출을 최소화시키는 것이 바람직함

반도체산업 근로자를 위한 건강관리 길잡이 **-**

PM작업시 국소배기장치의 사용 모습

1.5. 이온주입공정(ion implantation)

가, 공정개요

 반도체에 전도성을 부여하기 위해 웨이퍼에 불순물을 주입하는 공정으로 이온주입[®] 장비를 이용하여 입자를 가속시켜 웨이퍼에 주입함

이온주입장비-서비스지역

이온주입공정-작업지역

유해위험

- PM작업³¹시 장비내 잔류하는 가스 또는 부산물에 노출될 수 있으므로 잔류물질을 충분히 배기한 후 국소배기장치가 정상적으로 가동되는 상태에서 개인보호구를 착용하고 작업해야 함
- 장비 점검, 수리 및 교체 등을 위해 이온주입장비에 접근하는 경우 전리방사선³²에 노출될 수 있으므로 방사선 작업 근로자 외에 접근 및 조작을 금지하고 인터록을 임의로 해제하지 말아야 함

나. 유해요인 노출특성

- 부품교체, 세척 등을 위해 이온소스³³ 등을 해체하는 PM작업 과정에서 장비 내에 잔류하고 있는 아르신, 포스핀, 비소 등에 노출될 수 있음

³⁰ 이온주입: 반도체에 전도형태를 변화시키기 위해 웨이퍼에 불순물을 주입하는 것을 말함. 확산공정에서 불순물을 확산시키는 것도 반도체에 전도형태를 변화시키기 위한 방법이나 이온주입 기술을 이용하면 불순물의 양과 웨이퍼에 투입되는 깊이 등을 조절할 수 있으

³¹ PM작업(유지보수): "Preventive Maintenance"의 약자로 웨이퍼 가공장비에 대한 "예방적 유지보수" 활동을 의미함

³² 전리방사선: 세포내의 원자나 분자를 이온화시킬 수 있는 방사선으로 X-선, 감마선 등이 해당

³³ 이온소스: 비소, 인, 붕소 이온의 공급원인 아르신, 포스핀, 삼불화붕소 등이 공급되는 부분

- 인터록을 해제한 상태에서 이온주입장비 내부로 신체가 들어갈 경우 전리방사선에 노출될 수 있음

사용물질

• 아르신(삼수소화비소), 포스핀, 삼불화붕소

부산물

- 비소 및 그 화합물 등 (아르신에서 파생기능 화합물)
- 인. 수소등 (포스핀에서 파생기능 화합물)
- 붕소, 불소등 (삼불화붕소에서 파생 가능한 화합물)

방사선

- 이온주입장비에서 전리방사선 발생
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■점막및피부자극

- 이 공정에서 사용되는 대부분의 화학물질과 기타 반응 부산물로 인해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적³⁴)등이 나타날 수 있음
 - ※ 호흡기 자극시 기침, 호흡곤란, 천명음(쌕쌕거리는 숨소리), 흉통 등의 증상이 나타날 수 있으며, 심할 경우 폐부종³⁵이 발생할 수 있음

■ 급성중독

- 이온주입장비에 대한 PM작업시 아르신, 포스핀 등 독성가스에 의한 급성중독 위험이 있음
 - ※ 아르신(삼수소화비소) 중독시 특징적인 임상소견으로 용혈성빈혈³⁶이 나타날 수 있으며, 최초 증상은 보통 두통, 피로, 호흡곤란, 어지러움, 복통, 구역·구토 등 이며 이후 황달, 갈색뇨 등이 나타나고 심할 경우 의식불명, 마비 등이 나타날 수 있음
 - ※ 포스핀 중독시 두통, 설사, 구역·구토 증상이 나타날 수 있으며 폐부종, 중추신경계 억제증상이 발생할 수 있음

반도체산업 근로자를 위한 건강관리 길잡이

³⁴ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

³⁵ 폐부종: 폐에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태(폐에 물이 차는 것)

³⁶ 용혈성빈혈: 혈액 내에서 적혈구가 과도하게 파괴되어 생기는 빈혈

■ 만성중독

- 신경계 영향: 포스핀에 장기간 노출시 시각·운동·언어 장해가 있을 수 있음
- 기타 : 포스핀에 장기간 노출시 빈혈, 기관지염, 소화기능 장애 등이 발생할 수 있음
 - ▶ 이온주입공정에서 부산물로 발생하는 비소는 피부암, 폐암, 간암을 일으키는 것으로 알려져 있으며, 입자를 가속시켜 웨이퍼에 불순물을 주입하는 과정에서 발생하는 전리방사선은 백혈병³⁷을 포함한 각종 암 발생과 관련이 있는 것으로 알려져 있음

라, 작업환경관리

■ 이온주입작업

- 이온주입장비에는 방사선 경고 표시와 방사선안전관리에 관한 사항을 근로자가 잘 볼 수 있는 곳에 게시하도록 해야 함
- 이온주입공정 근로자 및 별도 허가받은 근로자 외에는 이온주입장비를 조작하지 않도록 해야 함
- 인터록³⁸을 임의로 해제하지 않도록 하여야 하며, 부득이 인터록을 해제하고 작업을 해야 하는 경우에는 에이프런(방사선 차폐 앞치마)을 착용하도록 해야 함
- 방사선에 노출되거나 노출될 가능성이 있는 근로자에게는 선량계³⁹를 착용하도록 하여 개인노출선량⁴⁰을 측정해야 함

³⁷ 백혈병: 혈액 세포 중 백혈구에 발생한 암으로서, 비정상적인 백혈구(백혈병 세포)가 과도하게 증식하여 정상적인 백혈구와 적혈구, 혈소판의 생성이 억제되어 면역저하, 빈혈 증상, 출혈 등을 일으킴

³⁸ 인터록: 안전장치의 하나로서 장비가 정상적으로 작동하기 위한 조건이 아닌 경우(장비 문 열림 등)에는 작동하지 않도록 하는 장치를 말함

³⁹ 선량계: 방사선 누적 노출량을 측정하기 위한 소형측정기

⁴⁰ 개인노출선량: 일정한 기간 동안 측정한 근로자 개인의 방사선 누적노출량

- PM작업 전 이온주입장비 내부의 잔류가스를 충분히 배기한 후 호흡용보호구와 보안경을 착용하고 작업하도록 해야 함

- 이온주입장비 내부의 유해가스 잔류 여부를 확인하기 위해 실시간 유해가스 측정(모니터링) 장비를 설치하거나 작업시 휴대용 가스검지기를 사용하여 농도를 측정하는 것이 바람직함
 - ※ 측정 결과에 대해서는 기록보존 필요
- 국소배기장치를 사용하여 잔류가스의 확산과 노출을 최소화시키는 것이 바람직함

1.6. 연마공정(chemical mechanical polishing, CMP)

가. 공정개요

• 웨이퍼 표면에 생성된 산화막 등을 화학적 또는 물리적 방법으로 연마하여 평탄화하는 공정

연마작업-12인치

유해위험

- 인터록⁴¹을 해제하고 작업할 경우 연마액 등이 비산되어 산 · 알칼리에 노출 될 수 있으므로 인터록이 정상 작동되는 상태에서 작업하도록 해야 함
- 설비 및 배관점검, 연마액 보충, 폐액 회수, 부품 교체, 기타 PM작업42 과정에서 산 · 알칼리에 노출될 수 있으므로 개인보호구를 착용하고 작업해야 함

나. 유해요인 노출특성

• 웨이퍼를 연마하는 과정에서 인터록을 임의로 해제하고 작업할 경우 연마액이 튀어. 산 · 알칼리에 노출될 수 있음

⁴¹ 인터록: 안전장치의 하나로서 장비가 정상적으로 작동하기 위한 조건이 아닌 경우(장비 문 열림 등)에는 작동하지 않도록 하는

⁴² PM작업(유지보수): "Preventive Maintenance"의 약자로 웨이퍼 가공장비에 대한 "예방적 유지보수" 활동을 의미함

설비 및 배관점검, 연마액 보충, 폐액 회수, 부품 교체, 기타 PM작업 과정에서
 산 · 알칼리에 노출될 수 있음

사용물질

- 연마액(실리카, 산화세륨, 암모니아수, 수산화칼륨), 불산, 염산, 질산 등
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■점막및피부자극

- 산·알칼리로 인해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적 ⁴³)등이 나타날 수 있음
 - ※ 호흡기 자극시 기침, 호흡곤란, 천명음(쌕쌕거리는 숨소리), 흉통 등의 증상이 나타날 수 있으며, 심할 경우 폐부종⁴⁴이 발생할 수 있음

■ 화학물질에 의한 화상

- 불산, 염산 등의 산류 및 연마액에 포함된 암모니아수 등의 알칼리류에 접촉할 경우 화상을 입을 수 있음
 - ※ 특히, 불산에 의한 화상은 노출 후 증상이 천천히 나타날 수 있으며 전해질 불균형 등 전신독성을 나타낼 수 있음

라. 작업환경관리

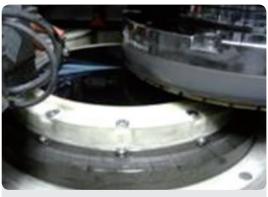
- 연마작업시 연마액 등의 비산을 방지하기 위해 연마장비는 밀폐구조로 이뤄져야 하며 인터록을 임의 해제한 상태에서 문을 열고 작업하지 않도록 해야 함
- 다음과 같은 작업을 하는 경우에는 호흡용보호구, 보안경, 보호장갑, 보호앞치마 (또는 산·알칼리 취급용 보호의) 등을 착용하고 작업하도록 해야 함
 - 용액을 보충하거나 폐액을 회수하는 경우
 - PM작업을 하는 경우
 - 그 밖에 설비나 배관을 점검하는 경우

반도체산업 근로자를 위한 건강관리 길잡이

⁴³ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

⁴⁴ 폐부종: 폐에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태(폐에 물이 차는 것)

- 연마장비 내부에서 PM작업을 하는 경우에는 장비 내의 잔류물질을 완전히 배출(드레인)하고, 물로 충분히 씻어준 이후에 작업하도록 해야 함
 - ※ 물로 충분히 씻어주지 않을 경우에는 남아있는 산· 알칼리에 노출될 수 있음


2. 칩 조립라인

2.1. 후면연마공정(back grind 또는 back lap)

가. 공정개요

- 웨이퍼 가공라인에서 가공된 웨이퍼의 뒷면을 얇게 갈아주는 공정을 말하며 사업장에 따라 back grind(B/G) 공정 또는 back lap(B/L) 공정이라 함
- 웨이퍼는 연마작업에 앞서 앞면(웨이퍼 가공라인에서 회로를 구성한 면)을 보호하기 위하여 라미네이션 테이프가 붙여지며 연마(grind) 장비에 의해 자동으로 연마작업이 진행됨

Back grind 작업

TIP

유해위험

- 연마액 등의 비산으로 강염기성 물질에 노출될 수 있으므로 장비 문을 개방한 상태에서 작업하지 않도록 해야 함
- 설비 및 배관점검, 연마액 보충, 폐액 회수, 부품 교체, 기타 PM작업⁴⁵
 과정에서 강염기성 물질에 노출될 수 있으므로 개인보호구를 착용하고
 작업해야함

반도체산업 근로자를 위한 건강관리 길잡이

나. 유해요인 노출특성

- 연마기 문을 열고 연마작업을 하거나 연마액을 보충하는 과정에서 연마액이 튀거나 비산되어 노출될 수 있음
- 설비 및 배관점검, 연마액 보충, 폐액 회수, 부품 교체, 기타 PM작업 과정에서 강염기성 물질에 노출될 수 있음
 - ※ 대만의 전자회사에서 배관을 점검하던 작업자가 누출된 수산화테트라메틸암모늄 (TMAH)에 팔, 다리 등이 노출되어 피부화상, 급성 호흡곤란 등으로 사망한 사례가 있으므로 주의해야 함

사용물질

- 비결정실리카, 피페라진, 수산화테트라메틸암모늄(TMAH) 등
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■점막및피부자극

- 이 공정에서 사용되는 화학물질로 인해 호흡기 점막이나 눈 및 피부 등에 자극증상 (눈물, 따가움, 발적⁴⁶)등이 나타날 수 있음
 - ※ 호흡기 자극시 기침, 호흡곤란, 천명음(쌕쌕거리는 숨소리), 흉통 등의 증상이 나타날 수 있으며, 심할 경우 폐부종⁴⁷이 발생할 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 화학물질에 의한 화상

- 연마액에 포함된 수산화테트라메틸암모늄(TMAH) 등의 알칼리류에 접촉시 화상을 입을 수 있음

라. 작업환경관리

- 연마작업시 연마액 등의 비산을 방지하기 위해 연마장비는 밀폐구조로 이뤄져야 하며 문을 열고 작업하지 않도록 해야 함

⁴⁶ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

⁴⁷ 폐부종: 폐에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태(폐에 물이 차는 것)

- 다음과 같은 작업을 하는 경우에는 호흡용보호구, 보안경, 보호장갑, 보호앞치마 (또는 알칼리 취급용 보호의) 등을 착용하고 작업하도록 해야 함
 - 용액을 보충하거나 폐액을 회수하는 경우
 - PM작업을 하는 경우
 - 그 밖에 설비나 배관을 점검하는 경우

- 연마장비 내부에서 PM작업을 하는 경우에는 장비 내의 잔류물질을 완전히 배출(드레인)하고, 물로 충분히 씻어준 이후에 작업하도록 해야 함
 - ※ 물로 충분히 씻어주지 않을 경우에는 남아있는 알칼리에 노출될 수 있음

2.2. 웨이퍼 절단공정(wafer saw)

가. 공정개요

• 웨이퍼를 개개의 칩으로 잘라주는 공정으로 원형 칼날(saw blade)을 이용하여 잘라주며 웨이퍼 절단과정에서 계면활성제가 사용됨

웨이퍼 절단장비

웨이퍼 절단(sawing)

유해위험

- 웨이퍼 절단시 절삭액의 비산으로 인해 계면활성제 등에 노출될 수 있으므로 인터록⁴⁸이 정상 작동되는 상태에서 작업하도록 해야 함
- -설비 및 배관점검, 절삭액 보충, 폐액 회수, 부품 교체, 기타 PM작업⁴⁹ 과정에서 계면활성제 등에 노출될 수 있으므로 개인보호구를 착용하고 작업해야 함

나, 유해요인 노출특성

- -웨이퍼를 자르는 과정에서 인터록을 임의 해제하고 작업할 경우 절삭액이 튀어 계면활성제 등에 노출될 수 있음
- -설비 및 배관점검, 절삭액 보충, 폐액 회수, 부품 교체, 기타 PM작업 과정에서 계면활성제 등에 노출될 수 있음

⁴⁸ 인터록: 안전장치의 하나로서 장비가 정상적으로 작동하기 위한 조건이 아닌 경우(장비 문 열림 등)에는 작동하지 않도록 하는 장치를 말함

⁴⁹ PM작업(유지보수): "Preventive Maintenance"의 약자로 웨이퍼 가공장비에 대한 "예방적 유지보수" 활동을 의미함

사용물질

• 절삭액: 계면활성제, 물등으로구성

※계면활성제: 폴리에틸렌글리콜, 폴리에틸렌-폴리프로필렌글리콜 등이 함유

▶ 부록2 「물질별 유해위험성 정보」참조

PM작업

- 부품교체, 세척 등 PM작업시 장비 내에 잔류하고 있는 화학물질에 노출될 수 있음

다. 건강영향

■점막및피부자극

- 계면활성제에 의해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적⁵⁰)등이 나타날 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 급성중독 및 질식

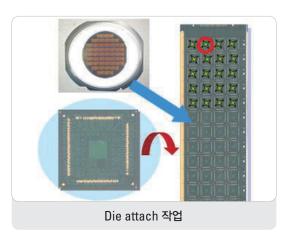
- PM작업시에 에틸렌글리콜 등에 의한 급성중독 위험이 있음
- 두통, 구역·구토, 복시⁵¹, 보행장애 등의 증상이 나타날 수 있으며 고농도에 노출될 경우에는 중추신경계 저하로 인해 의식을 잃거나 전해질 불균형, 심장 부정맥이 나타날 수 있음

