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Abstract 
 
Artificial intelligence is currently being applied across a wide 
range of fields, from self-driving car technology to art and 
music generation. This paper explores different ways in which 
the built environment can be enhanced through artificial 
intelligence, from seismic assessment to construction 
verification and infrastructure health monitoring. A variety of 
computer vision approaches have been used for these 
purposes, including novel combinations of established 
machine learning, optical character recognition and geometric 
methods. 
 
This paper presents results from a machine learning model that 
was trained to identify and categorize post-earthquake building 
damage from photographs. Using this tool, photos could be 
directly uploaded to an earthquake database to identify and 
catalog building damage in real time, rather than manually 
cataloging the photos in the weeks and months following the 
event. Eventually, this tool could allow individuals to obtain 
an immediate initial assessment of the condition of their 
building following an earthquake, rather than waiting weeks or 
months for an in-person inspection. A machine learning model 
that was trained to identify the early formation of hinges in 
timbrel vaults subjected to lateral loads is also presented. 
 
To help automate the construction verification process, 
machine learning models were trained to identify structural 
components from site photos and “read” shop drawings. These 
tools could be used to support construction inspection efforts 
and to reduce shop drawing review times from several days to 
a matter of hours, with an engineer reviewing a summary 
output from a machine learning program. A case study is also 

presented in which machine learning was used to monitor 
building health by identifying and measuring check formation 
and growth in glulam girders from a project under construction 
in California. Finally, this paper will discuss future 
applications of machine learning to enhance structural design. 
 
Introduction 
 
The concept of artificial intelligence (AI) has existed for 
decades, but the world is only now on the verge of an AI 
revolution due to the following factors: (1) access to large 
amounts of digital data and (2) access to powerful and 
affordable cloud computing power. 
 
In parallel, the need for a technology revolution in the 
architecture, engineering and construction (AEC) industry is 
imminent. The current world population of 7.6 billion is 
expected to reach 8.6 billion in 2030 (United Nations, 2017). 
Infrastructure demands will increase drastically and projects 
will need to be delivered more quickly to meet this rapid 
population growth. Design and construction processes need to 
be made exponentially more efficient and sustainable in order 
to meet these demands in a responsible manner. 
 
There are many opportunities to enhance the built environment 
through artificial intelligence. Incorporating AI into 
construction verification and infrastructure health monitoring 
could improve quality control and decrease construction time. 
AI-enabled infrastructure health monitoring tools could be 
used to improve maintenance and safety practices by 
evaluating the deterioration of both non-structural 
components, such as exterior walls, and structural components. 
Photo recognition-based systems can be applied to 
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continuously evaluate and monitor bridges and highlight 
potential maintenance and safety issues in advance. AI damage 
assessment tools could make recovery and rebuilding efforts 
more efficient by rapidly and automatically evaluating 
structural integrity following major natural or man-made 
events. In addition to practical applications, AI can also be 
incorporated into current design processes to optimize for 
multiple parameters and develop new design options that may 
not have been thought of otherwise. 
 
In light of these opportunities and the impending global 
transformations described above, Skidmore, Owings and 
Merrill (SOM) and software developer Anthony Sarkis have 
been experimenting with applying a variety of computer vision 
approaches to monitor and evaluate the built environment. 
This paper presents results from (1) construction verification 
proof-of-concept studies, (2) a health monitoring case study 
for checking in glulam girders, (3) post-earthquake building 
damage assessment and (4) hinge detection and collapse 
identification in timbrel vaults subjected to lateral loads. 
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1. Construction Verification 
 
To advance efforts in applying machine learning to the 
construction industry, SOM and software developer Anthony 
Sarkis performed several proof-of-concept studies utilizing 
photo recognition for construction verification. The intention 
of these studies was to provide an initial viability assessment 
of these applications with minimal data gathering, annotation 
and computational effort. Therefore, small datasets on the 
order of tens of images were used to train the models. 
 
All models were trained using the Tensorflow library (Abadi, 
et al., 2016). Depending on the element in question, two 
different photo recognition techniques were employed: (1) 
object detection and (2) semantic segmentation. In object 
detection, a bounding box is drawn around each class 
identified in the image. In sematic segmentation, every pixel 
in the image is associated with a class. 
 
A machine learning model was first trained to recognize rebar 
from site photos using object detection based on Faster RCNN 
(Ren, et al., 2015) and Resnet-101 (He, et al., 2016). The 
model was initialized with the pretrained weights from the MS 
COCO dataset. However, as shown in Figure 1 below, the 
density of rebar is typically such that multiple, overlapping 
bounding box regions are identified in the photo, rendering the 
photo recognition results meaningless. 
 

