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Abstract

We propose a novel multimodal video benchmark – the Perception Test – to
evaluate the perception and reasoning skills of pre-trained multimodal models
(e.g. Flamingo, BEiT-3, or GPT-4). Compared to existing benchmarks that focus
on computational tasks (e.g. classification, detection or tracking), the Perception
Test focuses on skills (Memory, Abstraction, Physics, Semantics) and types of
reasoning (descriptive, explanatory, predictive, counterfactual) across video, audio,
and text modalities, to provide a comprehensive and efficient evaluation tool. The
benchmark probes pre-trained models for their transfer capabilities, in a zero-
shot / few-shot or limited finetuning regime. For these purposes, the Perception
Test introduces 11.6k real-world videos, 23s average length, designed to show
perceptually interesting situations, filmed by around 100 participants worldwide.
The videos are densely annotated with six types of labels (multiple-choice and
grounded video question-answers, object and point tracks, temporal action and
sound segments), enabling both language and non-language evaluations. The
fine-tuning and validation splits of the benchmark are publicly available (CC-
BY license), in addition to a challenge server with a held-out test split. Human
baseline results compared to state-of-the-art video QA models show a significant
gap in performance (91.4% vs 43.6%), suggesting that there is significant room for
improvement in multimodal video understanding.
Dataset, baselines code, and challenge server are available at https://github.
com/deepmind/perception_test
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1 Introduction

Significant progress in multimodal models has been made recently due to large-scale training on
multimodal data. Models like Flamingo [4], PerceiverIO [33], BEiT-3 [48], GPT-4 [42] show
remarkable versatility, dealing with diverse data sources and tackling new tasks by observing only a
handful of examples. This is a major departure from specialised models that are typical in computer
vision, e.g. image or action classifiers [51, 20], object detectors [14], or object trackers [46], opening
up the path towards general perception and reasoning models.

Benchmarking these models in a robust and efficient way is key in expanding their capabilities, by
allowing researchers to rank model design and training choices and identify areas for improvement.
Many perception-related benchmarks exist, for example Imagenet for image classification [17],
Kinetics for video action recognition [36], Audioset for audio event classification [25], TAO for
object tracking [16], or VQA for image question-answering [28], to name only a few. While these
benchmarks have led to amazing progress, they all target restricted aspects of perception, focusing
on specific computational tasks: e.g. image benchmarks discard the temporal dimension, visual
question-answering tends to focus on only high-level semantic scene understanding, and object
tracking focuses on lower-level, texture-based cues. Gluing several datasets together to benchmark
more general models (as is done in Flamingo, PerceiverIO, BEiT-3, or GPT-4) improves coverage, but
results in an expensive evaluation procedure that still misses important general perception abilities, e.g.
physics understanding or memory. Few existing benchmarks even define tasks over both audio and
visual modalities [29], much less more complex combinations of modalities and tasks. Furthermore,
most prior work provides large training sets and thus benchmark models for in-dataset capabilities.

In this work, we propose the Perception Test – a benchmark formed of purposefully designed, filmed,
and annotated real-world videos that aims to comprehensively assess the capabilities of multimodal
perception models across different skill areas (Memory, Abstraction, Physics, Semantics), types of
reasoning [52] (descriptive, explanatory, predictive, and counterfactual), and modalities (video,
audio, text). Our benchmark draws inspiration from diagnostic synthetic datasets like CATER [26] or
CLEVRER [52], behavioral tests like the Visual Turing Test [40, 24], experiments in developmental
psychology [1, 6, 31], and motor-free perception screening tests used for children or adults [41, 22].

To avoid benchmark overfitting, we propose a generalisation-focused evaluation regime. We aim
to benchmark any representation or model, pre-trained with any external dataset or task, of any
scale available. The Perception Test itself contains a small training set, intended for fine-tuning task
decoders or prompting the model, and the rest is used for evaluation (public validation and held out
test sets). In this regime, we can more robustly assess the transfer abilities of these models, such that
improvement on the benchmark can more reliably predict generalisation to real-world operation.