라. 작업환경관리

- 절삭액의 비산을 방지하기 위해 연마장비는 밀폐구조로 이뤄져야 하며 인터록을 임의 해제한 상태에서 문을 열고 작업하지 않도록 해야 함
- 다음과 같은 작업을 하는 경우에는 호흡용보호구, 보안경, 보호장갑 등을 착용하고 작업하도록 해야 함
 - 용액을 보충하거나 폐액을 회수하는 경우
 - PM작업을 하는 경우
 - 그 밖에 설비나 배관을 점검하는 경우

반도체산업 근로자를 위한 건강관리 길잡이 -

⁵⁰ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태


⁵¹ 복시: 1개의 물체가 2개로 보이거나 그림자가 생겨 이중으로 보이는 현상

2.3. 칩 접착공정(die attach)

가. 공정개요

- 웨이퍼 절단(wafer saw) 공정에서 낱개로 잘려진 칩을 접착제를 이용하여 회로기판에 접착시키는 공정
- 칩 접착작업이 끝난 제품은 오븐(oven)에서 경화(cure)⁵²시키는데, 경화온도와 시간은 제품마다 차이가 있으나 보통 175℃에서 1시간 정도이고, 2단계로 나누어 경화하기도 함

Die attach cure oven

TIP

유해위험

- 접착제에 유기용제가 함유되어 있는 경우 접착과정에서 휘발성 유기화합물에 노출될 수 있으므로 국소배기장치가 정상적으로 가동되는 상태에서 작업해야 함
- 경화(cure)과정에서 휘발성 유기화합물에 노출될 수 있으므로 국소배기 장치가 정상적으로 가동되는 상태에서 작업해야 하며, 오븐에서 충분히 냉각과 배기를 한 후 제품을 꺼내도록 해야 함

반도체산업 근로자를 위한 건강관리 길잡이

나, 유해요인 노출특성

■ 전착작업

- 접착제에 포함되어 있는 휘발성 유기화합물에 노출될 수 있음
- 스텐실 기법으로 접착제를 도포하는 경우는 스텐실을 세척하는 과정에서 세척용매에 노출될 수 있음

사용물질

- 에폭시수지, 페놀수지 등 고분자수지
- 아세톤, 비결정실리카, 은(Aq), 유기과산화물, 경화제 등
- ▶ 부록2 「물질별 유해위험성 정보」참조

■ 경화(cure)작업

- 경화과정에서 접착제에 함유되어 있던 유기화합물이 휘발될 수 있으며, 특히 경화작업후 충분한 배기시간을 주지 않을 경우 오븐의 문을 여는 과정에서 유기화합물에 노출될 수 있음
- 충분히 냉각하지 않을 경우에는 고온접촉으로 화상을 입을 수 있음

다. 건강영향

■ 점막 및 피부 자극

- 수지 및 유기용제에 의해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적⁵³)등이 나타날 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 천식

- 접착제, 수지류 등에 의해 기침, 천명음(쌕쌕거리는 숨소리) 등의 증상이 나타날 수 있으며 심할 경우 직업성 천식이 발생할 수 있음
 - ※ 통상 이러한 증상은 작업시 악화되고 휴식시 호전되는 경향을 보임

■ 중추신경계 영향

- 유기용제에 고농도 노출시 두통, 구역질, 현기증, 졸림 등의 증상이 나타날 수 있음

■ 만성중독

- 신경계 영향 : 각종 유기용제에 장기간 노출시 두통, 기억력 감퇴, 피로, 불면증 등의 증상이 나타날 수 있음

■ 고온접촉에 의한 화상

- 오븐에서 경화 후 충분히 식히지 않고 꺼낼 경우 화상을 입을 수 있음

라, 작업환경관리

■ 접착작업

- 유기용제가 함유된 접착제를 사용하는 경우에는 해당 작업장소나 설비에 국소배기 장치를 설치해야 함
- 접착에 사용된 스텐실을 아세톤 등으로 세척하는 경우에는 국소배기장치가 정상적으로 가동되는 상태에서 호흡용보호구, 보안경 및 보호장갑 등을 착용하고 작업해야 함

■ 경화(cure)작업

- 경화과정에서 발생한 휘발성물질에 노출되는 것을 방지하기 위해 경화오븐(cure oven) 내 배기장치의 정상작동 여부를 수시 확인하도록 해야 함
- 경화가 끝난 후 오븐에서 충분히 냉각과 배기를 한 후 제품을 꺼내도록 해야 하고, 오븐의 문을 열 때 오븐 내 남아있을 수 있는 유해가스의 확산이나 노출을 방지하기 위해 오븐의 문과 근접하여 국소배기장치를 설치하는 것이 바람직함

반도체산업 근로자를 위한 건강관리 길잡이 +

2.4. 몰드공정(mold)

가. 공정개요

- 반도체 칩을 외부환경으로부터 보호하기 위하여 에폭시몰딩컴파운드⁵⁴(epoxy molding compound, EMC)로 감싸주는 공정
 - ※ 몰드공정에서는 에폭시몰딩컴파운드(EMC)를 180℃ 정도로 가온하여 녹여준 후 회로기판상의 반도체 칩에 골고루 도포함
- 몰드장비의 세정(금형세정)을 위해서 멜라민 수지 등이 함유된 물질이 사용되며 금형세정작업도 몰드작업과 유사한 조건에서 이루어짐
- 에폭시몰딩컴파운드(EMC)를 안정된 경화물로 만들기 위하여 일정시간 동안 고온에서 경화시키는 것을 몰드 후 경화(post mold cure)라 하며 경화 온도는 보통 175℃이고 시간은 보통의 경우는 1시간에서 5시간 정도임

유해위험

- 에폭시몰딩컴파운드(EMC)를 180°C 정도로 가열하여 칩에 코팅하는 과정에서 EMC 구성성분(카본블랙 등)과 부산물(휘발성 유기화합물)에 노출 가능하므로 국소배기장치가 정상적으로 가동되는 상태에서 작업해야 함
- 경화(cure)⁵⁵ 과정에서 휘발성 유기화합물에 노출 가능하므로 국소배기 장치가 정상적으로 가동되는 상태에서 작업해야 함

⁵⁴ 에폭시몰딩컴파운드(epoxy molding compound, EMC): 보통 에폭시수지(epoxy resin), 페놀수지(phenolic resin)와 같은 열 경화성 수지가 사용되며, 산화규소화합물, 카본블랙 등도 포함되어 있음

⁵⁵ 경화(cure) : 오븐에서 가온하여 굳혀주는 것을 말함. 칩을 접착한 후에 경화하는 것을 칩 접착 후 경화(die attach cure)라고 하며, 몰드 작업 후 경화시키는 것을 몰드 후 경화(post mold cure)라고 함

나, 유해요인 노출특성

■ 몰드작업

- 에폭시몰딩컴파운드(EMC)를 반도체 칩에 코팅하는 과정에서 에폭시몰딩 컴파운드(EMC)의 구성성분인 카본블랙, 실리카, 삼산화안티몬 등이 발생될 수 있음
- 에폭시몰딩컴파운드(EMC)를 180℃ 정도로 가열하여 칩에 코팅하는 과정에서 에폭시수지나 페놀수지의 열분해 산물인 벤젠, 포름알데히드 등이 발생될 수 있음

■ 경화(cure)작업

- 경화과정에서 휘발성 유기화합물이 발생 될 수 있으며, 특히 경화작업후 오븐의 문을 열 때 이러한 휘발성 유기화합물에 노출될 수 있음
- 충분히 식히지 않을 경우 고온접촉으로 화상을 입을 수 있음

■ 금형세정작업

- 금형세정 과정에서 세정제의 구성성분인 실리카. 에탄올아민 등에 노출될 수 있음
- 금형세정제를 180° 정도로 가열하여 금형(몰드장비)을 세정하는 과정에서 열분해 산물인 포름알데히드 등 휘발성 유기화합물이 발생될 수 있음

사용물질

- 에폭시몰딩컴파운드(EMC) : 에폭시수지, 페놀수지, 카본블랙, 실리카 (보통은 비결정형), 삼산화안티몬 등
- 금형세정제 : 멜라민수지, 합성고무, 실리카(보통은 비결정형), 에탄올 아민, 셀룰로오스, 왁스, 유기과산화물등

부산물

- 에폭시몰딩컴파운드(EMC) 및 금형세정제의 열분해로 미량의 부산물(벤젠, 포름알데히드등)이 발생기능
 - ※ 에폭시몰딩컴파운드(EMC) 및 금형세정제를 공정온도(180℃) 조건에서 가열 실험한 결과 위와 같은 열분해 산물이 발생하는 것으로 조사됨
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■점막및피부자극

- 안티몬, 수지 및 휘발성 물질 등에 의해 호흡기 점막이나 눈 및 피부 등에 자극증상 (눈물, 따가움, 발적⁵⁶)등이 나타날 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 처시

- 접착제, 수지류 등에 의해 기침, 천명음(쌕쌕거리는 숨소리) 등의 증상이 나타날 수 있으며 심할 경우 직업성 천식이 발생할 수 있음
 - ※ 통상 이러한 증상은 작업시 악화되고 휴식시 호전되는 경향을 보임

■ 중추신경계 영향

- 부산물로 발생가능한 휘발성 유기화합물에 고농도 노출시 두통, 구역질, 현기증, 졸림 등의 증상이 나타날 수 있음

■ 만성중독

- 신경계 영향 : 각종 유기화합물에 장기간 노출시 두통, 기억력 감퇴, 피로, 불면증 등의 증상이 나타날 수 있음

■ 고온접촉에 의한 화상

- 오븐에서 경화 후 충분히 식히지 않고 꺼낼 경우 화상을 입을 수 있음
 - ▶ 부산물로 미량의 벤젠, 포름알데히드가 발생할 수 있으며, 벤젠, 포름알데히드는 백혈병⁵⁷유발요인으로 알려져 있음

⁵⁶ 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

⁵⁷ 백혈병: 혈액 세포 중 백혈구에 발생한 암으로서, 비정상적인 백혈구(백혈병 세포)가 과도하게 증식하여 정상적인 백혈구와 적혈구, 혈소판의 생성이 억제되어 면역저하, 빈혈 증상, 출혈 등을 일으킴

라. 작업환경관리

■ 몰드작업

- 에폭시몰딩컴파운드(EMC)를 가열하여 칩에 코팅하는 과정에서 발암물질인 벤젠 등이 미량 발생될 수 있으므로 국소배기장치가 정상 가동되는 상태에서 작업하도록 해야 함

※ 유해 부산물이 발생하지 않는 몰딩컴파운드로 대체할 필요가 있음

- 몰드장비의 작동오류 등을 해결하기 위해 장비커버나 장비창문을 열고 작업을 해야 하는 경우에는 호흡용보호구를 착용하도록 해야 함

■ 경화(cure)작업

- 경화과정에서 발생한 휘발성물질에 노출되는 것을 방지하기 위해 경화오븐(cure oven)내 배기장치의 정상작동 여부를 수시 확인하도록 해야 함
- 경화가 끝난 후 오븐에서 냉각과 배기를 충분히 한 후 제품을 꺼내도록 하고, 오븐의 문을 열 때 오븐 내 남아있을 수 있는 유해가스의 확산이나 노출을 방지하기 위해 오븐의 문과 근접하여 국소배기장치를 설치하는 것이 바람직 함

■ 금형세정작업

- 금형세정제를 가열하여 금형(몰드장비)을 세정하는 경우에는 발암물질인 포름알데 히드 등이 발생될 수 있으므로 국소배기장치가 정상 가동되는 상태에서 작업하도록 해야 함
 - ※ 유해 부산물이 발생하지 않는 금형세정제로 대체할 필요가 있음
- 장비커버나 장비창문을 열고 작업을 해야 하는 경우에는 호흡용보호구를 착용하도록 해야 함

반도체산업 근로자를 위한 건강관리 길잡이 ㅗ

2.5. 인쇄공정(marking)

가. 공정개요

- 레이저나 잉크를 이용하여 반도체 칩에 제품별 고유번호나 회사로고 등을 인쇄하는 공정
 - ※ 대부분 레이저를 이용하여 인쇄작업을 하고 있으며 일부 잉크를 이용한 인쇄작업을 하기도 함

레이저 마킹설비

유해위험

- 레이저 마킹시 레이저 및 휘발성 유기화합물 등이 발생 가능하므로 장비가 가동되는 동안은 장비문을 열지 말아야 하며, 국소배기장치가 정상적으로 가동되는 상태에서 작업해야 함
- 잉크 마킹시 유기용제에 노출될 수 있으므로 국소배기장치가 정상적으로 가동되는 상태에서 작업해야 함

나. 유해요인 노출특성

■ 레이저 마킹

- 레이저를 이용하여 반도체 칩에 마킹을 하는 경우에는 코팅된 EMC 수지에 에너지가 가해짐으로써 휘발성 유기화합물이 발생될 수 있으며, 기타 에폭시몰딩 컴파운드(EMC)의 구성성분(카본블랙, 삼산화안티몬 등)도 발생될 수 있음

- 레이저 마킹작업시 파장범위 180 nm~1.0 mm 인 레이저가 발생됨

부산물

- 에폭시몰딩컴파운드(EMC) 분진과 휘발성 유기화합물이 부산물로 미량 발생기능
- ▶ 부록2 「물질별 유해위험성 정보」참조

■ 잉크 마킹

- 마킹과정에서 잉크 성분 및 신너에 포함된 유기용제에 노출될 수 있음

사용물질

- 잉크에 함유된 유기용제 및 희석제
 - 솔벤트나프타, 크실렌, 사이클로헥사논, 아세톤, 초산에틸, 톨루엔 등
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■점막및피부자극

- 수지 성분이나 휘발성물질 등에 접촉시 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적⁵⁸)등이 나타날 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 천식

- 수지 성분에 의해 기침, 천명음(쌕쌕거리는 숨소리) 등의 증상이 나타날 수 있으며 심할 경우 직업성 천식이 발생할 수 있음
 - ※ 통상 이러한 증상은 작업시 악화되고 휴식시 호전되는 경향을 보임

반도체산업 근로자를 위한 건강관리 길잡이

■ 중추신경계 영향

- 잉크마킹시 사용하는 유기용제에 고농도로 노출시 두통, 구역질, 현기증, 졸림 등의 증상이 나타날 수 있음

■ 만성중독

- 신경계 영향 : 각종 유기용제에 장기간 노출시 두통, 기억력 감퇴, 피로, 불면증 등의 증상이 나타날 수 있음

■ 피부 및 안구질환

- 레이저 노출로 인해 흉반, 색소침착 등의 피부질환과 결막염 등의 안구질환이 생길수 있음

라. 작업환경관리

■ 레이저마킹

- 레이저 마킹과정에서 발생할 수 있는 휘발성 유기화합물이나 분진의 노출을 예방하기 위해 국소배기장치를 설치해야 함
- 레이저가 작동되는 상태에서는 장비 문을 열지 말아야 하며, 인터록⁵⁵을 임의로 해제하지 말아야 함
- 레이저를 근접해서 봐야 하는 경우 반드시 레이저의 파장특성에 적합한 보안경을 착용하도록 해야 함

⁵⁹ 인터록: 안전장치의 하나로서 장비가 정상적으로 작동하기 위한 조건이 아닌 경우(장비 문 열림 등)에는 작동하지 않도록 하는 장치를 말함

■ 잉크마킹

- 잉크 마킹의 경우 잉크에 함유된 유기용제에 노출되는 것을 최소화하기 위해 마킹 설비에는 국소배기장치가 갖추어져 있어야 함
- 다음과 같은 작업을 하는 경우에는 호흡용보호구, 보안경, 보호장갑 등을 착용하고 작업하도록 해야 함
 - 잉크 보충작업을 하는 경우
 - 신너와 혼합하는 경우
 - 세척작업을 하는 경우
 - PM작업⁶⁰을 하는 경우

2.6. 도금공정(plating)

가. 공정개요

• 리드프레임⁶¹(lead frame)의 부식을 막고 특성을 양호하게 하기 위하여 주석 등으로 도금하는 공정

TIP =

유해위험

- 도금 작업시 도금용액에 노출될 수 있으므로 국소배기장치가 정상적으로 가동되는 상태에서 개인보호구를 착용하고 작업해야 함
- 용액보충, 배관 점검시 도금용액에 노출될 수 있으므로 개인보호구를 착용하고 작업해야함