 
 
Figure 1: Rebar identification through object 
detection. 
 

To increase precision in the photo recognition results, a second 
machine learning model was trained using semantic 
segmentation. Two different algorithms were used: (1) an 
approach based on VGG 16 with skip connections and (2) 
DeepLabV2 (Chen, et al., 2016) with ResNet101. As shown in 
both Figure 2 and Figure 3, the second algorithm achieved 
significantly better results than the first in terms of detecting 
the exact region of the main reinforcing bars shown in the 
foreground of the images. 
 

  
 
Figure 2: Rebar identification through semantic 
segmentation using VGG 16. 

  
 
Figure 3: Rebar identification through semantic 
segmentation using DeepLabV2. 
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The semantic segmentation technique can be combined with 
classical computer vision techniques to differentiate between 
different types of rebar, such as vertical bars, horizontal bars, 
ties and stirrups. Combining these techniques with geometric 
methods, the size and spacing of the rebar can also be 
estimated. 
 
A second machine learning model was trained to identify 
gusset plates from photographs using object detection. The 
model was able to identify gusset plates with a high degree of 
confidence from photographs taken at various angles. For 
example, in Figure 4 the model detected not only the two 
gusset plates in the foreground facing the camera, but also the 
gusset plate in the background at an angle to the camera. This 
success of this model may be due to the unique shape of gusset 
plates, which makes them clearly distinguishable from other 
elements on a construction site. 
 

 
 
Figure 4: Identification of gusset plates from site 
photos using object detection. 

In order to compare objects identified from site photos to the 
construction documents, a machine learning model was also 
trained to identify gusset plates from shop drawings. Figure 5 
shows a gusset plate being detected both from a site photo and 
a shop drawing using object detection. The machine learning 
model was able to identify gusset plates in shop drawings to a 
high degree of confidence. This performance is likely due to 
both the distinguishable shape of gusset plates and the 
consistency and precision of steel shop drawings. 
 

 
 
Figure 5: Identification of a gusset plate from both a 
site photo and shop drawings (blue outline added 
manually to highlight the steel shapes). 

Methods to extract useful information from shop drawings 
were further explored using machine learning. Since a large 
portion of the information provided in shop drawings is in 
textual form, some shop drawings were processed through 
Google’s Cloud Vision API optical character recognition 
platform (Google, 2018). As shown in Figure 6, the text was 
successfully extracted from the drawing, however the 
different text blocks are meaningless without any indication 
of the drawing element to which they refer. 
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Figure 6: A shop drawing processed through 
Google’s Cloud Vision API (Google, 2018). 

To provide better context to the extracted text blocks, object 
detection can first be applied to the shop drawing to divide it 
into components and sub-components. Figure 7 shows the 
results of a machine learning model that was trained to 
recognize the different component views shown in steel beam 
shop drawings. 
 

 
 
Figure 7: Different component views identified in a 
steel beam shop drawing using object detection. 

In Figure 8, a machine learning model was trained to 
recognize subcomponents for each element, such as 
dimension ticks, weld symbols and bolt groupings. By 
subdividing shop drawings into manageable components and 
subcomponents through object detection and using optical 
character recognition to extract their associated text blocks, 
machine learning models can be trained to “read” shop 
drawings. 
 

 
 
Figure 8: Different subcomponents identified in a 
shop drawing using object detection. 

 
Using object detection, another machine learning model was 
trained to recognize shear studs from site photos. Because 
shear studs are small and are typically counted over a large 
area, a digital single-lens reflex (DSLR) camera was used to 
take high-resolution photographs of large areas containing 
shear studs. However, machine learning models are very 
limited in terms of resolution. It is computationally 
intractable to feed a full DSLR image into a typical machine 
learning model on today’s hardware. To get around this 
limitation, the images were divided into nine sub images and 
then each sub-image was processed independently. 
Afterwards, the photos were recombined. This allowed the 
onsite user to take a single photograph, while enabling the 
system to process the images at an effective resolution. A 
sample of a processed sub-image is shown in Figure 9 below. 
 

 
 
Figure 9: Shear studs identified from a sub-image. 
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A sample of a recombined photo is shown in Figure 10 
below. Although some studs in far corners of the photo were 
not identified, the lack of false positives in these results 
indicate that a larger training set could produce a more robust 
model. 
 