The dataset contains 11.6K real-world videos, densely annotated with 190K object and 8.6K point
tracks, 73.5K temporal action segments, 137K temporal sound segments, 38K multiple-choice
video question-answer (mc-vQA) pairs and 6K grounded video question-answer (g-vQA) pairs,
enabling both language and non-language evaluations, to ensure a thorough assessment; see Figure 1
and Table 3. Having multiple types of annotations per video is useful also for analysis purposes,
as the correlations between successes and failures across tasks may uncover biases that prevent
generalisation. For example, if a model correctly classifies an action, but then cannot localise where
in space that action occurred, this may point to an incorrect understanding of the scene. Furthermore,
fewer videos with a higher density of annotations enables efficient evaluation, as latent representations
may be shared across tasks.

We open-source the videos and annotations in the training and validation splits. An evaluation
server is made available together with the videos from the held-out test split. Since currently there
is no model that can tackle all the evaluation tasks in our benchmark, we provide baseline results
for per-task models: object tracking, point tracking, temporal action localisation, temporal sound
localisation, multiple-choice video question-answering, and grounded video question-answering.
For the mc-vQA task, the performance is mapped across skill areas (memory, abstraction, physics,
semantics), and types of reasoning (descriptive, explanatory, predictive, counterfactual).

In the next section (section 2), we discuss related work in more detail, highlighting what sets
the Perception Test apart in the rich landscape of multimodal benchmarks. In sections 3 and 4,
we describe the videos and annotations in the Perception Test, with details about the diversity of
participants involved in filming the videos. In section 5, we introduce the computational tasks enabled
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Figure 1: The Perception Test at a glance: 6 types of annotations (object & point tracks, action & sound
segments, multiple-choice videoQA and grounded videoQA) and tasks spanning different skill areas and types
of reasoning; see more examples in the supplementary material.

by these annotations, together with evaluation metrics. In section 6, we discuss per-task results
obtained using baselines from the literature. We also include preliminary results from a human
baseline. We conclude with a summary and directions of future work in section 7.

2 Related work

A large number of perception-related benchmarks exist in the literature, covering various compu-
tational tasks or modalities. We focus the discussion here on video benchmarks and highlight the
differences between the Perception Test and prior work, in terms of data collection process, covered
modalities, and available annotations and tasks.

Existing real-world benchmarks rely on one of the following data sources: (i) Videos collected from
the web or repositories like Youtube, e.g. Kinetics [36], ActivityNet [10], VGGSound [12], HVU [18],
ActivityNet-QA [53], tGIFQA [34]; (ii) Videos collected on demand, filmed by volunteers doing
arbitrary activities in indoor or outdoor scenes, e.g. EPIC-KITCHENS [15], Ego4D [29]; (iii) Videos
collected on demand, filmed by crowd-sourced participants doing actions described in pre-defined
scripts, mostly in indoor scenes, e.g. Charades [45], Something-Something v2 (SSv2) [27].

Invariably, all real-world benchmarks use crowd-sourced annotations to enable various computational
tasks like action classification, object detection, or video captioning, to name only a few.

Annotating publicly available videos is useful for training. However, using this approach for general
perception evaluation has multiple drawbacks. Large quantities of data would need to be amassed
and carefully filtered and annotated to accumulate (statistically) sufficiently diverse samples showing
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Dataset Source Skills # videos Dens L(s)
Charades C,R S 10,000 14 30
SSv2 C,R AS 108,499 1 4
Ego4D-v2 R MS 205,534‡ 9∗ 492†