나. 유해요인 노출특성

- 도금조에 리드프레임을 투입하거나 회수하는 과정, 도금액을 보충하는 과정 등에서 산 · 알칼리 등에 노출될 수 있음
- 설비 및 배관을 점검하거나 폐액회수 등의 과정에서 산 · 알칼리 등에 노출될 수 있음

사용물질

- 수산화칼륨, 메탄술폰산, 메틸알콜, 괴산화수소, 황산, 질산, 주석메탄설포네이트등
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■ 점막 및 피부 자극

- 산·알칼리 등에 의해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적⁶²)등이 나타날 수 있음
 - ※ 호흡기 자극시 기침, 호흡곤란, 천명음(쌕쌕거리는 숨소리), 흉통 등의 증상이 나타날 수 있으며, 심할 경우 폐부종⁶³이 발생할 수 있음

⁶¹ 리드프레임(lead frame): 반도체 칩과 외부 회로를 연결시켜 주는 전선(lead) 역할과 반도체 패키지를 전자 회로기판에 고정시켜 주는 버팀대(frame) 역할을 동시에 하는 재료

⁶² 발적: 피부나 점막에 염증이 있을 때, 모세 혈관의 확장에 의하여 그 부분이 붉게 부어오르는 상태

⁶³ 페부종: 페에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태(페에 물이 차는 것)

- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 화학물질에 의한 화상

- 도금조에서 사용되는 산 · 알칼리와 접촉할 경우 화상을 입을 수 있음
 - ▶ 황산 등 강산의 미스트64는 후두암65을 일으키는 것으로 알려져 있음

라, 작업환경관리

- 국소배기장치가 정상적으로 작동되는지 여부를 수시로 확인하도록 해야 함
- 다음 작업시에는 호흡용보호구, 보안경, 보호장갑, 보호앞치마 등을 착용하고 작업하도록 해야 함
 - 도금조에 리드프레임을 투입하거나 회수하는 작업
 - 도금액을 보충하는 작업
 - 도금조 내부에서 PM작업⁶⁶을 하는 경우

- 도금조 내부에서 PM작업을 하는 경우에는 작업 전 도금조 내 잔류물질을 완전히 배출(드레인)하고, 물로 도금조를 충분히 씻어준 이후에 작업하도록 해야 함
 - ※ 물로 도금조를 충분히 씻어주지 않을 경우에는 남아있는 산· 알칼리에 노출될 수 있음

⁶⁵ 후두암: 후두에 생기는 암. 후두가 좁아지고 음성 장애가 나타나며 호흡이 곤란해짐

2.7. 솔더볼 부착공정(solder ball mount 또는 solder ball attach)

가. 공정개요

- 반도체 칩이 장착될 회로기판에 플럭스(flux)를 도포하고, 솔더볼(solder ball)을 붙여주는 공정으로 solder ball mount(SBM) 또는 solder ball attach(SBA)라고 함
- 솔더볼⁶⁷이 부착된 회로기판은 SBM(또는 SBA) 장비와 연결되어 있는 오븐으로 투입되며 여기에서 솔더볼은 경화과정을 거치게 되는데 최고 280℃까지 온도가 설정됨

유해위험

• 경화(cure)시 플럭스로부터 발생되는 휘발성물질에 노출될 수 있으므로 배기장치의 정상작동 여부를 확인하고 작업해야 함

나. 유해요인 노출특성

- 솔더볼 접착과정에서 주석, 구리, 플럭스 성분 등에 노출될 수 있음
- 솔더볼 접착후 280℃ 정도까지 가열하여 경화(cure)하는 과정에서 플럭스 성분으로부터 휘발성물질이 발생될 수 있음

사용물질

- 솔더볼(solder ball) : 주석, 은, 구리
- 플럭스(flux) : 계면활성제, 글리세롤, 폴리에틸렌글리콜, 에틸렌옥사이드 중합체 등
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■점막및피부자극

- 플럭스와 접촉시 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적 ⁶⁶)등이 나타날 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 처식

- 경화과정에서 발생 가능한 휘발성물질 등에 의해 기침, 천명음(쌕쌕거리는 숨소리) 등의 증상이 나타날 수 있으며 심할 경우 직업성 천식이 발생할 수 있음
 - ※ 통상 이러한 증상은 작업시 악화되고 휴식시 호전되는 경향을 보임

■ 중추신경계 영향

- 부산물로 발생가능한 휘발성물질에 고농도 노출시 두통, 구역질, 현기증, 졸림 등의 증상이 나타날 수 있음

■ 만성중독

- 신경계 영향 : 각종 휘발성물질에 장기간 노출시 두통, 기억력 감퇴, 피로, 불면증 등의 증상이 나타날 수 있음

라. 작업환경관리

- 경화과정에서 발생한 휘발성물질에 노출되는 것을 방지하기 위해 경화오븐(cure oven)의 배기장치의 정상작동 여부를 수시 확인하도록 해야 함

반도체산업 근로자를 위한 건강관리 길잡이

2.8. 열적테스트공정(test during burn-in, TDBI)

가. 공정개요

반도체 칩에 열을 가해 테스트(최고 온도, 125℃) 하면서 불량을 제거하는 공정으로
 Monitoring burn-in test (MBT) 공정이라고도 함

TIP

유해위험

• 테스트 과정에서 부산물로 휘발성 유기화합물이 발생할 수 있으므로 배기장치의 정상작동 여부를 확인하고, 챔버 내에서 충분히 냉각과 배기를 한 후 제품을 꺼내도록 해야 함

나, 유해요인 노출특성

- 반도체 칩에 열을 가하여 테스트하는 과정에서 부산물로 휘발성 유기화합물이 발생할 수 있음

부산물

- 최고 125℃ 정도에서 이루어지는 테스트 과정에서 반도체 칩의 수지성분 등으로부터 미량의 부산물(톨루엔, n-헥산 등 휘발성 유기화합물)이 발생 기능
- ▶ 부록2 「물질별 유해위험성 정보」참조

다. 건강영향

■ 점막 및 피부 자극

- 가열 과정에서 발생가능한 휘발성 유기화합물이나 수지류 등에 의해 호흡기 점막이나 눈 및 피부 등에 자극증상(눈물, 따가움, 발적 ⁶⁹)등이 나타날 수 있음
- 피부접촉에 의한 접촉성 피부염이 발생할 수 있음
 - ※ 작업시 증상이 악화되는 경향을 보임

■ 천식

- 가열 과정에서 발생가능한 휘발성 유기화합물이나 수지류 등에 의해 기침, 천명음(쌕쌕거리는 숨소리) 등의 증상이 나타날 수 있으며 심할 경우 직업성 천식이 발생할 수 있음
 - ※ 통상 이러한 증상은 작업시 악화되고 휴식시 호전되는 경향을 보임

■ 중추신경계 영향

- 부산물로 발생가능한 휘발성 유기화합물에 고농도 노출시 두통, 구역질, 현기증, 졸림 등의 증상이 나타날 수 있음

■ 만성중독

- 신경계 영향 : 각종 유기화합물에 장기간 노출시 두통, 기억력 감퇴, 피로, 불면증 등의 증상이 나타날 수 있음

라, 작업환경관리

- 가열 과정에서 발생한 휘발성물질에 노출되는 것을 방지하기 위해 경화오븐(cure oven)의 배기장치의 정상작동 여부를 수시 확인하도록 해야 함
- 테스트가 끝난 후 챔버 내에서 충분히 냉각과 배기를 한 후 제품을 꺼내도록 해야 함

2.9. X-선 검사공정(X-ray test)

가. 공정개요

• X-선 형광분석기를 이용하여 제품의 불량을 확인하는 공정

TIP

유해위험

• 인터록을 임의 해제하고 작업할 경우 전리방사선⁷⁰에 노출될 수 있으므로 반드시 안전작업 절차를 준수해야 함

나. 유해요인 노출특성

- 인터록⁷¹ 임의해제 상태에서 X-선 장비 내부로 신체가 들어갈 경우 전리방사선에 노출될 수 있음

유해요인

• 전리방사선(X-선 및 감마선)

⁷⁰ 전리방사선: 세포내의 원자나 분자를 이온화시킬 수 있는 방사선으로 X-선, 감마선 등이 해당

⁷¹ 인터록: 안전장치의 하나로서 장비가 정상적으로 작동하기 위한 조건이 아닌 경우(장비 문 열림 등)에는 작동하지 않도록 하는 장치를 말함

다. 건강영향

- 전리방사선 노출은 백혈병⁷²을 포함한 각종 암 발생과 관련이 있는 것으로 알려져 있음

라. 작업환경관리

- X-선 검사공정은 타 공정과 격리된 별도의 공간에 배치해야 함
- X-선 검사장비에는 방사선 경고 표시와 방사선안전관리에 관한 사항을 근로자가 잘 볼 수 있는 곳에 게시해야 함
- X-선 검사 담당 근로자 및 별도 허가받은 근로자 외에는 X-선 검사장비를 조작하지 않도록 해야 함
- 인터록을 임의로 해제하지 않도록 하여야 하며, 부득이 인터록을 해제하고 작업을 해야 하는 경우에는 에이프런(방사선 차폐 앞치마)을 착용하도록 해야 함
- 방사선에 노출되거나 노출될 가능성이 있는 근로자에게는 선량계⁷³를 착용하도록 하여 개인노출선량⁷⁴을 측정해야 함

반도체산업 근로자를 위한 건강관리 길잡이

⁷² 백혈병: 혈액 세포 중 백혈구에 발생한 암으로서, 비정상적인 백혈구(백혈병 세포)가 과도하게 증식하여 정상적인 백혈구와 적혈구, 혈소판의 생성이 억제되어 면역저하, 빈혈 증상, 출혈 등을 일으킴

⁷³ 선량계: 방사선 누적 노출량을 측정하기 위한 소형측정기

⁷⁴ 개인노출선량: 일정한 기간 동안 측정한 근로자 개인의 방사선 누적노출량

반도체산업 근로자를 위한 건강관리 길잡이

Ⅳ. 근로자 건강관리

- 1. 주요 건강영향과 증상
- 2. 근로자 건강진단과 사후관리
- 3. 야간작업 근로자 건강관리

₩ 근로자 건강관리

1. 주요 건강영향과 증상

반도체 제조 사업장에서는 다양한 화학물질이 사용되고 있으며 이러한 화학물질에 의해 다양한 건강영향이 나타날 수 있으므로 이상증상이 나타날 경우 의사나 보건관리자와 상담을 해야 함

신경계

- 대부분의 유기용제는 신경계에 영향을 미치며 급성 또는 만성적 영향으로 아래와 같은 증상이 나타날 수 있음
 - 급성영향: 두통, 구역질, 현기증, 졸림 등
 - 만성영향: 기억력 감퇴. 감각 및 운동신경의 반응성 감소 등
 - ※ 일부 공정에서는 공정조건(열)에 의해 원재료로부터 미량의 부산물이 발생하여 위와 같은 증상이 나타날 수 있음

피부

- 자극성 및 알레르기성 피부염
- -산·알칼리는 피부 및 점막에 자극성을 나타내며 일부 유기용제, 수지류의 경우 알레르기원으로 작용하여 아래와 같은 증상이 나타날 수 있음
 - 눈물, 따가움, 충혈
 - 가려움. 부어오름. 발적
 - ※ 또한 작업용 장갑 착용 및 그로 인해 장시간 땀에 젖어 피부염이 생기거나 악화될 수 있으며, 그 밖에 클린룸 온 · 습도 유지 시스템의 영향으로 눈 및 점막, 피부 건조감을 느낄 수 있음

- 접촉성피부염이 발생한 경우 다른 물질로 대체하거나 작업전환 등을 검토할 필요성이 있음
 - ※ 보건관리자는 접촉피부염이 있는 근로자에 대하여 작업관련성 여부를 확인하고 직업성 접촉피부염이 의심되면 전문의에게 의뢰하여 자문을 받아야 함
 - ☞ 근로자 건강진단 실무지침 제1권 특수건강진단 개요(산업안전보건연구원, 2012) P76~83 참조

■ 화상

- 산 · 알칼리류에 접촉할 경우 눈 또는 피부 등에 화상을 입을 수 있음
- 수산화테트라메틸암모늄(TMAH)에 노출시 신속히 다량의 물로 세척하고 의사의 진료를 받아야 함
 - ※ 대만의 전자회사에서 배관 점검을 하던 근로자가 누출된 수산화테트라메틸암모늄(TMAH)에 팔, 다리 등이 노출되어 피부화상, 급성 호흡곤란 등으로 사망한 사례가 있음
- 불산에 의한 화상의 경우에는 전신독성으로 전해질 불균형을 일으킬 수 있으므로 반드시 병원에서 혈중 전해질 검사가 필요함
 - ※ 노출 후 증상이 천천히 나타날 수 있으므로 노출 즉시 응급실을 방문해서 치료를 받도록 해야 함 (필요시 칼슘글루코네이트 치료)

혈액

- 아르신에 중독되었을 경우에는 특징적인 임상소견으로 용혈성빈혈이 나타날 수 있음
 - ※ 용혈성빈혈 : 혈액 내에서 적혈구가 과도하게 파괴되어 생기는 빈혈로서 주증상으로는 피로감, 어지러움, 창백해짐 등의 빈혈 증상과 황달 등이 있음
- 전리방사선에 장기간 노출시 골수기능 저하. 백혈병 등이 나타날 수 있음

호흡기계

- 웨이퍼 가공 공정에서 사용되는 산 · 알칼리류나 칩 조립공정에서 사용되는 수지류, 플럭스 등은 호흡기 점막을 자극하며 아래와 같은 증상이 나타날 수 있음
 - 기침, 천명음(쌕쌕거리는 숨소리), 흉통
- 자극성이 심한 물질에 고농도 노출시에는 호흡기 점막의 손상으로 폐부종을 일으킬 수 있음
- 발작적인 기침이 자주 나타나는 경우 천식을 의심해 볼 필요가 있음

- 호흡기내과의 진료와 필요한 검사(폐기능검사, 기관지유발시험, 피부단자시험 등)를 통해 천식인지 여부와 작업과의 관련성을 평가한 후 직업성천식으로 확진되면 작업전환이 필요함

소화기계

- 아르신, 포스핀 등의 흡입에 의한 급성영향으로 아래와 같은 증상이 나타날 수 있음
 - 최초증상으로 구역 · 구토, 복통, 설사 등의 소화기계 증상
 - •황달, 갈색뇨, 간비대

신장 및 비뇨기계

- 아르신의 급성 및 만성 중독시에 신부전이 발생할 수 있음
- 아르신 흡입시 즉시 근로자를 병원으로 옮겨 산소투여 및 수액치료가 필요하며 용혈성빈혈과 급성신부전의 발생 정도에 따라 투석이 필요할 수 있음
 - ※ 휴식시간이 충분치 않을 경우 클린룸 입장시의 복장을 갖추는 데에 시간이 많이 걸리므로 화장실 출입을 꺼리는 경우가 많고 같은 이유로 근로자 스스로 수분 섭취도 줄임으로 인해 방광염 등 요로감염 문제가 발생 또는 악화되기도 함

생식기계

- 과거 반도체 제조사업장의 포토공정에서 사용되었던 에틸렌글리콜모노에틸에테르 (EGEE)에 의한 불임, 자연유산 등의 문제가 나타남에 따라 현재 프로필렌글리콜모노메틸에테르(PGME)로 대체하여 사용하고 있음
- 그러나 β -프로필렌글리콜모노메틸에테르(β -PGME)도 잠재적 생식독성 물질로 분류하고 있어 생리중단이나 생리불순 등 생식기계 문제의 발생 가능성에 유의할 필요가 있음
- 생식기계 문제의 특성상 근로자들이 스스로 알리기를 꺼려할 수 있으므로 근로자들이 편하게 증상을 호소할 수 있는 회사 내 조직문화나 사생활 보호 시스템이 필요함

암

- 이온주입공정에서 아르신의 부산물로 비소가 발생할 수 있으며 이는 폐암, 간암, 피부암 등의 발생에 영향을 줄 수 있음
 - ※ 그 밖에 농도수준은 낮으나 포토공정이나 몰드공정에서 부산물로 발암물질인 벤젠, 포름알데히드가 발생할 수 있음