 
 
Figure 10: Shear stud object detection results 
shown in a recombined photo. 
 
In another application, a machine learning model was trained 
to recognize bolts from site photos. Figure 11 illustrates that 
not all the bolts were successfully identified, potentially due 
to the angle and lighting conditions of the photo. However, 
no false positives were identified in the photo. Therefore, a 
larger and more varied training set could lead to improved 
results. Issues with identifying bolts in perspective could also 
be controlled by limiting the machine learning model to head-
on photos of bolt groups. 
 

 
 
Figure 11: Bolts identified from a site photo using 
object detection. 

Tests were also performed to detect welds using semantic 
segmentation, as shown in Figure 12 below. However, 
because welds by nature blend into the adjacent steel 
members, they are not easily visible in photographs and are 
therefore difficult to detect through photo recognition.  
 

 
 
Figure 12: Weld detection using semantic 
segmentation. 
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2. Health Monitoring Case Study: Checking in 
Glulam Girders 
 
In a project under construction in Southern California, 
significant separations were noted in certain glulam girders a 
few weeks after they were installed. An example of these 
separations is shown in Figure 13 below, with the green tape 
indicating the locations of some notable separations. An 
investigation deduced that these separations were partly due 
to abnormal fabrication methods and party due to major 
temperature and humidity differences between the fabrication 
environment and the site environment in which they were 
installed. The glulam girders with significant separations 
were removed and replaced with new glulam girders. 
 

 
 
Figure 13: Significant separations noted in glulam 
girders in a project under construction in Southern 
California. 
 
Prior to their replacement, SOM and Sarkis took several 
images of these girders and used them in a proof-of-concept 
study to train a machine learning model to recognize the 
separations in the images using object detection. The object 

detection technique was then combined with classical 
computer vision to determine the dimensions of the 
separations. The measurements were calibrated based on the 
depth of the glulam laminations. An example of these results 
is shown in Figure 14 below.  
 

 
 
Figure 14: Separation identification and dimension 
measurement in a glulam girder using object 
detection and classical computer vision methods.  
  
Due to the success of the proof-of-concept study, SOM and 
Sarkis were commissioned to devise a Glulam Monitoring 
System (GMS) to monitor a few glulam girders at select 
locations for check formation and growth. 
 
SOM selected four locations at which to monitor glulam 
girders; two exhibiting some checking and two at critical 
locations, but not exhibiting checking at the time the 
locations were selected. Each location will be monitored with 
a DSLR camera, which will be programmed to take a picture 
once per day using a timed remote shutter release. These 
locations will be monitored for one year after building 
systems commissioning, which is approximately how long 
will take for the wood members to become acclimatized to 
the new environment. 
 
The images can be uploaded to a platform being developed 
by Sarkis to analyze the images and obtain results regarding 
the number and size of the checks identified in the images. A 
screenshot showing a preview of this platform is presented in 
Figure 15. 
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Figure 15: Screenshot showing a preview of the 
GMS platform for glulam check identification and 
measurement for images. 
 
SOM designed a custom camera box system in which to 
house the cameras and auxiliary equipment, while being 
seamlessly integrated into the building surroundings. These 
boxes are shown in Figure 16. The boxes were fabricated out 
of plywood. They were designed to fit between and be 
secured to parallel joists. An adjustable base was designed to 
tweak the camera angle for each location being monitored. A 
hole was cut in the front of the box to provide the camera lens 
with an unobstructed view of the girder being monitored. 
 

 
 
Figure 16: GMS camera box sketches. 
 
The camera boxes are first being installed at various locations 
throughout the site to gather approximately 1000 images of 
checking in glulam girders to be used in the initial training 
set. Images will be taken once per hour at each location to 
obtain images with various lighting conditions. Figure 17 and 
Figure 18 on the following page show photos of camera 
boxes installed at the temporary locations. 
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Figure 17: Camera boxes being installed at their 
temporary locations. 
 

 
 
Figure 18: Close-up view of one of the camera 
boxes installed at a temporary location. 

Figure 19 below shows examples of the training set images 
that are being gathered to train the machine learning model 
for check identification using object detection. 
 

  

 
 
Figure 19: Examples of training set images for 
check detection. 
 