CLEVRER♭ C,Y P 60,000 N/A 5
Perception Test C,R MAPS 11,620 761 23

Table 1: Characteristics of different datasets compared to the Perception Test. Dataset sources:
Scripted (C), Real (R) and Synthetic (Y). Skill areas: Memory (M), Abstraction (A), Physics (P),
Semantics (S). Dens: Average number of annotations per video. L: Average video length in seconds.
‡number of annotated clips, ∗reported for hand-objects subset with the highest density of annotations,
†reported for ELM NLQ subset with highest average clip length. ♭: Annotations are extracted directly
from the simulator.

perceptually interesting situations that require skills like memory, abstraction, physics and semantics
understanding. In addition, some types of data are simply not available, e.g. situations showing
incorrect execution of simple tasks like tying shoe laces. As we aim to assess more diverse skills, we
chose to design video scripts that show perceptually interesting and diverse situations and film these
with crowd-sourced participants from different places in the world to ensure diversity of video content
and appearance. Different from Charades where the scripts were designed by crowd-sourced workers,
our scripts are designed by our research team, similar to Something-something (v2). However, we did
not aim to obtain an exhaustive coverage of simple actions like in SSv2. Instead, we designed more
complex scripts, containing multiple actions, to probe for more advanced reasoning skills beyond
action classification.

A few research works have highlighted the need for robust diagnostics benchmarks, e.g. CATER [26],
CLEVRER [52], IntPhys [44], Physion [7]. Their authors developed synthetic datasets to evaluate in
a more systematic way, across different levels of difficulty, models’ abilities to reason about intuitive
physics (object collisions, motion, object permanence). We share the same motivation of creating a
diagnostic test, and we aim to cover aspects related to memory, abstraction, intuitive physics, and
semantics, using real-world videos. To achieve this, in addition to designing the video scripts, our
research team also designed the questions for each script type for the high-level tasks (mc-vQA and
g-vQA); the answers per video were provided by crowd-sourced annotators.

Table 1 summarises the characteristics of the Perception Test compared to previous efforts. It can be
observed that the Perception Test has a better coverage of skill areas and higher density of annotations2.
Size-wise, the Perception Test is comparable to Charades, but much smaller than Ego4D or SSv2. We
emphasise that the Perception Test is not designed to be a large-scale training dataset. Instead, it is
an evaluation benchmark, with limited fine-tuning data, meant to assess the transfer capabilities of
models.

3 Videos in the Perception Test

Inspired by how human perception screening tests are carefully designed by experts in developmental
psychology or medicine (e.g. [13]), we designed video scripts and tasks to diagnose the perception
skills of our models.

Scripts design: Our goal was not to obtain an exhaustive coverage of activities or types of scenes.
Instead, we selected four areas – Memory, Abstraction, Physics, Semantics – within which several
skills should be tested (see Table 2, second column) through tasks that require different types of
reasoning: descriptive, explanatory, predictive, or counterfactual [52]. The skills selection took into
account blind spots of existing benchmarks, weaknesses of current models, and aspects that are
important for real-world scene understanding.

We then created scripts describing simple situations or games that can be easily performed by any
one person (non-professional actor) using the items available in a regular household, or items that can
be easily crafted if not available (e.g. letters or geometric shapes crafted from paper or cardboard).
Each script consists of a brief description of the scene, followed by a description of the actions to be

2We count every labeled box, point, temporal segment, or question as a separate annotation

4



performed, together with specification of the camera placement (static camera one viewpoint; static
camera 2 viewpoints; static camera and moving camera). To enhance content diversity, each script
had considerable room for variability in the number of objects to be included in the scene or types of
actions to be performed, or order of actions.