근골격계

- 반도체 사업장에서 특별히 심한 중량물을 취급하는 경우는 많지 않으나 아래의 경우에 근골격계질환을 일으킬 수 있음
 - 오퍼레이터 : 반복 작업
 - 엔지니어나 PM작업자: 부자연스러운 자세에서 보수정비 작업시
- 불화수소 등의 불화물에 장기간 노출시 뼈의 약화를 가져올 수 있음

2. 근로자 건강진단과 사후관리

- 근로자의 질병을 조기에 진단하고, 예방조치와 치료를 통해 건강을 회복 할수 있도록 하기 위해서 산업안전보건법 제43조에 따른 건강진단을 받는 것이 중요함
- 이러한 건강진단을 통해 해당업무에 배치해도 좋은지, 현재의 업무를 계속하기 위해서 어떠한 관리가 필요한지, 또는 근로자 건강상태를 고려해 근로를 일시적으로 중단시키거나 작업 전환을 해야 할지를 결정하게 됨
- 의사나 보건관리자는 반도체 사업장에서 사용하는 화학물질 중 배치전 건강진단이나 특수건강진단 실시 대상 유해물질 외에도 다양한 화학물질이 사용됨을 고려하여 근로자들의 증상에 유의해서 문진이나 사후관리를 하여야 함

가. 근로자 건강진단

■ 일반건강진단

- 개요 : 작업장의 유해요인 보다는 일상생활의 건강문제를 진단하기 위한 검진제도

- 대상: 모든 근로자

- 주기: 사무직에 종사하는 근로자는 2년 1회, 그 밖의 근로자는 1년 1회

■ 배치전 건강진단

- 개요 : 특수건강진단을 받아야 하는 업무에 종사할 근로자를 대상으로 그 업무에 배치되기 전에 업무적합성 평가를 위해 실시하는 건강진단

- 대상 : 산업안전보건법 시행규칙 별표12의2에서 규정하는 유해인자에 노출될 수 있는 업무에 배치될 근로자(특수건강진단 대상과 같음)

- 주기: 예정되어 있는 작업에 배치되기 전

■ 특수건강진단

- 개요: 작업과 관련된 건강문제를 조기진단하고 예방하기 위한 검진제도

- 대상 : 산업안전보건법 시행규칙 별표12의2에서 규정하는 유해인자에 노출되는 근로자

- 주기: 배치전 건강진단을 실시한 날로부터 유해인자별로 정해져 있는 시기에 첫 번째 특수건강진단을 실시하고. 이후 정해져 있는 주기에 따라 정기적으로 실시

구분	대상 유해인자	시기 배치 후 첫 번째 특수건강진단	주기
1	N,N-디메틸아세트아미드 N,N-디메틸포름아미드	1개월 이내	6개월
2	벤젠	2개월 이내	6개월
3	1,1,2,2,-테트라클로로에탄 사염화탄소 아크릴로니트릴 염화비닐	3개월 이내	6개월
4	석면, 면 분진	12개월 이내	12개월
5	광물성 분진 나무 분진 소음 및 충격소음	12개월 이내	24개월
6	제1호부터 제5호까지의 규정의 대상유해인자를 제외한 별표 12의2의 모든 대상 유해인자	6개월 이내	12개월

- ※ 단, 아래의 경우에는 다음 회에 한정하여 관련 유해인자별로 특수건강진단 주기를 2분의 1로 단축
 - ① 작업환경측정 결과, 노출기준 이상인 작업공정에서 해당 유해인자에 노출되는 근로자
 - ② 특수건강진단·수시건강진단 또는 임시건강진단 실시 결과, 직업병 유소견자가 발견된 작업공정에서 해당유해인자에 노출되는 모든 근로자
 - ③ 그 밖에 특수건강진단 실시 주기를 단축하여야 한다는 의사의 판정을 받은 근로자

수시건강진단

- 개요: 비교적 단기간에 수시로 발생하여 정기 건강진단에서 진단하기 어려운 직업병을 조기에 발견하기 위한 건강진단제도
- 대상 : 직업성천식, 직업성피부질환, 그 밖에 건강장해를 의심하게 하는 증상을 보이거나 의학적 소견이 있는 근로자
- 주기: 근로자가 위 질환이 의심되는 증상을 보이거나 의학적 소견이 있는 때

■ 임시건강진단

- 개요 : 동일부서 또는 동일 유해인자에 노출되는 근로자에서 유사질병, 증상이 발생한 경우, 직업병유소견자가 다수 발생하거나 발생위험이 있는 경우에 실시하는 건강진단
- 대상: 지방고용노동관서의 장이 필요하다고 인정하는 근로자
- 주기: 지방고용노동관서 장의 명령에 의해 지체 없이 실시

나. 건강관리구분

■ 건강진단 결과에 따라 A, C₁, C₂, D₁, D₂로 구분함

건강관리 구분		건강관리 구분 내용		
정상자 (A)		건강관리상 특별히 사후관리조치가 필요 없는 자		
요관찰자	C ₁ (직업병 요관찰자)	직업성 질병으로 진전될 우려가 있어 추적검사 등 관찰이 필요한 근로자		
(C)	C2 (일반질병 요관찰자)	일반질병으로 진전될 우려가 있어 추적 관찰이 필요한 근로자		
D ₁ 유소견자 (직업병 유소견자)		직업성 질병의 소견을 보여 사후관리가 필요한 근로자		
(D)	D ₂ (일반질병 유소견자)	일반 질병의 소견을 보여 사후관리가 필요한 근로자		
R (제2차 건강진단 대상자)		건강진단 1차 검사결과 건강수준의 평가가 곤란하거나 질병이 의심되는 근로자		

다. 업무적합성 평가

■ 근로자의 건강상태가 업무에 의하여 악화되는 것을 방지하기 위해 현재 근로자가 맡고 있는 업무를 지속적으로 수행해도 되는지 여부를 평가하는 것을 말하며 건강관리 구분에 따라 다음과 같이 4가지로 판정을 함

건강관리 구분	업무적합성 평가	
정상자 (A)	현재 조건하에서 현재 업무 가능	
	일정조건하에서 현재 업무 가능	
요관찰자 $(C_{1,}C_{2})$ 유소견자 $(D_{1}D_{2})$	일정기간 현재 업무 불가	
	영구적으로 현재 업무 불가	

라. 사후관리

■ 사후관리란 업무적합성 평가 결과 요관찰자(C_1 과. C_2), 유소견자(D_1 과. D_2)로 판정된 근로자에 대하여 현재의 질병상태를 호전시키거나 또는 최소한 악화되는 것을 방지하기 위해 어떤 관리를 해야 하는지를 말함

■ 건강관리 구분에서 정상자(A)인 근로자에 대해서는 특별한 사후관리가 필요하지 않지만 요관찰자(C_1 과. C_2)나 유소견자(D_1 과. D_2)에 대해서는 업무적합성 평가 결과에 따라 다음과 같이 사후관리 판정을 함

건강관리 구분	업무적합성 평가	사후관리 판정
정상자 (A)	현재 조건하에서 현재 업무 가능	(특별한 사후관리 필요없음)
		보호구 착용상태에서 근무
		추적검사를 받으면서 근무
	일정조건하에서 현재 업무 가능	치료를 받으면서 근무
요관찰자 (C ₁ C ₂)		작업장소 변경
유소견자 (D _{1,} D ₂)		근무시간 단축
		야간근무 제한
	일정기간 현재 업무 불가	병가, 휴직 치료 후 현재업무 복귀
	영구적으로 현재 업무 불가	타업무로 전환조치

[※] 사업주는 건강진단을 실시한 의사의 의견을 들어 사후관리를 하여야 하며, 건강진단 결과를 가지고 근로자를 차별하거나 해고시키기 위한 수단으로 사용해서는 안됨

3. 야간작업 근로자 건강관리

- 교대근무는 심혈관계질환에 영향을 줄 수 있으며, 기존에 고혈압, 당뇨병, 소화기계 질환 등을 갖고 있는 경우 그 경과에 영향을 미칠 수 있고, 확정적이지는 않지만 유방암의 발생 가능성에 대해서도 보고되고 있음
- 작업관리자나 의사 · 보건관리자는 교대주기, 근무반 편성, 휴식시간 설정 및 건강진단 사후관리시 근로자의 기존 질환 유무를 검토해야 함
 - □ 「교대작업자의 보건관리지침(KOSHA GUIDE H-22-2011)」 및 「연장·야간 및 휴일근로 등 과중업무 수행근로자 관리방안(김현주 등, 2011)」을 참고하여 작성함

(1)「야간작업」이란

■ "야간작업"이란 저녁 10시부터 다음날 아침 6시까지 사이의 시간이 포함된 근무시간에 작업하는 것을 말함

(2) 작업관리

- 작업 설계시의 전제조건
- 결근자를 대체할 수 있는 인력을 확보하도록 할 것
- 작업설계는 근로자의 수용성을 고려해야 하며, 이를 위하여 근로자대표와 야간작업 및 교대근무자의 의견을 충분히 수렴할 것
- 작업설계시의 권장사항
- 교대주기는 짧은 것이 좋으며, 야간작업은 연속하여 3일을 넘기지 않도록 하고, 특히 고정 야간근무를 금지하는 것이 바람직함
- 근무사이에 16시간 이상의 휴식시간이 보장될 수 있도록 하며, 특히 야간반 근무를 모두 마친 후 근무변경 시에는 최소한 24시간 이상의 휴식시간을 부여하는 것이 바람직함
- 가정생활이나 사회생활을 배려하기 위해 가능한 매월 일정하게 주말에 쉴 수 있도록 하며, 하루씩 건너 띄어 쉬는 것보다는 주말에 이틀 연이어 쉬는 것이 좋음

- 근무반 교대방향은 '아침반→ 저녁반→ 야간반'으로 하고 정방향으로 순환하도록 함
- 아침반 작업은 너무 일찍 시작하지 않도록 하는 것이 바람직함(5시보다는 6시, 6시보다는 7시가 더 좋음)
- 저녁반 및 야간작업은 잠을 조금이라도 더 오래 잘 수 있도록 가능한 한 일찍 작업을 끝내도록 해야 함
- 야간반 작업 중 0시에서 1시 사이에 식사시간을 갖는 것이 좋고, 03시에서 04시 사이 및 필요시에는 짧은 휴식시간이나 사이잠(Napping)을 잘 수 있도록 함
- 야간작업은 불가피하거나 적절한 조건이 확보되는 경우를 제외하고는 8시간을 초과하지 않도록 함
- 교대작업일정을 계획할 때 가급적 근로자 개인이 원하는 바를 고려하도록 하고, 공정하고 투명한 과정을 통해서 작업일정을 확정해야 함
- 교대작업일정은 가급적이면 규칙적이고 예측 가능할 수 있도록 하고, 근로자들에게 충분한 시간을 두고 미리 통보되어 휴식과 사회생활을 계획할 수 있도록 함

(3) 건강관리

■ 작업환경관리

- 야간작업의 경우 작업장의 조도를 밝게 하고, 작업장의 온도를 최고 27 ℃가 넘지 않는 범위에서 주간작업 때보다 약 1 ℃ 정도 높여 주어야 함
- 야간작업동안 사이잠(Napping)을 자게 하면 졸림을 방지하는데 효과적이므로 사이잠을 위해 수면실을 설치하되, 소음 또는 진동이 심한 장소를 피하고 남녀용으로 구분하여 설치하도록 함
- 규칙적이고 적절한 음식이 제공될 수 있도록 배려하여야 함 ※ 야간 작업자에게 적절한 음식이란, 칼로리가 낮으면서 소화가 잘 되는 음식임

■ 의료서비스 제공

- 야간작업에 배치하기 전과 후, 그리고 정기적으로 건강평가⁷⁵를 실시하고 그 내용을 문서로 기록, 보관해야 함
- 뇌심혈관질환, 우울증, 수면장애, 소화성 궤양에 대한 평가를 실시해야 함
- 의사인 보건관리자 또는 직업환경의학 전문의로 하여금 야간작업 종사자에 대한 건강평가 결과에 따라 건강관리 및 작업관리의 측면에서 적절한 사후관리를 해야 함

반도체산업 근로자를 위한 건강관리 길잡이 ㅗ

⁷⁵ 건강평가: '직장에서의 뇌심혈관질환 예방을 위한 발병위험도평가 및 사후관리지침(KOSHA GUIDE H-1-2012) '에 따라 건강평가 및 사후관리

- 야간작업을 하는 근로자들에 대하여 주간근무자와 동일한 수준으로 사용 가능한 적절한 응급처치설비. 이송 등의 치료체계를 갖추어야 함

업무적합성평가

- 다음과 같은 건강상태에 있는 근로자를 야간작업에 배치할 때는 의사인 보건관리자 또는 직업환경의학 전문의를 통해 업무적합성평가를 실시하도록 함
 - 간질증상이 잘 조절되지 않는 근로자
 - 불안정 협심증(Unstable angina), 심근경색증 병력이 있는 관상동맥질환자
 - 뇌졸중 병력이 있는 환자
 - 스테로이드치료에 의존하는 천식환자
 - 혈당이 조절되지 않는 당뇨병환자
 - 혈압이 조절되지 않는 고혈압환자
 - 교대작업으로 인하여 약물치료가 어려운 환자(예를 들면, 기관지 확장제 치료 근로자등)
 - 반복성 위궤양환자
 - 증상이 심한 과민성대장증후군(Irritable bowel syndrome)환자
 - 만성 우울증환자
 - 교대근무 부적응 경력이 있는 근로자

■ 인식제고 및 보건교육

- 야간작업 및 교대작업의 위험 및 필요한 조치에 대해 알기 쉽게 설명하는 홍보물을 배포해야 함
- 야간작업 및 교대작업 근로자에 대해서는 충분한 휴식을 지원할 수 있도록 가족을 대상으로 교육 · 홍보를 실시해야 함
- 연 1회 이상의 야간 및 교대작업 보건교육을 실시해야 함
 - ※ 야간 및 교대작업이 안전과 건강에 미치는 영향 (사고, 뇌심혈관질환, 우울증, 수면장애 등), 야간 및 교대작업의 인간공학적 설계 및 관리방법, 야간 및 교대작업자의 건강평가와 관리, 건강문제예방을 위한 개인적인 노력 등

(4) 교대작업자의 개인 생활습관 관리

- 야간작업 후 낮 수면을 효과적으로 취하는 방법
- 야간작업자는 작업 후 가능한 한 빨리 잠자리에 들 것
- 가족이나 동료는 야간작업자가 취침 중에 주위에서 소음이 나지 않도록 배려할 것

- 교대작업자는 가족이나 동료에게 자신의 교대작업일정을 알릴 것
- 개인 차이는 있지만 최소 6시간 이상 연속으로 수면을 취할 것
- 운동 요법과 이완 요법
- 교대작업자는 잠들기 3시간 이내에는 운동을 하지 말 것 ※ 지나친 운동은 잠을 빨리 깨게 되어 회복에 방해를 받을 수 있음
- 이완요법과 명상을 규칙적으로 하면 수면 및 교대작업 적응에 도움이 됨

■ 영양

- 야간작업 후 잠들기 전에는 과량의 식사, 커피 및 음주는 피할 것 ※ 위에서 음식이 소화될 때까지의 부담이 수면을 방해할 수 있음
- 교대작업 중에 갈증을 느끼지 않더라도 자주 물을 마시도록 할 것

참고문헌

- [1] 고용노동부. 화학물질 및 물리적인자의 노출기준. 고용노동부고시 제2012-31호, 2012.
- [2] 김창균. 방사선계측학. 신광출판사, 2007.
- [3] 김현주 등. 연장·야간 및 휴일근로 등 과중업무 수행근로자 관리방안(야간작업 종사자에 대한 특수건강진단실시 의무화제도 도입 방안 포함). 고용노동부(연구용역보고서), 2011
- [4] 원자력안전위원회. 개인 피폭방사선량의 평가 및 관리에 관한 규정. 원자력안전위원회고시 제2011-69호, 2011
- [5] 원자력안전위원회. 방사선기기의 설계승인 및 검사에 관한 기준. 원자력안전위원회고시 제2011-40호. 2011
- [6] 전자자료사. 반도체(공정 및 측정). 1997
- [7] 한국산업안전보건공단. 교대작업자의 보건관리지침. KOSHA GUIDE H-22-2011, 2011.
- [8] 한국산업안전보건공단. 직장에서의 뇌심혈관질환 예방을 위한 발병위험도평가 및 사후관리지침. KOSHA GUIDE H-1-2012, 2012.
- [9] 한국산업안전보건공단. 화학물질정보(KOSHA Chemical Information Center, MSDS/GHS). [Internet] Available from http://www.kosha.or.kr.
- [10] 한국산업안전보건공단 산업안전보건연구원. 반도체 제조 사업장에 종사하는 근로자의 작업환경 및 유해요인 노출특성 연구: 연구결과보고서. 2012.
- [11] 한국산업안전보건공단 산업안전보건연구원. 근로자 건강진단 실무지침. 2012.
- [12] American Conference of Governmental Industrial Hygienists (ACGIH). A guide for control of laser hazards. 4th ed. ACGIH, Cincinnati (OH); 1990.
- [13] American Conference of Governmental Industrial Hygienists (ACGIH). Documentations of the Threshold Limit Values and Biological Exposure Indices. ACGIH, Cincinnati (OH): 2010.
- [14] American Conference of Governmental Industrial Hygienists (ACGIH). Hazard assessment and control technology in semiconductor manufacturing. LEWIS PUBLISHERS, INC. Chelsea (MI); 1989.
- (15) American Conference of Governmental Industrial Hygienists (ACGIH). Threshold Limit Values(TLVs) for Chemical Substances and Physical Agents & Biological Exposure Indices(BEIs). ACGIH, Cincinnati (OH); 2011.
- [16] Bolmen RA, editor. Semiconductor safety handbook: Safety and health in the semiconductor industry. Westwood (NJ): 1998.
- [17] International Labour Organization (ILO). Encyclopedia of occupational health and safety. 4th ed. ILO, Geneva: 1998.
- [18] Misra A, Hogan JD, Chorush RA. Handbook of chemicals and gases for the semiconductor industry. New York; 2002.
- [19] Occupational Safety and Health Agency (OSHA). Semiconductors 2005. [Internet] Available from http://www.osha.gov/SLTC/semiconductors/index.html.
- [20] Sherer JM. Semiconductor industry: Wafer fab exhaust management. Boca Raton (FL); 2005.
- (21) Williams ME and Baldwin DG. Semiconductor industrial hygiene handbook: Monitoring, ventilation, equipment and ergonomics. Park Ridge (NJ): 1995.