Once the machine learning model has been trained and tested, 
the camera boxes will be installed at their final locations. 
WiFi-enabled SD cards will be used to obtain the images 
remotely from the cameras. If needed, an external battery 
source will be connected to the camera to keep it powered 
without the need for human intervention once the building is 
open to the public. 
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3. Post-Earthquake Building Damage Identification 
 
One of the greatest economical losses associated with 
earthquake events is due to downtime from repair and 
rebuilding. Home and business owners of damaged buildings 
can wait months for an inspection to be completed by an 
expert. In some cases, they cannot occupy their home or 
operate their business until this inspection is complete. Photo 
recognition technology can be employed to expedite this 
evaluation process and mitigate this lost time. A 
comprehensive and vetted machine learning-based application 
could provide users with immediate feedback regarding the 
level of damage of their building, whether or not it can be 
occupied and whether or not it requires major repairs. 
 
In addition, in the aftermath of a major earthquake, local and 
international reconnaissance teams upload hundreds of images 
to various databases, not all of which can be rapidly evaluated 
by experts. Integrating machine learning into these databases 
could make the photo cataloguing process not only more 
uniform and efficient, but also more comprehensive. 
 
Following the 7.1 magnitude Central Mexico earthquake on 
Tuesday, September 19th, 2017, SOM sent a team of engineers 
to Mexico City to contribute to post-disaster recovery efforts 
by documenting building damage and providing technical 
support to local structural reconnaissance efforts. The 
preliminary observations from this reconnaissance mission are 
documented in Diaz et al. (2017). 
 
The SOM team uploaded their in-field photos to the 
Earthquake Engineering Research Institute (EERI) Virtual 
Clearinghouse. The different locations these photos were taken 
are shown in the map in Figure 20. 
 

 
 
Figure 20: Enlarged map showing the location of 
data uploaded by the SOM reconnaissance team to 
the EERI Virtual Clearinghouse (EERI, 2017). 

In an effort to enhance post-earthquake reconnaissance 
capabilities, SOM and Sarkis performed tests using machine 
learning to identify and classify building damage from the 
photos taken by the SOM reconnaissance team. Some results 
from these tests are shown in Figure 21 below. 
 

  

  

 
 
Figure 21: Examples of building damage 
identification and classification using machine 
learning. 



 
2018 SEAOC CONVENTION PROCEEDINGS 
 
 

 

 

 11 

  
 (a) (b) 
 
Figure 22: Comparison of results from training set images from machine learning models trained using (a) 3,000 
iterations and (b) 10,000 iterations. 
 
An object-detection based machine learning model was trained 
using approximately 40 annotated images in the training set. 
The model was trained to differentiate between the following 
eight classes: (1) nonstructural light damage, (2) nonstructural 
medium damage, (3) nonstructural heavy damage, (4) 
nonstructural severe damage, (5) structural light damage, (6) 
structural medium damage, (7) structural heavy damage and 
(8) structural severe damage. The model was based on a Faster 
RCNN (Ren, et al., 2015) approach using Resnet-101 (He, et 
al., 2016). It was initialized with the pretrained weights from 
the MS COCO dataset. 
 
One model was trained using 3,000 iterations, while the other 
was trained using 10,000 iterations. Figure 22 shows a 
comparison of the results from the two models using the same 
training image. The model trained to 10,000 iterations most 
likely overfit the data. This means that it very accurately 
represents the training data, at the expense of being as useful 
to novel data. Using a similar method with a training set of at 
least 1000 images may yield a model that generalizes well to 
new data.  
 

While the training set used for these initial proof of concept 
studies was relatively small, the promising results demonstrate 
the potential to train a robust machine learning model using a 
larger training set. 
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Figure 23: Training set images showing detection of progressive hinge formation and arch collapse. 
 
4. Timbrel Vault Hinge Detection and Collapse 
Identification 
 
In 2017, SOM was invited to participate in an annual timbrel 
vault workshop in Madrid, Spain organized by architect Julio 
Jesus Palomino Anguí and hosted by the University of Alcalá. 
SOM was asked to provide insight on the seismic behavior of 
masonry arches and on methods to enhance their resistance to 
seismic loading. A reinforcement system using fiber grid 
material was studied through numerical analysis and tested on 
a shake table at the workshop. The fiber grid reinforcement 
proved to significantly improve the lateral load resistance of 
masonry arches. The findings of the 2017 workshop are 
detailed in Sarkisian et al. (2018). 
 
SOM and Sarkis performed tests using a few images from the 
2017 workshop footage to train a machine learning model to 
detect hinge formation in masonry arches subjected to lateral 
loading on a shake table. The training set results are shown in 
Figure 23 and Figure 24. 
 

 
 
Figure 24: Training set image showing hinge 
detection in a ribbed arch. 
 