We prioritised situations where we can test high-level concepts like memory through low-level tasks
like object tracking and the other way around: low-level physics understanding probed through
high-level tasks like question-answering. In addition, we included in each script elements that could
make the situations more interesting and challenging. For example, in cooking scripts (e.g. making
tea, making salad), we added distractor actions [45], i.e. actions not relevant for making tea and that
have no impact on the outcome of the making tea sequence, like clapping hands, or hitting a kettle
with a spoon; this allows probing for understanding of causal relations between actions. We also
included distractor objects in the scene description, i.e. objects that are not relevant for the current
script, but which are relevant for other scripts, like tomatoes present on the table during the make tea
activity [47]. For all the scripts, we also asked participants to include in the scene some adversarial
configurations of objects e.g. a shoe on the table. This allows us to probe models for understanding
of spatial relations of objects when the language biases are not valid. Finally, some of the script
variations include adversarial actions [27], i.e. incorrectly executed actions. For example, when
making the tea, all the steps are done normally, but one is incorrectly executed, like pouring water
from an empty kettle. In this way, we can probe for understanding of task completion, in a more
complex setup than the adversarial action classification used in SSv2 dataset [27].

Table 2 and Figure 1 show examples of situations included in the scripts to probe for different skills
in the four areas and different types of reasoning. Note that the videos associated with a script allows
defining tasks and questions across multiple skill areas. All-in-all, we designed 37 scripts, each
with 2-5 variations, to obtain a diverse dataset. Having multiple variations per script allows us to
ask the exact same question with the same set of options, and the correct answer depends on the
specific script variation – in this way, we can avoid language biases in questions that give away the
answer [37].

Video filming: Ensuring diversity of participants and scenes depicted in the videos was a critical
consideration when developing the benchmark. Using a crowdsourcing pool, we selected around
100 participants from different countries of different ethnicity and gender and aimed to have a
diverse representation within each video script. We include in the supplementary material details
about the self-reported demographics of participants. Each script variation was filmed by at least a
dozen of different participants, using most often a mobile-phone camera, resulting in high-resolution
audio-visual assets. For scripts to be filmed from two different viewpoints, the recording was most
often done sequentially by repeating the script; a few participants recorded simultaneously using
two filming devices. About 15% of the videos were filmed with a moving camera. Most of the
videos were filmed indoors in the living room or kitchen, with a small number being filmed in the
bathroom or outdoors (about 1%). Most of the activities are performed on a tabletop, but some are
also performed on the floor or on a chair. To avoid privacy concerns, we instructed the participants to
not record their faces or voices. This does not constitute a limitation of the dataset since the focus
in our scripts is on object interactions. The participants gave their consent for the data to be used,
published, and stored for perpetuity.

Splits: The Perception Test contains 11609 videos (with audio), 23s average length. It is divided into
a small training split (2184 videos, ∼ 20% of the data) that can be used for fine-tuning or prompting,
a validation split (5900 videos, ∼ 50% of the data), and a held-out test split (3525 videos, ∼ 30% of
the data) available through the evaluation server.

We optimised to obtain a good balance across all annotation types and camera motions across the 3
splits; see section 6 in the appendix.

4 Annotations in the Perception Test

We annotate these videos with multiple types of annotations to cover low-level and high-level aspects,
spatial and temporal, and enable language and non-language evaluations: object and point tracks,
temporal action and sound segments, multiple-choice and grounded video question-answers. We
include a summary of the number of annotations of different types in Table 3 and visualisations in
Figure 1.
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Skill area Skill Example of situations and questions or tasks

Memory

Visual discrimination Objects are shown in front of the camera, with some shown more
than once. Task: Detect which objects were shown multiple times.

Change detection The camera is filming a table, then looks away for a few seconds,
then looks back at the table. Some changes may have occurred.
Task: Explain what changed.

Sequencing Objects are put in a backpack. Task: List their order.
Event recall A person indicates a region on the table with the hand, then puts

objects inside and outside the region. Task: List the objects put
inside the region.

Abstraction

Object, action & event
counting

A person turns a lamp on and off. Task: Count the number of times
the illumination changed in the scene.

Feature matching A person puts wooden letters on the table. Task: List the letters that
have the same colour.

Pattern discovery Geometric shapes are shown in a pattern. Task: Predict what shape
would be shown next.

Pattern breaking A person puts multiple cups all facing upwards and one facing
downwards. Task: Indicate the object that breaks the pattern.