반도체산업 근로자를 위한 건강관리 길잡이

부록

- 1. 용어의 설명
- 2. 물질별 유해위험성 정보

1 용어의 설명

주요 용어	설 명
EMC (에폭시몰딩컴파운드)	보통 에폭시수지(epoxy resin), 페놀수지(phenolic resin)와 같은 열 경화성 수지가 사용되며, 산화규소화합물, 카본블랙 등도 포함되어 있음 EMC는 몰드 온도인 175~185℃로 가열하여 녹인 후 칩에 도포됨
PM작업(유지보수)	"Preventive Maintenance"의 약자로 웨이퍼 가공장비에 대한 "예방적 유지보수"활동을 의미함
개인노출선량 (Personal radiation exposure dose)	일정한 기간 동안 측정한 근로자 개인의 방사선 누적노출량
건식식각(Dry etch)	염소, 삼불화질소와 같은 가스를 이용하여 식각하는 것을 말함
경화(Cure)	칩 접착 또는 몰드 후 오븐에서 가온하여 굳혀주는 것을 말함. 칩을 접착한후에 경화하는 것을 칩 접착 후 경화(die attach cure)라고하고, 몰드 작업후 경화시키는 것을 몰드 후 경화(post mold cure)라고 함
금형세정제 (Mold cleaner)	반복적으로 몰드작업을 하다 보면 금형내부에 EMC 성분이 남아있게 되는데, 이를 세정해 주기 위해 사용되는 물질을 금형세정제라고 함 "세정제"라고 해서 신너와 같은 액체는 아니며 멜라민 수지, 합성고무 등이 함유된 물질이 사용됨
노광 (Light exposure)	빛에 노출시키는 것을 말함, 반도체 공정에서는 마스크에 그려진 회로패턴에 UV(자외선)를 쬐어 웨이퍼에 회로패턴을 얻음 노광작업을 하는 설비를 '노광기'또는 '얼라이너'라고 함
도금(Plating)	리드프레임의 부식을 막고 특성을 양호하게 하기 위하여 주석 등으로 도금하는 것
리드프레임 (Lead frame)	반도체 칩과 외부회로를 연결시켜 주는 전선(lead) 역할과 반도체 패키지를 전자회로 기판에 고정시켜 주는 버팀대(frame) 역할을 동시에 수행하는 재료
마스크(Mask)	회로패턴이 새겨진 유리판

주요 용어	설 명
몰드(Mold)	반도체 칩을 외부 환경으로부터 보호해 주기 위하여 EMC(epoxy molding compound)로 감싸주는 것을 말함
물리적기상증착(PVD)	물리적인 방법으로 웨이퍼에 박막을 증착하는 것을 말하며 금속배선 이라고도 함 진공상태에서 가스를 이온화하여 금속에 충돌시켜 금속입자를 웨이퍼에 입히는 등의 방법이 사용됨
방사선 (Radiation)	에너지를 가진 입자의 흐름 또는 파동을 말함 즉 알파선, 베타선, 감마선, 엑스선 등을 비롯하여 자외선, 적외선, 가시광선, 라디오파 등이 모두 방사선에 해당됨 방사선은 전리방사선과 비전리방사선으로 분류되는데, 우리가 흔히 말하는 방사선은 전리방사선을 지칭함
백혈병 (Leukemia)	혈액 세포 중 백혈구에 발생한 암으로서, 비정상적인 백혈구(백혈병 세포)가 과도하게 증식하여 정상적인 백혈구와 적혈구, 혈소판의 생성이 억제되어 면역저하, 빈혈 증상, 출혈 등을 일으킴
복시(Diplopia)	1개의 물체가 2개로 보이거나 그림자가 생겨 이중으로 보이는 현상
불순물(Dopant)	반도체에 전도형태를 변화시키기 위하여 사용하는 물질을 말하며 비소, 인, 붕소 이온 등을 의미 실리콘(Si)과 같이 단일물질로 구성된 웨이퍼에 소량의 다른 물질을 주입하기 때문에 불순물이라고 불림
비전리 방사선 (Non-ionizing radiation)	광자에너지가 작아 원자나 분자를 이온화시킬 수 없는(전자를 분리시킬수 없는) 방사선으로서 - 극저주파(extremely low frequency, ELF), 초저주파(very low frequency, VLF), 라디오파(radio frequency, RF), 마이크로파, 적외선, 가시광선 등이 해당
산화(Oxidation)	실리콘(Si)으로 구성된 웨이퍼 표면에 산화막(Si O_2)을 형성하는 것을 말하며, 고온의 확산로에서 실리콘 웨이퍼를 노출시켜 산화막을 얻음
선량계 (Radiation dosimeter)	방사선 누적 노출량을 측정하기 위한 소형측정기
성형가공-트리밍 (Trimming)	몰드작업 후 리드프레임을 다듬어 주는 작업을 말함 몰드작업 후 플레시(flash, EMC가 흘러나와 lead frame에 붙은 것)를 제거하고, 댐바(dambar, EMC가 넘치는 것을 방지하기 위해 설치된 dam 역할의 bar)를 잘라주는 작업을 트리밍이라고 함
성형가공-포밍 (Forming)	Trimming 작업시 절단된 리드를 절곡하여 제품의 형상을 완성하는 공정을 포밍이라고 함

반도체산업 근로자를 위한 건강관리 길잡이

주요 용어	설 명
솔더볼 (Solder ball)	반도체 칩과 기판을 연결해 전기적 신호를 전달해 주는 금속으로 주석이 주성분임
습식식각(Wet etch)	불산, 황산 용액과 같은 수용액을 이용하여 식각하는 것을 말함 최근에는 습식식각을 세정공정(wet cleaning)으로 분류하고 있음
식각(Etch)	화학반응을 통해 회로패턴에 포함되지 않는 불필요한 부분을 제거하는 것으로 습식식각과 건식식각으로 구분됨
연마(평탄화) (Chemical mechanical polishing, CMP)	가공과정에서 생성된 웨이퍼 표면의 산화막 등을 화학적 또는 물리적 방법으로 연마하여 평탄화 시켜주는 공정임
열 경화성 수지 (Thermosetting resin)	열을 가하였을 때 구조적인 변화를 일으키면서 딱딱해지는 성질을 가진 고분자 화합물로 에폭시수지, 페놀수지 등이 있음
열적테스트 (TDBI, MBT)	열적 스트레스(burn-in)를 가하면서 테스트를 하는 것 열을 가하면서 테스트 한다고 하여 TDBI(Test during burn-in) 또는 MBT(Monitoring burn-in test)라고 함
열처리(Annealing)	반도체 결정의 복원 및 불순물을 전기적으로 활성화하기 위한 것임
용혈성빈혈 (Hemolytic anemia)	혈액 내에서 적혈구가 과도하게 파괴되어 생기는 빈혈임
웨이퍼 가공 (Wafer fabrication)	반도체 소자를 만들기 위해 웨이퍼 상에 회로를 구성하기 위한 일련의 활동임
웨이퍼 절단 (Wafer saw)	원형 칼날(saw blade)을 이용하여 웨이퍼를 개개의 칩으로 잘라주는 것임
웨이퍼(Wafer)	실리콘(Si)을 고순도로 정제하여 기둥모양의 잉곳(Ingot)을 만든 후, 얇게 잘라서 원판모양으로 만든 것으로 반도체 소자의 기본 재료임
이온주입 (Ion implantation)	반도체에 전도형태를 변화시키기 위해 웨이퍼에 불순물을 주입하는 것을 말함 확산공정에서 불순물을 확산시키는 것도 반도체에 전도형태를 변화시키기 위한 방법이나 이온주입 기술을 이용하면 불순물의 양과 웨이퍼에 투입되는 깊이 등을 조절할 수 있음
인터록 (Interlock)	안전장치의 하나로서 장비가 정상적으로 작동하기 위한 조건이 아닌 경우 (장비 문 열림 등)에는 작동하지 않도록 하는 장치를 말함

주요 용어	설 명
전리방사선 (Ionizing radiation)	광자에너지가 커서 세포내의 원자나 분자를 이온화시킬 수 있는(전자를 분리시킬수 있는) 방사선으로서 X선이나 감마선, 자외선 일부가 해당되며 원자나 분자를 변형시켜 유전자를 손상시킬 수 있음
증착 (Deposition, thin film)	웨이퍼에 화학적 또는 물리적 방법으로 전도성 또는 절연성 박막을 형성시키는 공정으로 박막(thin film) 공정이라고도 하며 화학적기상증착과 물리적기상증착이 있음
칩 접착(Die attach)	낱개로 잘려진 칩을 접착제를 이용하여 회로기판에 접착시키는 것임
칩 조립 (Chip assembly or Package)	가공된 웨이퍼를 낱개의 칩(chip)으로 잘라 리드프레임 등에 부착하고, 금선연결, 몰드, 검사 등을 통해 제품을 생산하는 일련의 활동임
폐부종 (Pulmonary edema)	폐에 지나친 양의 체액이 쌓여 호흡이 곤란해지는 상태임(폐에 물이 차는 것)
포토 (Photolithography)	웨이퍼에 회로패턴을 형성시키는 것을 말함 이를 위해 웨이퍼에 포토레지스트를 도포한 후 마스크의 회로패턴을 웨이퍼에 형성시킴
포토레지스트 (감광액, PR)	빛을 받았을 때 화학적 변화가 생기는 물질로 웨이퍼에 도포하고, UV(자외선)를 쬐어 원하는 회로패턴을 얻을 수 있음
현상 (Developing)	노광 과정에서 빛을 받는 부분 또는 빛을 받지 않는 부분을 현상액으로 제거해주는 것임 (포토레지스트의 종류에 따라 제거되는 부분에 차이가 있음)
화학적기상증착(CVD)	화학반응을 통해 웨이퍼에 박막을 증착하는 것을 말함
확산(Diffusion)	고온의 전기로(확산로)에서 웨이퍼에 불순물(dopant)을 확산시켜(웨이퍼에 고르게 퍼트리는 것) 반도체 층의 일부분의 전도형태를 변화시키는 과정임
후면 연마(Back grind or Back lap)	가공된 웨이퍼의 뒷면을 얇게 갈아주는 공정을 말하며, 제품에 요구되는 두께까지(수십~수백 ச) 웨이퍼 뒷면을 균일하게 갈아내는 것임

2 물질별 유해위험성 정보

참고사항

- 이 자료에서 현재 반도체 업종에서 사용하는 모든 화학물질을 다 언급하고 있는 것은 아니며 각 사업장에 따라서는 사용하는 물질이 다를 수 있음
- 새로운 물질을 사용하고자 할 경우에는 인체에 미치는 영향, 공정에서의 노출특성 등 사용 적합성을 평가할 필요가 있음

반도체 제조공정에서 노출 가능한 화학물질 리스트

가. 웨이퍼 가공라인

번호	물질명	번호	물질명
1	Acetylene(아세틸렌)	20	Catechol(카테콜)
2	Acetic $acid(초산)$	21	Cellulose(셀룰로오스)
3	Acetone(아세톤)	22	Cerium oxide(산화 세륨)
4	Aliphatic Hydrocarbon(지방족탄화수소)	23	Chlorine(염소)
5	2-(2-Aminoethoxy)-ethanol [2-(2-아미노에톡시)-에탄올]	24	Chlorine trifluoride(삼불화염소)
6	Ammonia(암모니아)	25	Cresol(크레졸)
7	Ammonium fluoride(불화암모늄)	26	Cyclized polyisoprene(고리화된 폴리이소프펜)
8	Aromatic complex(방향족화합물 복합체)	27	Cyclohexanone(사이클로헥사논)
9	Aromatic sulfur compounds(방향족 황 화합물)	28	Diborane(디보란)
10	Arsine(아르신, 삼수소화비소)	29	Dibutyl ether(디부틸에테르)
11	Arsenic(비소)	30	1,2-Dichloro ethylene(1,2-디클로로 에틸렌)
12	Benzene(벤젠)	31	Dichloro methane(디클로로메탄)
13	Boron tribromide(삼브롬화붕소)	32	Dichloro silane(디클로로실란)
14	Boron trichloride(삼염화붕소)	33	Difluoromethane(디플루오로메탄)
15	Boron trifluoride(삼불화붕소)	34	N,N-Dimethyl-acetamide(DMAc) (N,N-디메틸 아세트아미드)
16	n-Butyl acetate(n-초산부틸)	35	Ethanol(에탄올)
17	Carbon monoxide(일산화탄소)	36	Ethanolamine(에탄올아민)
18	Carbon tetrafluoride(사불화탄소)	37	2-Ethoxyethanol(2-에톡시에탄올)
19	Carbonyl sulfide(황화카르보닐)	38	Ethyl benzene(에틸벤젠)