During the 2018 workshop, three iPhones were installed 
around the shake table to capture slow-motion videos of the 
shake table tests.  The objective of capturing this footage was 
to train a robust model for live hinge detection at the 2019 
timbrel vault workshop. Two iPhones were positioned on 
either side of the arches and one was hung from above the 
arches. This camera placement was selected to eliminate 
potential object detection complications associated with 
images in perspective and to provide a clear, unobstructed 
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view of each arch by capturing head-on shots of the arches 
from the side and top views. Slow-motion videos recorded at 
240 frames-per-second were used to gather more data for the 
training set and to capture the moment of hinge formation 
more precisely. In total, over 3,000 images, including footage 
from the 2017 and 2018 workshops, were collected. Only a 
small portion were annotated and used as a training set for 
this study. 
 
The machine learning model was able to detect partial and 
full arch collapse from the side view photos, however it had 
difficulty identifying the hinges in this view to a confidence 
greater than 50 percent. In Figure 25, partial collapse of the 
arch in the foreground is correctly identified to a confidence 
of 96 percent, however a confidence of greater than 50 
percent was not achieved for the visible hinge in the same 
arch. In Figure 26, full collapse of the arch in the foreground 
is correctly identified to a confidence of 99 percent, however 
a confidence of greater than 50 percent was not achieved for 
the visible hinges in the arch in the background. 
 

 
 
Figure 25: Side view of arch showing partial collapse 
detection.  A confidence greater than 50 percent was 
not achieved for the visible hinge. 
 

 
 
Figure 26: Side view of arch showing full collapse 
detection.  A confidence greater than 50 percent was 
not achieved for the visible hinges in the arch in the 
background. 

The machine learning model was able to detect middle hinges 
in the top view photos, however it had difficulty identifying 
hinges on the side of the arches to a confidence greater than 
50 percent. In Figure 27 and Figure 28, the middle hinge is 
correctly identified in the leftmost arch, however there also 
appears to be a hinge in the same arch at the top left of the 
photo which is not identified in either photo. In Figure 28, 
collapse is also detected in the leftmost arch. Although it is 
hard to confirm this behavior from the photo, the presence of 
two hinges corroborates the collapse assessment.  
 

 
 
Figure 27: Top view of arches showing middle hinge 
detection. 
 

 
 
Figure 28: Top view of arches showing middle hinge 
and collapse detection. 
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Since different views were found to be better for detecting 
different classes, a machine learning model can be trained 
using photos shot from various angles to build a more robust 
system for real-time hinge and collapse detection during next 
year’s workshop. Footage shot by other workshop 
participants can be included in the training set to increase the 
quantity and variability of the data. 
 
Conclusion and Future Work 
 
Different methods of incorporating AI into the AEC industry 
were presented in this paper, from construction verification, 
to infrastructure health monitoring, to building damage and 
structural performance assessment. While these studies are 
helpful in demonstrating the possibilities of applying AI to 
enhance the built environment, there is significant room to 
further develop these models and make them more robust by 
increasing the quantity and variety of the images used in the 
training set. In addition, AI is a rapidly evolving industry. 
Different computer vision techniques and more efficient deep 
learning algorithms are constantly being developed and can 
be incorporated into these systems as well. 
 
SOM is also investigating applying AI to expand their 
Environmental Analysis Tool™ (EA Tool™). SOM’s EA 
Tool™ estimates the carbon footprint of a building taking 
into consideration initial construction, service life, repair after 
hazardous events and deconstruction. Applying machine 
learning to past project data, the tool could be expanded to 
reliably predict parameters such as material quantities, 
schedule, cost and carbon footprint depending on a few key 
inputs such as building location, use, number of stories and 
structural system. For new projects, the tool could also 
suggest structural systems to optimize certain parameters, 
such as material quantities and carbon footprint. This data 
could also be combined with a photo recognition system such 
that taking a photograph of a building would provide the user 
with an estimation of the structural system, material 
quantities, construction time and carbon footprint. 
 
SOM is also studying potential applications of AI in design. 
Using data from SOM’s WT 260 wind tunnel in Chicago, 
SOM is training a machine learning model to recognize how 
different tall building shapes impact wind effects. Once tested 
and vetted, this tool could help designers quickly evaluate 
numerous massing options before testing a select few in the 
wind tunnel. The tool could also be used to propose new 
massing options and be combined with other models to 
optimize shapes for multiple parameters such as wind effects, 
solar energy and material quantities. 
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