Physics

Object permanence A person plays a cups-game with 3-4 cups by hiding a small object
under one of the cups, then shuffles the cups. Task: Predict where
is the hidden object after shuffling.

Spatial relations &
containment

A person puts a bookmark in a book, then puts the same or another
book in a backpack. Task: Where is the bookmark at the end?

Object attributes A person writes on a piece of paper. Task: Is the paper lined or
plain?

Motion & occluded in-
teractions

A person moves an occluder object in front of a small object, some-
times moving also the small (occluded) object. Task: Was the small
object moved?

Solidity & collisions A person launches objects against a blocker object, sometimes
removing the blocker. Task: Does the object fall off the table?

Conservation A person pours an equal amount of water in 2 identical glasses, then
pours all or part of the water from one glass in a taller or wider
glass. Task: How much water is in the last glass?

Stability A person puts objects on top of each other in a stable or unstable
configuration. Task: Predict if the configuration will be stable after
placing the last object.

Semantics

Distractor actions &
objects

A person makes tea, and does also some distractor actions unrelated
to making tea, e.g. rotating a knife. Task: Identify the distractor
action(s).

Task completion & ad-
versarial actions

A person ties shoe laces, but sometimes pretends to tie, or ties the
lace of one shoe to the lace of the other shoe. Task: Detect if the
action is done correctly.

Object & part recogni-
tion

A person conceals a small object in one of their hands, then shuffles
the hands. Task: Identify in which hand is the object held.

Action & sound recog-
nition

All scripts. Task: Detect the actions and sounds in the video from a
pre-defined list.

Place recognition All scripts. Task: Detect where is the action taking place.
State recognition A person uses an electric device. Task: Indicate if the device is on.
General knowledge &
Language

Some objects are shown to the camera, some multiple times. Task:
Given a list of arbitrary statements or word puzzles, some requiring
general knowledge to solve, select the statement that contains a
reference to the second distinct object shown.

Table 2: Examples of scripts probing for different skills in the four areas in the Perception Test.

Object tracks: Object tracks represent the root annotation of our benchmark. All the other annota-
tions, except for multiple-choice vQA, are linked or grounded into object tracks. In the annotation
process, we instructed annotators to focus on the objects that the person interacts with and the objects
that are in the immediate vicinity of the area where the person is performing actions, which act as
distractor objects. We annotated boxes at 1fps throughout the video, which gives a good trade-off
between density of annotations and annotation cost. When the objects are occluded, the annotators
marked an approximate position of the boxes. Some ambiguous classes still remain, like liquids
being poured or objects being torn. The object names were defined from an open vocabulary. The
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Annotation type # classes # annot # videos Rate (fps)
Objects tracks 5101 189940 11609 1
Point tracks NA 8647 145 30
Action segments 63 73503 11353 30
Sound segments 16 137128 11433 30
mc-vQA 132 38060 10361 NA
g-vQA 34 6086 3063 1

Table 3: Annotations collected for the Perception Test. Each object or point track contains frame-level
annotations at a certain rate, e.g. each point is annotated on every frame, at 30 fps. Action and sound
segments are annotated at the original video frame rate. # classes refers to the number of unique
object names for object tracks and the number of unique questions for mc-vQA and g-vQA.

annotators typically included object attributes as well (colour, material), resulting in a large number of
unique names. A list of the most frequent words (object or attributes) in the benchmark is included in
the supplementary material, Fig. A2 (left), together with the distribution of object tracks into various
categories, e.g. objects involved in actions or sounds correlated with camera motion (Table A1).

Cups-game subset: We isolate the videos corresponding to the cups-game scripts, as they can be an
interesting subset for probing object trackers’ abilities to reason about motion, object permanence, or
occluded interactions when different factors may influence the difficulty of the task, e.g. identical vs
non-identical objects used in the game, transparent vs non-transparent objects, or number of objects
used. This subset contains 598 videos, with 483 videos where the cups are identical, and 113 videos
where the cups are transparent. Most of the videos have 3 cups (451 videos), 132 videos have 2 cups,
and 34 videos have 4 cups. We also provide a visibility mask for each video showing when the hidden
object is occluded.