40 E1	thyl lactate(에틸락테이트) thyl-3-ethoxy propionate	69	Novolak resin(노보락수지)
40 (1 41 Et	thyl-3-ethoxy propionate		
	에틸-3-에톡시 프로피오네이트)	70	Octafluoro cyclobutane(옥타플루오로 사이클로부탄)
42 E ¹	thylene(에틸렌)	71	Octafluoro cyclopentene (옥타플루오로 사이클로펜텐)
	thylene glycol(에틸렌글리콜)	72	Octafluoro propane (옥타플루오로 프로판)
43 FI	luorine(불소)	73	Ozone(오존)
44 ga	amma-Butyrolactone (감마-부티로락톤)	74	Phosphine(포스핀)
45 H	leavy aromatic solvent(중질 방향족 솔벤트)	75	Phosphoric acid(인산)
46 2	-Heptanone(Methyl-n-amylketone)(2-헵타논)	76	Phosphorus oxychloride(옥시염화인)
	lexafluoro-1,3-butadiene 헥사플루오로-1,3-부타디엔)	77	Polyethylene glycol(폴리에틸렌글리콜)
48 H	lexafluoroethane(헥사플루오로에탄)	78	Polyhydroxy styrene derivatives(폴리히드록시 스티렌 유도체)
49 H	IMDS(헥사메틸디실라잔)	79	Polymethacrylate(폴리메타크릴레이트)
50 H	lydrogen(수소)	80	Polysilazane(폴리실라잔)
51 H	lydrogen bromide(브롬화수소)	81	Potassium hydroxide(수산화 칼륨)
52 H	lydrogen chloride(염화수소, 염산)	82	Propylene (프로필렌)
53 H	lydrogen fluoride(불화수소, 불산)	83	Propylene glycol dimethylether (프로필렌글리콜 디메틸에테르)
54 H	lydrogen peroxide(과산화수소)	84	Silane(실란)
55 H	lydroxyl amine(히드록실아민)	85	Silica amorphous(산화규소 비결정체)
56 Is	sopropyl alcohol(IPA)(이소프로필알콜)	86	Silicon tetrachloride(사염화실리콘)
57 N	Nethane(메탄)	87	Sulfur hexafluoride(육불화황)
	-Methoxy-2-propanol(PGME)(1-메톡시-2-프로 단올 or 프로필렌글리콜모노메틸에테르)	88	Sulfuric acid(황산)
59 (-Methoxy-2-propyl acetate(PGMEA) 1-메톡시-2-프로필-아세테이트 or 프로필렌글리콜모노메틸에테르아세테이트)	89	Tetraethyl orthosilicate(TEOS)(테트라에틸 오르토실리케이트)
	-Methoxy-1-propanol (β-PGME) 2-메톡시-1-프로판올)	90	Tetrakis(dimethylamino) titanium (TDMAT) [테트라키스(디메틸아미노) 티타늄]
	-Methoxy-1-propyl acetate (β-PGMEA) 2-메톡시-1-프로필-아세테이트)	91	Tetramethyl ammonium hydroxide (TMAH) (수산화테트라메틸암모늄)
	/lethyl-2-hydroxy isobutyrate 메틸-2-히드록시-이소부티레이트)	92	Titanium tetrachloride (Tetrachloro titanium) (사염화티타늄)
	/lethyl-3-methoxy propionate(MMP) 메틸-3-메톡시-프로피오네이트)	93	Triethyl borate(트리에틸보레이트)
	-Methyl-2-pyrrolidinone(NMP) or N-Methyl-2- yrrolidone(1-메틸-2-피롤리디논)	94	Trifluoro methane(트리플루오로메탄)
65 N	litric acid(질산)	95	Trimethyl borate(트리메틸보레이트)
66 N	litric oxide(Nitrogen monoxide)(일산화질소)	96	Trimethyl phosphate(트리메틸 포스페이트)
67 N	litrogen trifluoride(삼불화질소)	97	Tungsten hexafluoride(육불화 텅스텐)
68 N	litrous oxide(아산화질소)	98	Xylene(크실렌)

반도체산업 근로자를 위한 건강관리 길잡이 十

나. 칩 조립라인

번호	물질명	번호	물질명
1	Acetaldehyde(아세트알데히드)	21	Ethyl acetate(초산에틸)
2	Acetone(아세톤)	22	Ethyl benzene(에틸벤젠)
3	Antimony trioxide(삼산화안티몬)	23	Ethylene oxide(산화에틸렌)
4	Benzene(벤젠)	24	Formaldehyde(포름알데히드)
5	2-Butoxyethanol(EGBE)(2-부톡시에탄올)	25	Glycerol(글리세롤 or 글리세린)
6	n-Butyl acetate (n-초산부틸)	26	n-Hexane(n-헥산)
7	Carbon Black(카본블랙)	27	Heptane(헵탄)
8	Cellulose(셀룰로오스)	28	Hydrogen peroxide(과산화수소)
9	Copper(Cu)(구리)	29	Isopropyl alcohol (IPA) (이소프로필알콜)
10	Cresol(크레졸)	30	Melamine resin(멜라민수지)
11	Crystalline silica (Quartz) (산화규소결정체, 석영)	31	Methanesulfonic acid(메탄설폰산)
12	Crystalline silica(Cristobalite) (산화규소결정체, 크리스토바라이트)	32	Methanol (메탄올)
13	Cyclohexanone(사이클로헥사논)	33	Methyl isobutyl ketone(MIBK) (메틸이소부틸케톤)
14	N,N-Dimethyl formamide (DMF) (N,N-디메틸 포름아미드)	34	1-Methyl-2-pyrrolidinone or N-Methyl-2-pyrrolidone (1-메틸-2-피롤리디논)
15	EMC(에폭시몰딩컴파운드)	35	1-Methoxy-2-propyl acetate(PGMEA) (1-메톡시-2-프로필-아세테이트, or 프로필렌글리콜모노메틸에테르 아세테이트)
16	Epoxy resin(에폭시수지)	36	Mold Cleaner(금형세정제)
17	Ethanol(에탄올)	37	Nitric acid(질산)
18	Ethanolamine(에탄올아민)	38	Phenol(페놀)
19	2-(2-Ethoxyethoxy) ethanol (DEGEE, Carbitol) [2-(2-에톡시에톡시) 에탄올]	39	Phenolic resin(페놀수지)
20	2-(2-Ethoxyethoxy) ethyl acetate (DEGEEA, Carbitol acetate) [2-(2-에톡시에톡시) 에틸아세테이트]	40	Piperazine(피페라진)

번호	물질명	번호	물질명
41	Polyethylene glycol(폴리에틸렌글리콜)	48	Tetramethyl ammonium hydroxide(TMAH) (수산화테트라메틸암모늄)
42	Polyethylene-polypropylene glycol (폴리에틸렌-폴리프로필렌 글리콜)	49	Tin(II) methanesulfonate (주석메탄설포네이트)
43	Potassium hydroxide(수산화칼륨)	50	Tin(Sn)(주석)
44	Solvent naphtha(솔벤트나프타)	51	Toluene(톨루엔)
45	Sulfuric acid(황산)	52	Trichloroethylene(트리클로로에틸렌)
46	Tetrachloroethylene(테트라클로로에틸렌)	53	Xylene(크실렌)
47	Tetrahydrofuran(테트라하이드로퓨란)		

웨이퍼 가공라인에서 노출 가능한 화학물질

w.=	CTIN	-1-111	212	용도	노출	기준((DEL)	유해성	발암성	생식	생식 세포	안정성	법적 측정	ı	NFPA ⁷⁵	
번호	물질명	화학식	CAS	(반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)	76	독성"	변이 원성 ⁷⁸	(by- product)	숙성 대상	보건	화재	반응
1	Acetylene (아세틸렌)	C_2H_2	74-86-2	CVD	-	-	-	질식, 불순물로 포스핀, 아르신, 황화수소 등을 포함		-	-		-	1	4	3
2	Acetic acid (초산)	CH ₃ COOH	64-19-7	세척(확산 등), 습식식각	10	10	ppm	피부자극, 심각한 눈의 손상	-	-	-		0	2	2	0
3	Acetone (아세톤)	CH ₃ COCH ₃	67-64-1	공정 전반	500	500	ppm	눈 및 상기도 지극, 중추신경계 손상	-	2	-		0	1	3	0
4	Aliphatic Hydrocarbon (지방족 탄화수소)	-	-	포토 (현상액)	따라	성분에 다름 S 참조)	-	함유 성분에 따라 다름 (MSDS 참조)	-	-	-		0			
5	2-(2-Aminoethoxy)- ethanol [2-(2-아미노에톡시)- 에탄올]	C ₄ H ₁₁ NO ₂	929-06-6	포토 (PR제거)	-	-	-	심한자극	-	-	-		-	3	1	0
6	Ammonia (암모니아)	$\mathrm{NH_3}$	7664-41-7	확산, 증착 (CVD, PVD), 연마, 세척	25	25	ppm	급성 눈 및 호흡기계 자극	-	-	2		0	3	1	0
7	Ammonium fluoride (불화암모늄)	NH₄F	12125- 01-8	습식식각, 세정	-	-	-	눈, 피부, 호흡기 자극(독성물질), 뼈와 이의 약화	-	-	-	가열시 암모니아 및 HF 가스 발생, 삼불화염소와 반응	-	3	0	0
8	Aromatic complex (방향족화합물 복합체)	-	-	PR 수지	따라	성분에 다름 S 참조)	-	함유 성분에 따라 다름 (MSDS 참조)	-	-	-	UV에 의한노광으로 인해 방향족 화합물 등 발생 가능	0			
9	Aromatic sulfur compounds (방향족 황 화합물)	-		PR 수지	따라	성분에 다름 S 참조)		함유 성분에 따라 다름 (MSDS 참조)	-	-	-	UV에 의한노광으로 인해 방향족 화합물 등 발생 가능	-			
10	Arsine (아르신, 삼수소화비소)	AsH ₃	7784-42-1	확산, 이온주입	0.005	0.005	ppm	아르신의 흡입과 요중 비소 농도와의 관련성, 용혈의 위험성과 비장, 간, 신장 기능의 용혈관련 영향	-	-	-	300℃까지 가열되거나 빛에 노출시 비소로 분해 (이온주입장비에서는 비소 및 그 화합물이 발생가능)	0	4	4	2
11	Arsenic (비 <u></u> ム)	As	7440-38-2	이온주입 공정	0.01	0.01	mg/m³	폐암	1A	-	-		0	2	0	0

⁷⁶ 발암성: 암을 일으키거나 그 발생을 증가시키는 성질(1A: 사람에게 충분한 발암성 증거가 있는 물질, 1B: 시험동물에서 발암성 증거가 충분히 있거나, 시험동물과 사람 모두에서 제한된 발암성 증거가 있는 물질, 2: 사람이나 동물에서 제한된 증거가 있지만 구분1로 분류하기에는 증거가 충분하지 않는 물질)

⁷⁷ 생식독성: 생식기능 및 생식능력에 대한 유해영향을 일으키거나 태아의 발생 · 발육에 유해한 영향을 주는 성질(1A: 사람에게 성적기능, 생식능력이나 발육에 악영향을 주는 것으로 판단할 정도의 사람에서의 증거가 있는 물질, 1B: 사람에게 성적기능, 생식능력이나 발육에 악영향을 주는 것으로 추정할 정도의 동물시험 증거가 있는 물질, 2: 사람에게 성적기능, 생식능력이나 발육에 악영향을 주는 것으로 의심할 정도의 사람 또는 동물시험 증거가 있는 물질)

⁷⁸ 생식세포변이원성: 자손에게 유전될 수 있는 사람의 생식세포에서 유전물질의 양 또는 구조에 영구적인 변화를 일으키는 성질(1A: 사람에서의 역학조사 연구결과 양성의 증거가 있는 물질, 1B: 포유류를 이용한 생체내(in vivo) 유전성 생식세포 변이원성 시험에서 양성인 경우 등, 2: 포유류를 이용한 생체내(in vivo) 체세포 변이원성 시험에서 양성 등)

⁷⁹ NFPA: 미국화재예방협회(National Fire Protection Association)에서 물질의 유해위험성을 "건강(Health)", "화재(Flammability)", "불안정성/ 반응성(Instability/Reactivity)"으로 구분하여 0~4까지 점수를 부여한 것으로 숫자가 클수록 유해위험성이 높음을 의미

		-1-111	240	용도	노출	출기준(0	IEL)	유해성	발	생식	생식 세포	안정성	법적		NFPA	
번호	물질명	화학식	CAS	0_ (반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)	발 암 성	독성	 변이 원성	(by-product)	측정 대상	보건	화재	반응
12	Benzene (벤젠)	C_6H_6	71-43-2	포토공정 발생가능	1	0.5	ppm	백혈병	1A	2	1B		0	2	3	0
13	Boron tribromide (삼브롬화붕소)	BBr ₃	10294- 33-4	확산	C1	C1	ppm	목과 코의 자극	-	-	-	물이나 알코올과 반응하여분해 (HBr, boric acid 발생)	-	3	0	2
14	Boron trichloride (삼염화붕소)	BCI ₃	10294- 34-5	건식식각	-	-	-	자극, 부식	-	-	-	물, 알코올과 반응하여 분해, HCI 발생	-	4	0	2
15	Boron trifluoride (삼불화붕소)	BF ₃	7637-07-2	확산, 이 온주 입	C1	C1	ppm	상기도 자극, 폐렴	-	-	-	Boric acid, fluoroboric acid, HF	-	4	0	1
16	n-Butyl acetate (n-초산부틸)	C ₆ H ₁₂ O ₂	123-86-4	포토 (PR용제)	150	150	ppm	눈및상기도지극	-	-	-		0	2	3	0
17	Carbon monoxide (일산화탄소)	CO	630-08-0	건식식각	25	25	ppm	산소전달방해, 신경행동영향 (혈중 카르복시 헤모글로빈의 농도를 3.5% 이하로 유지하기 위한 기준)	-	1A	-		0	3	4	0
18	Carbon tetrafluoride (사불화탄소)	CF ₄	75-73-0	건식식각	-	-	-	눈, 피부, 호흡기계 자극	-	-	-		-	1	0	0
19	Carbonyl sulfide (황화카르보닐)	COS	463-58-1	건식식각	-	-	-	급성 독성, 1000 ppm 이상에서는 급성 호흡곤란 등	-	-	-		-	3	4	1
20	Catechol (카테콜)	C ₆ H ₄ (OH) ₂	120-80-9	포토 (PR제거)	5	5	ppm	눈, 상기도자극, 피부질환	2	2	2		-	3	1	0
21	Cellulose (셀룰로오스)	-	9004-34-6	BSG(연마)	10	10	mg/m³	상기도 자극	-	-	-		-	1	1	0
22	Cerium oxide (산화 세륨)	CeO ₂	1306-38-3	BSG(연마)	-	-	-		-	-	-		-	1	0	0

				용도	노	출기준(OEL)	유해성	발	생식	생식 세포	안정성	법적		NFPA	
번호	물질명	화학식	CAS	0 <u>—</u> (반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)		독성	변이 원성	(by-product)	측정 대상	보건	화재	반응
23	Chlorine (염소)	Cl ₂	7782-50-5	건식식각, 이온주입 (과거 6인치)	0.5	0.5	ppm	눈, 점막, 호흡기계 자극	-	-	-		0	4	0	0
24	Chlorine trifluoride (삼불화염소)	CIF ₃	7790-91-2	증착(CVD, PVD)	C0.1	C0.1	ppm	눈, 점막 손상, 심각한 호흡기계 자극	-	-	-	매우 강력한 산화, 부식작용. 물과 강하게 반응하여 HF, Cl ₂ , ClO ₂ 생성	-	4	0	3
25	Cresol (크레졸)	C ₇ H ₈ O	1319-77-3, 95-48-7, 108-39-4, 106-44-5	포토 (PR용제)	5(22)	(20)	ppm (mg/m³)	상기도 자극	-	-	-		0	3	2	0
26	Cyclized polyisoprene (고리화된 폴리이소프펜)	-	-	PR 수지	-	-	-	함께 사용되는 용매에 따라 차이 있음	-	-	-	UV에 의한 노광으로 인해 분해산물 발생 가능	-			
27	Cyclohexanone (사이클로헥사논)	$C_6H_{10}O$	108-94-1	포토 (PR용제)	20	20	ppm	눈, 코, 목의 자극, 중추신경계 영향, 간과 신장에 영향	2	2	2		0	1	2	0
28	Diborane (디보란)	B_2H_6	19287- 45-7	CVD	0.1	0.1	ppm	독성물질, 눈, 호흡기계, 피부자극, 폐수종	-	-	-	상온에서 습기가 있는 공기와 접촉하여 발화	-	4	4	3
29	Dibutyl ether (디부틸에테르)	C ₈ H ₁₈ O	142-96-1	CVD	-	-	-	눈, 피부, 호흡기계 자극	-	-	-		-	2	3	0
30	1,2-Dichloro ethylene (1,2-디클로로 에틸렌)	CICH=CHC	1 540-59-0	세척 (확산 공정)	200	200	ppm	중추신경계 영향, 눈자극	-	-	-	열이나 빛에 의한 분해산물: HCI	0	1	3	2
31	Dichloro methane (디클로로메탄)	CH ₂ Cl ₂	75-09-2	습식식각	50	50	ppm	카르복시헤모글로빈 증가, 중추신경계 영향	-	-	-		0	2	1	0
32	Dichloro silane (디클로로실란)	SiH ₂ Cl ₂	4109-96-0	확산, 증착	÷	-	-	호흡기 자극, 폐기능 장해	-	-	-	물이나 수분과 반응하여 가연성의 독성가스 및 증기(HCI등) 발생, 공기중에 노출되면 발화, 밀폐용기에서 가열시 폭발, 열분해산물: 무기산, 염소, 산화규소 등	-	4	4	2

				용도	노출	즐기준(C	DEL)	유해성	발	생식	생식 세포	안정성	법적		NFPA	
번호	물질명	화학식	CAS	(반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)	발 암 성	독성	 변이 원성	(by-product)	측정 대상	보건	화재	반응
33	Difluoromethane (디플루오로메탄)	CH ₂ F ₂	75-10-5	건식식각	-	-	-	눈, 피부자극	-	-	-	가연성 매우 높음	-	1	4	1
34	N,N-Dimethyl- acetamide (DMAc) (N,N-디메틸 아세트아미드)	C_4H_9NO	127-19-5	포토 (희석제)	10	10	ppm	간손상, 생식 및 발육 독성	-	1B	-		0	2	2	0
35	Ethanol (에탄올)	C_2H_6O	64-17-5	포토 (PR용제)	1,000	1,000 (STEL)	ppm	눈, 호흡기 영향	1A*	1A*	1B*		-	2	3	0
* 음주	에 한함.															
36	Ethanolamine (에탄올아민)	C ₂ H ₇ NO	141-43-5	습식식각 (PR 제거), 포토	3	3	ppm	눈, 피부자극	-	2	-		0	3	2	0
37	2-Ethoxyethanol (2-에톡시에탄올)	$C_4H_{10}O_2$	110-80-5	포토 (PR용제)	5	5	ppm	생식 및 발육 독성, 중추신경계, 혈액 및 골수, 신장, 간의 영향	-	1B	-		0	2	2	0
38	Ethyl benzene (에틸벤젠)	C ₈ H ₁₀	100-41-4	포토 (PR용제)	100	100	ppm	눈, 상기도자극, 중추신경계 손상	2	1B	-		0	2	3	0
39	Ethyl lactate (에틸락테이트)	$C_5H_{10}O_3$	97-64-3	포토 (PR용제)	-	-	-	지극, 눈에 심각한 위험 초래	-	-	-		-	3	2	0
40	Ethyl-3-ethoxy propionate (에틸-3-에톡시 프로피오네이트)	C ₇ H ₁₄ O ₃	763-69-9	포토 (희석제, 현상액)	-	-	-	피부, 눈 자극 또는 화상	-	-	-		-	3	2	0
41	Ethylene (에틸렌)	C_2H_4	74-85-1	건식식각	-	200	ppm	질식, ethylene oxide로 대사	-	-	-	가연성 매우 높음	-	1	4	2
42	Ethylene glycol (에틸렌글리콜)	HOCH ₂ CH ₂ OH	107-21-1	건식식각, CVD, 이온주입(과거 6인치)	C100	C100	mg/m³	상기도 및 눈자극	-	1B	-	강 산화제 및 강 염기와 반응, 분해 산물 CO, CO ₂	-	2	1	0
43	Fluorine (불소)	F_2	7782- 41-4	확산, 포토	0.1	1	ppm	눈, 피부, 호흡기계 자극, 부식성 물질	=	2	-	반응성이 강한 강력한 산화제	0	4	0	4
44	gamma- Butyrolactone (감마-부티로락톤)	$C_4H_6O_2$	96-48-0	포토 (현상액)	-	-	-	눈, 상기도자극, 중추신경계 손상	-	-	2		-	1	2	0

번호	무지대	화학식	CAS	용도	노출	기준(0	EL)	유해성	발	생식	생식 세포	안정성	법적 측정		NFPA	
<u></u> 민호	물질명	와약식	UAS	(반도체 공정)	우리 나라	ACGIH	단위	(TLV근커)	암 성	독성	변이 원성	(by-product)	즉성 대상	보건	화재	반응
45	Heavy aromatic solvent (중질 방향족 솔벤트)	-	64742- 94-5	CVD (과거 6인치)	함유 성 따라 (MSDS	다름		함유 성분에 따라 다름 (MSDS 참조)	-	-	-		0	2	1	0
46	2-Heptanone (Methyl-n-amyl ketone) (2-헵타논)	C ₇ H ₁₄ O	110-43-0	포토 (PR용제)	50	50	ppm	눈, 피부자극	-	-	-		0	1	2	0
47	Hexafluoro-1,3- butadiene (헥사플루오로-1,3- 부타디엔)	C_4F_6	685-63-2	건식식각	-	-	-	자극	-	-	-	열분해시 CO, CO ₂ , HF, fluorinated compounds, carbonyl fluoride	-	3	4	0
48	Hexafluoroethane (헥사플루오로에탄)	C_2F_6	76-16-4	건식식각	-	-	-	질식(고농도)	-	-	-	할로겐화화합물, 탄소산화물, 자극성, 부식성, 독성가스	-	1	0	0
49	HMDS (헥사메틸디실라잔)	C ₆ H ₁₉ NSi ₂	999-97-3	포토 (밀착 향상제)	-	-	-	호흡기자극, 피부자극, 화상, 눈 손상	-	-	-		-	3	3	1
50	Hydrogen (수소)	H ₂	1333-74-0	CVD	-	-	-	질식	-	-	-	고 인화성 및 폭발성	-	0	4	0
51	Hydrogen bromide (브롬화수소)	HBr	10035- 10-6	건식식각	C2	C2	ppm	급성지극	-	-	-	습기가 있는 상태에서 대부분의 금속과 반응하여 부식, 수소가스 발생	0	3	0	0
52	Hydrogen chloride (염화수소, 염산)	HCI	7647-01-0	확산, 증착 (CVD), 습식식각, 세척, 연마	1	C2	ppm	급성자극	-	-		염기와 강하게 반응하고, 금속과 반응하여 수소발생, 산화시 염소발생 등	0	3	0	1
53	Hydrogen fluoride (불화수소, 불산)	HF	7664-39-3	확산, 습식식각, 증착(CVD, 금속), 세척, 연마	0.5	0.5	ppm	눈. 피부 자극 및 호흡기계 영향, 피부와 골격의 약화	-	-	2		0	4	0	1
54	Hydrogen peroxide (과산화수소)	H ₂ O ₂	7722-84-1	습식식각, wet cleaning	1	1	ppm	눈, 피부, 점막 및 호흡기 자극, 머리 탈색	2	2	-	불안정하고 폭발 위험성 있음(수용액 상태로 취급 필요)	0	3	0	2
55	Hydroxyl amine (히드록실아민)	NH ₂ OH	7803-49-8	포토 (PR제거)	-	-	-	눈, 피부, 호흡기계 자극	-	-	-	반응성 높은 물질	-	2	0	3
56	Isopropyl alcohol (IPA) (이소프로필알콜)	C ₃ H ₈ O	67-63-0	포토 (PR용제), 세척제 (PM작업등)	200	200	ppm	눈, 상기도자극, 중추신경계 손상	-	2	-		0	2	3	0

				용도	노출	출기준(0	EL)	유해성	발 암	생식	생식 세포	안정성	법적		NFPA	
번호	물질명	화학식	CAS	8포 (반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)	암 성	독성	변이 원성	(by-product)	측정 대상	보건	화재	반응
57	Methane (메탄)	CH ₄	74-82-8	건식식각	=	1,000	ppm	중추신경계 영향	-	-	-	인화성	-	1	4	0
58	1-Methoxy-2-propanol (PGME) (1-메톡시-2-프로판을 or 프로필렌글리콜모노메틸에테르)	C ₄ H ₁₀ O ₂	107-98-2	포토 (PR용제)	100	100	ppm	눈, 중추신경계 영향	-	-	-		-	0	3	0
59	1-Methoxy-2-propyl acetate (PGMEA) (1-메톡사-2·프로필아세테이트 or 프로필렌글리콜모노메틸에테르 아세테이트)	C ₆ H ₁₂ O ₃	108-65-6	포토 (PR용제)	-	-	-	호흡기계 자극, 중추신경계 영향	-	-	-		-	1	2	0
60	$2\text{-Methoxy-1-propanol}$ $(\beta\text{-PGME})$ (2-메톡시-1-프로판올)	C ₄ H ₁₀ O ₂	1589-47-5	포토 (PR용제)	-	-	-	피부 및 호흡기계 자극, 눈손상 잠재적 생식독성 (OSHA)	-	1B	-		-	1	3	0
61	2-Methoxy-1-propyl acetate (β-PGMEA) (2-메톡시-1-프로필아세테이트)	C ₆ H ₁₂ O ₃	70657- 70-4	포토 (PR용제)	-	-	-	호흡기계 자극, 잠재적 생식독성 (OSHA)	-	1A	-		-	1	2	0
62	Methyl-2-hydroxy isobutyrate (메틸-2-히드록시-이소부티레이트)	$C_5H_{10}O_3$	2110-78-3	포토 (PR용제)	-	-	-	눈, 피부, 호흡기계 자극	-	-	-		-	1	2	0
63	Methyl-3-methoxy propionate (MMP) (메틸-3-메톡시-프로피오네이트)	$C_5H_{10}O_3$	3852-09-3	포토 (PR용제)	-	-	-	자극	-	-	-		-	1	2	0
64	1-Methyl-2-pyrrolidinone(NMP) or N-Methyl-2-pyrrolidone (1-메탈-2-피롤리디논)	C ₅ H ₉ NO	872-50-4	포토 (PR제거, 현상액)	-	-	-	눈, 피부자극, 피부질환 (MAK 20 ppm)	-	-	-		-	2	2	0
65	Nitric acid (질산)	HNO ₃	7697-37-2	습식식각, 연마, wet cleaning	2	2	ppm	눈. 피부, 점막, 상기도 자극	-	-	-	가연성 물질 및 유기물 등과 쉽게 반응, 분해 생성물로는 질소산화물	0	4	0	2
66	Nitric oxide (Nitrogen monoxide) (일산화질소)	NO	10102- 43-9	확산	25	25	ppm	호흡기계 자극, 저산소증, 청색증	-	-	-		0	3	0	0
67	Nitrogen trifluoride (삼불화질소)	NF ₃	7783-54-2	확산, 건식식각, 증착(CVD, PVD)	10	10	ppm	산소전달 방해 (청색증), 간과 신장 손상, 무산소증, 혈액장해 등	-	-	-	HCl과 반응하여 HF, Cl ₂ 발생	-	1	0	0

ui-		-1-111	040	용도	노	출기준(0	EL)	유해성	발	생식	생식 세포	안정성	법적		NFPA	
번호	물질명	화학식	CAS	(반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)		독성	변이 원성	(by-product)	측정 대상	보건	화재	반응
68	Nitrous oxide (아산화질소)	N ₂ 0	10024- 97-2	확산, 증착 (CVD)	-	50	ppm	생식, 혈액, 신경 계통의 영향	-	1A	-		-	2	0	0
69	Novolak resin (노보락수지)	-	다양함	PR 수지	-	-	-	함께 사용되는 용매에 따라 차이 있음	-	-	-	UV에 의한 노광시 벤젠, 톨루엔, 페놀, 크레졸 등의 방향족 화합물 발생가능	-			
70	Octafluoro cyclobutane (옥타플루오로 사이클로부탄)	C_4F_8	115-25-3	건식식각 (CVD 및 PECVD 챔버 세척)	-	-	-	피부자극	-	-	-		-	1	0	0
71	Octafluoro cyclopentene (옥타플루오로 사이클로펜텐)	C_5F_8	559- 40-0	건식식각	-	-	-	피부, 눈의 자극	-	-	-		-	3	0	1
72	Octafluoro propane (옥타플루오로 프로판)	C_3F_8	76-19-7	건식식각, CVD	-	-	-		-	-	-		-	1	0	0
73	Ozone (오존)	03	10028- 15-6	건식식각, CVD	0.08	0.05~0.2 (작업에 따라)		눈, 호흡기계 자극, 중추신경계 영향, 5ppm이상의 노출시 폐수종, 장기 또는 반복 노출에 의한 폐손상	-	2	2	강력한 산화제	0	4	0	3
74	Phosphine (포스핀)	PH ₃	7803-51-2	확산,증착 (CVD), 이온주입	0.3	0.3	ppm	상기도 및 위의 자극, 두통, 중추신경계 손상	-	-	-	공기와 접촉시 폭발성의 혼합물을 형성하며 발화될 수 있음. 타게되면 호흡기계에 자극적인 phosphorus pentoxide가 발생	0	4	4	2
75	Phosphoric acid (인산)	H ₃ PO ₄	7664-38-2	습식식각	1	1	mg/m³	눈, 피부, 상기도자극	-	-	-		0	3	0	0
76	Phosphorus oxychloride (옥시염화인)	POCI ₃	10025- 87-3	확산	0.1	0.1	ppm	눈, 피부, 점막의 자극	-	-	-	물이나 알코올과 반응하여 분해 -HCI 생성	-	3	0	2
77	Polyethylene glycol (폴리에틸렌글리콜)	-	25322- 68-3	습식식각	-	-	-	자극	-	-	-		-	0	1	0
78	Polyhydroxy styrene derivatives (폴리히드록시 스티렌 유도체)	-	다양함	PR 수지	-	-	-	함께 사용되는 용매에 따라 차이 있음	-	-	-	UV에 의한 노광으로 분해 산물 발생 가능	-			

w.=	D 7 IN	=1=1.11	CAC	용도	노출	흥기준(0	EL)	유해성	발	생식	생식 세포	안정성	법적		NFPA	1
번호	물질명	화학식	CAS	(반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)	암 성	독성	변이 원성	(by-product)	측정 대상	보건	화재	반응
79	Polymethacrylate (폴리메타크릴레이트)	-	다양함	PR 수지	-	-	-	함께 사용되는 용매에 따라 차이 있음	-	-	-	UV에 의한노광으로 분해산물 발생기능	-			
80	Polysilazane (폴리실라잔)	-		CVD					-	-	-	silicon carbide or silicon nitride	-			
81	Potassium hydroxide (수산화 칼륨)	КОН	1310-58-3	BSG (연마)	C2	C2	mg/m³	눈, 피부, 상기도 자극	-	-	-		0	3	0	1
82	Propylene (프로필렌)	C_3H_6	115-07-1	CVD	-	500	ppm	코 점막의 변화	-	-	-	고온, 고압하에서 중합, 산화성 물질과 맹렬히 반응	-	1	4	1
83	Propylene glycol dimethylether (프로필렌글리콜 디메틸에테르)	C ₅ H ₁₂ O ₂	7778-85-0	포토 (PR용제)	-	-	-		-	-	-		-	1	3	0
84	Silane (실란)	SiH ₄	7803-62-5	확산, 중착(CVD)	5	5	ppm	눈, 피부, 점막 및 호흡기계 자극	-	-	-	공기중에서 자발적으로 발화되기 때문에 화재의 위험성이 매우 큼. H ₂ . HCI. SiO ₂ 등이 분해생성물로 발생	-	2	4	3
85	Silica amorphous (산화규소 비결정체)	SiO ₂	다양함	BSG (연마)	10	10	mg/m³		-	-	-		0			
86	Silicon tetrachloride (사염화실리콘)	SiCl ₄	10026- 04-7	CVD	-	-	-	눈, 호흡기계, 피부자극	-	-	-	물과 쉽게 반응하고 부산물로 HCI 발생	-	3	0	2
87	Sulfur hexafluoride (육불화황)	SF ₆	2551-62-4	건식식각, 이온주입	1,000	1,000	ppm	질식	-	-	-		-	1	0	0
88	Sulfuric acid (황산)	H ₂ SO ₄	7664-93-9	습식식각, wet cleaning	0.2	0.2	mg/m³	호흡기 질환이 있는 경우 폐기능 저하	1A*	-	-	부식성	0	3	0	2
* 강(산미스트에 한함.															
89	Tetraethyl orthosilicate (TEOS) (테트라에틸 오르토실리케이트)	$Si(OC_2H_5)$	₄ 78-10-4	CVD (SiO ₂ 박막형성)	-	-	-	피부, 호흡기 자극	-	-	-		-	2	3	1

ше	무지대	화학식	CAS	용도	노출	기준((DEL)	유해성	발	생식	생식 세포	안정성	법적		NFPA	
번호	물질명	와약식	LAS	(반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)	발 암 성	독성	변이 원성	(by-product)	측정 대상	보건	화재	반응
90	Tetrakis(dimethylamino) titanium (TDMAT)[테트라키스 (디메틸아미노) 티타늄]	C ₈ H ₂₄ N ₄ Ti	3275-24-9	PVD	-	-	-	부식성물질, 화상	-	-	-	물과 맹렬히 반응	-	3	3	2
91	Tetramethyl ammonium hydroxide (TMAH) (수산화테트라메틸암모늄)	C ₄ H ₁₃ NO	75-59-2	포토 (현상액)	-	-	-	피부화상, 호흡곤란	-	-	-	Tetramethyl ammonium 이온은 신경절을 차단, 호흡곤란 일으킴	-	4	1	0
92	Titanium tetrachloride (Tetrachloro titanium) (사염화티타늄)	TiCl ₄	7550-45-0	PVD	-	-	-	피부, 호흡기계 자극, 화상	-	-	-	물과 맹렬히 반응, 습기가 있는 공기와 반응하여 TiO2, HCI 생성	-	4	0	2
93	Triethyl borate (트리에틸보레이트)	C ₆ H ₁₅ BO ₃	150-46-9	CVD	-	-	-		-	-	-		-	2	4	0
94	Trifluoro methane (트리플루오로메탄)	CHF ₃	75-46-7	건식식각	-	-	-	중추신경계 영향, 부정맥, 질식, 동상(액체 접촉시)	-	-	-	뜨거운 표면과 접촉시 분해 (HF)	-	2	0	0
95	Trimethyl borate (트리메틸보레이트)	C ₃ H ₉ BO ₃	121-43-7	CVD	-	-	-	눈, 피부, 호흡기계 자극	-	-	-	물과 강산과 반응하여 분해, methanol, and boric acid 생성	-	2	3	1
96	Trimethyl phosphate (트리메틸 포스페이트)	$C_3H_9O_4P$	512-56-1	CVD	-	-	-	눈, 피부, 호흡기계자극, 신경계영향	-	2	2		-	1	1	3
97	Tungsten hexafluoride (육불화 텅스텐)	WF_6	7783-82-6	CVD	5	5	mg/m³	호흡기계 영향, 피부 독성, 화상	-	-	-	물과 반응하여 분해	0	3	0	2
98	Xylene (크실렌)	C ₈ H ₁₀	1330-20-7	포토 (PR용제)	100	100	ppm	자극, 중추신경계 영향	-	1B	-		0	2	3	0

칩 조립라인에서 노출 가능한 화학물질

				용도	노출	출기준(OEI	_)	유해성	발	생신	생식 세포	안정성	법적		NFPA	
번호	물질명	화학식	CAS	(반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)	발 암 성	생식 독성	변이	(by- product)	측정 대상	보건	화재	반응
1	Acetaldehyde (아세트알데히드)	CH ₃ CHO	75-07-0	몰드공정 등	50	C25	ppm	눈및상기도자극	2	-	2		0	2	4	2
2	Acetone (아세톤)	CH ₃ COCH ₃	67-64-1	칩 접착, 몰드, 인쇄공정 등	500	500	ppm	눈 및 상기도 자극, 중추신경계 영향	-	2	-		0	1	3	0
3	Antimony trioxide (삼산화안티몬)	Sb ₂ O ₃	1309-64-4	몰드공정	0.5	0.5	mg/m³	피부 및 상기도자극	2	1B	-		0	2	0	0
4	Benzene (벤젠)	C_6H_6	71-43-2	몰드공정 등	1	0.5	ppm	백혈병	1A	2	1B		0	2	3	0
5	2-Butoxyethanol (EGBE) (2-부톡시에탄올)	$C_6H_{14}O_2$	111-76-2	칩 조립라인 전반	20	20	ppm	눈및상기도자극	2	2	-		0	3	2	0
6	n-Butyl acetate (n-초산부틸)	$C_6H_{12}O_2$	123-86-4	테스트 공정 등	150	150	ppm	눈 및 상기도 자극	-	-	-		0	2	3	0
7	Carbon Black (카본블랙)	С	1333-86-4	칩 접착, 몰드공정	3.5	3	mg/m³	기관지염	2	-	-		0	1	1	0
8	Cellulose (셀룰로오스)	-	9004-34-6	몰드공정	10	10	mg/m³	상기도지극	-	-	-		-	1	1	0
9	Copper(Cu) (구리)	Cu	7440-50-8	솔더볼부착 공정	1	1	mg/m³	눈, 피부, 점막, 호흡기계 자극, 위장장해	-	-	-		0	2	3	0
10	Cresol (크레졸)	C ₇ H ₈ O	1319-77-3, 95-48-7, 108-39-4, 106-44-5	몰드공정	5(22)	(20)	ppm (mg/ m³)	상기도 자극	-	-	-		0	3	2	0
11	Crystalline silica(Quartz) (산화규소결정체, 석영)	SiO ₂	14808- 60-7	칩 접착, 몰드공정	0.05 (호흡성)	0.025 (호흡성)	mg/m³	폐섬유화, 폐암	1A	-	-		0	1	0	0

		-1-111	0.10	용도	노출	흥기준(OEL	.)	유해성	발	생식	생식 세포	안정성	법적		NFPA	
번호	물질명	화학식	CAS	(반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)		생식 독성	 변이 원성	(by-product)	측정 대상	보건	화재	반응
12	Crystalline silica(Cristobalite) (산화규소결정체, 크리스토바라이트)	SiO ₂	14464- 46-1	칩 접착, 몰드공정	0.05 (호흡성)	0.025 (호흡성)	mg/m³	폐섬유화, 폐암	1A	-	-		0	1	0	1
13	Cyclohexanone (사이클로헥사논)	C ₆ H ₁₀ O	108-94-1	몰드, 솔더볼부착, 인쇄공정	20	20	ppm	눈, 코, 목의 자극, 중추신경계 영향, 간과 신장에 영향	2	2	2		0	1	2	0
14	N,N-Dimethyl formamide (DMF) (N,N-디메틸 포름아미드)	HCON(CH ₃) ₂	68-12-2	몰드공정등	10	10	ppm	상기도 및 눈 자극, 두통	-	1B	2		0	2	2	0
15	EMC (에폭시몰딩컴파운드)			몰드공정					-	-	-	벤젠, 포름 알데히드 등 휘발성 유기화합물	*			
* 물	질 자체는 측정대상은	아니지만 공정	중에서 벤	젠 등 부산물이	발생하는	경우는 측	정대상									
16	Epoxy resin (에폭시수지)	-	29690- 82-2	칩 접착, 몰드공정	-	-	-		-	-	-	고온 가열시 휘발성유기 화합물 등 발생가능	-	1	1	0
17	Ethanol (에탄올)	CH₃CH₂OH	64-17-5	조립라인 전반 (세척제)	1,000	1,000 (STEL)	ppm	눈, 호흡기 영향	1A*	1A*	1B*		-	2	3	0
* 음	주에 한함.															
18	Ethanolamine (에탄올아민)	C_2H_7NO	141-43-5	몰드공정	3	3	ppm	눈및피부지극	-	2	-		0	3	2	0
19	2-(2-Ethoxyethoxy) ethanol (DEGEE, Carbitol) (2-(2-에톡시에톡시) 에탄올)	$C_6H_{14}O_3$	111-90-0	몰드공정	-	-	-	눈, 피부자극	-	-	2		-	1	1	0
20	2-(2-Ethoxyethoxy) ethyl acetate (DEGEEA, Carbitol acetate) (2-(2-에톡시에톡시) 에틸아세테이트)	C ₈ H ₁₆ O ₄	112-15-2	칩 접착, 몰드공정	-	-	-	자극	-	-	-		-	0	1	0

		-1-111	240	용도	노	출기준(OEL	_)	유해성	발 암	생식	생식 세포	안정성	법적		NFPA	
번호	물질명	화학식	CAS	- (반도체 공정)	우리 나라	ACGIH	단위	(TLV근거)	암 성	독성	변이 원성	(by-product)	측정 대상	보건	화재	반응
21	Ethyl acetate (초산에틸)	CH ₃ COOC ₂ H ₅	141-78-6	칩 접착, 몰드, 솔더볼부착 공정 등	400	400	ppm	눈, 상기도 자극	-	-	-		0	1	3	0
22	Ethyl benzene (에틸벤젠)	C_8H_{10}	100-41-4	몰드공정등	100	100	ppm	눈, 상기도자극, 중추신경계 영향	2	1B	-		0	2	3	0
23	Ethylene oxide (산화에틸렌)	C ₂ H ₄ O	75-21-8	웨이퍼 절단 솔더볼부착 공정 등	1	1	ppm	종양 발생 및 폐, 간, 신장, 내분비계, 조혈 성분, 중추신경계 영향	1A	1B	1B		0	3	4	3
24	Formaldehyde (포름알데히드)	НСНО	50-00-0	몰드공정 등	0.5	C0.3	ppm	상기도 및 눈 자극	-	-	-		0	3	4	0
25	Glycerol (글리세롤 or 글리세린)	$C_3H_8O_3$	56-81-5	솔더볼부착 공정	10	10	mg/m³	눈, 피부자극	-	-	-		-	1	1	0
26	n-Hexane (n-헥산)	C_6H_{14}	110-54-3	몰드공정 등	50	50	ppm	중추신경계 영향, 말초신경장애, 눈자극	-	2	-		0	2	3	0
27	Heptane (헵탄)	C ₇ H ₁₆	142-82-5	몰드공정 등	400	400	ppm	중추신경계 영향, 상기도자극	-	-	-		0	2	3	0
28	Hydrogen peroxide (과산화수소)	$H_{2}O_{2}$	7722-84-1	도금공정	1	1	ppm	눈, 피부, 점막 및 호흡기자극, 머리 탈색	2	2	-	불안정하고 폭발위험성있음 (수용액 상태로 취급필요)	0	2	0	3
29	Isopropyl alcohol (IPA) (이소프로필알콜)	C_3H_8O	67-63-0	유지보수, 세정 등	200	200	ppm	눈, 상기도자극, 중추신경계 영향	-	2	-		0	2	3	0
30	Melamine resin (멜라민수지)	-	9003-08-01	몰드공정	-	-	-		-	-	-	고온 가열시 휘발성 유기 화합물 등 발생 가능	-	1	1	0
31	Methanesulfonic acid (메탄설폰산)	CH ₄ O ₃ S	75-75-2	도금공정	-	-	-	피부 자극 · 부식, 눈 자극 · 손상	-	-	-		-	3	1	0

번호 물질명 화학식 CAS 용도 (반도체공정) 노출기준(OEL) 유해성 (TLV근거) 발 암 성 본성 생식 세포 보인 원성 안정성 변인 원성 32 Methanol (메탄올) CH₃OH 67-56-1 도금공정 200 200 ppm 두통, 눈손상, 생식독성 - 1B - 33 Methyl isobutyl ketone (MIBK) (메틸이소부틸케론) Celegate High (MIBK) (메틸이소부틸케론) 1-Methyl-2-pyrrolidinone 50 20 ppm 상기도자극, 어지러움, 두통 -	o 0 -	보건 1 1	3 3 2	1 0 0
32 (메탄을) CH ₃ OH 67-56-1 도금공정 200 200 ppm 생식독성 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1	0	1	3	0
33 ketone (MIBK) C ₆ H ₁₂ O 108-10-1 몰드공정등 50 20 ppm 상기도자극, 어지러움, 두통				
pyrrolidinone or N-Methyl-2- 눈, 피부 자극, 34 pyrolidag C _s H _g NO 872-50-4 몰드공정 피부질환	-	2	2	0
(1-메틸-2- 피롤리디논)				
1-Methoxy-2-propyl-acetate (PGMEA) 호흡기계 자극, 호흡기계 자극, 호흡기계 자극, 35 아세테이트, or CgH ₁₂ Og 108-65-6 몰드공정 중추신경계 공추신경계 모모메클리콜 영향 모노메틸에테르 아세테이트)	-	1	2	0
36 Mold Cleaner 모름알데히 (금형세정제) 모드공정 - 포름알데히 회발성 유기화				
* 물질 자체는 측정대상은 아니지만 공정 중에서 포름알데히드 등 부산물이 발생하는 경우는 측정대상				
가연성 물질 37 Nitric acid HNO3 7697-37-2 도금공정 2 2 ppm 는, 피부, 점막, 쉽게 반응 문해생성물로 질소산화된	과 , 0 ⊒는	4	0	2
상기도 자극. 38 (페놀) C _g H _g OH 108-95-2 몰드공정 등 5 5 ppm 폐손상 - 1B 2 중추신경계 영향	0	3	2	0
고온 가열 39 Phenolic resin 3003-35-4 집접착, - 눈, 피부, 회발성 유. (페놀수지) · 9003-35-4 몰드공정 · 호흡기계자극 · 화합물 등 발생 가능	' 	2	1	0
지부 지국 · 고온에서 40 Piperazine C ₄ H ₁₀ N ₂ 110-85-0 후면연마공정 · · · 부식, · · · 분해되어 눈자극·손상 독성가스 빌	-	3	2	0

ш	물질명	-1		용도 (반도체 공정)	노출기준(OEL)			유해성	발 암	생식	생식 세포		법적	NFPA		
번호		화학식	CAS		우리 나라	ACGIH	단위	(TLV근거)		독성	 변이 원성	(by-product)	측정 대상	보건	화자	반응
41	Polyethylene glycol (폴리에틸렌글리콜)	-	25322- 68-3	웨이퍼 절단공정	-	-	-	MAK: 1000 mg/m³	-	-	-		-	0	1	0
42	Polyethylene- polypropylene glycol (폴리에틸렌- 폴리프로필렌 글리콜)		9003-11- 06	웨이퍼 절단공정	-	-	-		-	-	-		-	0	1	0
43	Potassium hydroxide (수산화칼륨)	КОН	1310-58-3	도금공정	C2	C2	mg/m³	피부 자극 · 부식, 눈 자극 · 손상	-	-	-		0	3	0	1
44	Solvent naphtha (솔벤트나프타)	-	64742-94-5	잉크마킹	함: 성분에 다 (MSDS	따라 름		함유 성분에따라 다름 (MSDS 참조)	-	-	-		0	1	2	0
45	Sulfuric acid (황산)	H ₂ SO ₄	7664-93-9	도금공정	0.2	0.2	mg/m³	호흡기 질환이 있는 경우 폐기능 저하	1A*	-	-	부식성	0	3	0	2
* 강	산미스트에 한함.															
46	Tetrachloroethylene (테트라클로로 에틸렌)	CCl ₂ CCl ₂	127-18-4	칩 접착, 몰드, 테스트 공정 등	25	25	ppm	중추신경계 영향	1B	2	-		0	2	0	0
47	Tetrahydrofuran (테트라하이드로 퓨란)	C ₄ H ₈ O	109-99-9	후면연마, 솔더볼부착, 몰드공정 등	50	50	ppm	상기도자극, 중추신경계 영향 신장장해	2	-	-		0	2	3	1
48	Tetramethyl ammonium hydroxide(TMAH) (수산화테트라 메틸암모늄)	C ₄ H ₁₃ NO	75-59-2	후면연마공정	-	-	-	피부화상, 호흡곤란	-	-	-	Tetramethyl ammonium 이온은 신경절을 차단, 호흡곤란 일으킴	-	4	1	0
49	Tin(II) methanesulfonate (주석메탄설 포네이트)	C₂H₅O₅S₂ Sn	53408-94-9	도금공정	-	2	mg/m³	화상, 감작	-	-	-		0	1	1	0
50	Tin(Sn) (주석)	Sn	7440-31-5	솔더볼부착 공정	2	2	mg/m³	주석증, 진폐	-	-	-		0	1	3	0

번호	물질명	화학식	CAS	용도 (반도체 공정)	노출기준(OEL)			유해성	발	생식	생식 세포	안정성	법적			
					우리 나라	ACGIH	단위	(TLV근거)	발 암 성	독성	변이 원성	(by-product)	측정 대상	보건	화재	반응
51	Toluene (톨루엔)	$C_6H_5CH_3$	108-88-3	몰드공정 등	50	20	ppm	눈 손상, 생식기계 영향, 자연유산	-	2	-		0	2	3	0
52	Trichloroethylene (트리클로로 에틸렌)	CCI ₂ CHCI	79-01-6	칩접착 몰드공정 등	50	10	ppm	중추신경계 영향, 신장독성, 인식저하	1B	1B	2		0	2	1	0
53	Xylene (크실렌)	C ₈ H ₁₀	1330-20-7	몰드공정 등	100	100	ppm	자극, 중추신경계 영향	-	1B	-		0	2	3	0