Point tracks: Although object tracks based on bounding boxes allow probing some physical prop-
erties of objects, such as object permanence, solidity, and coarse motion, they don’t fully describe
articulated or non-rigid objects, thin objects that are not axis-aligned, or out-of-plane rotation. A
better understanding of physical interactions arises if we can track how object surfaces move and
deform over time as the interaction takes place. To this end, we annotate point tracks on object
surfaces following the protocol of TAP-Vid [19]. Annotators were instructed to select points spanning
all the different parts of the objects labelled in the object tracking task. Thus, each point is linked to
one of the tracked objects. Points that are occluded are simply marked as occluded and not tracked.
For translucent objects (e.g. glass cups), we only consider points to be ‘visible’ if they belong to the
surface closest to the camera. The annotated points are sparse in space but dense in time. Table A2
included in the supplementary material gives the distribution of points that are moving or static, as
well as those on videos with moving cameras.

Action segments with action-relevant objects: To capture temporal understanding and enable
grounding over time, we annotate the videos with temporal segments belonging to a fixed set of
templated labels, e.g. putting something into something, similar to [27]. These are associated with
action-relevant object tracks, i.e. objects involved in the action. The action boundaries are defined
based on contact with action-relevant objects. For instance, when a person puts sugar in a tea, the
putting something into something action starts when the person picks up the spoon and ends when the
person puts down the spoon. If, after putting the sugar, the person starts stirring with the same spoon,
this defines a new segment as the type of action changed. The frequency of actions across the entire
dataset is included in the supplementary material, Fig. A2 (right).

Sound segments with sound-relevant objects: Similarly to the action segment annotations but
applied to the audio modality, we collect sound segment annotations grounded in object tracks. By
watching the video and listening to the audio, the annotators define temporal sound segments and
label them from a list of 16 audio segment labels. For each sound, the annotators also identify the
object (or objects) involved in making the sound, or specify that these are out of the camera’s field of
view. For example, if an object is placed on the table making an audible sound, then both the object
track and the table track are associated with the sound segment. The frequency of sounds across the
entire dataset is included in the supplementary material.

Question-answers for video-level reasoning: Different from the existing VQA datasets, which rely
on crowd-sourced questions and answers, we designed ourselves the questions per script to cover
different types of reasoning [52]: descriptive, explanatory, predictive, counterfactual, and to cover
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Area # videoQA
Memory 7256 (36)
Abstraction 12737 (58)
Physics 23741 (80)
Semantics 24965 (82)

Reasoning # videoQA
Descriptive 31536 (106)
Explanatory 4513 (14)
Predictive 1278 (7)
Counterfactual 733 (5)

Table 4: Number of videoQA pairs and (unique questions) per area and type of reasoning. Note
that one question may be counted in multiple areas if it tests more than one skill. Each question is
assigned a unique type of reasoning.

aspects that are important for operating in the real world, e.g. understanding task completion, detecting
changes, and so on. The answers for all the questions per video were provided by crowd-sourced
participants. As we are interested in non-ambiguous evaluation, we favour the multiple-choice setup
over the open-language answer setup. To define challenging negative options, we partly relied on
human annotators, partly sampling from the correct answers of other videos in the same type of script.
Table 4 and Figure A4 (in the supplementary material) show the distribution of question-video pairs
into perception skills, skill areas, and type of reasoning.

Question-answers with answer-relevant objects: As another way to connect high-level and low-
level scene understanding capabilities, we define questions or tasks in language form, with answers
given as object tracks. Similar to the regular question-answers above, these grounded questions are
associated with skill areas and types of reasoning; most of these tasks fall under the Physics area.

5 Computational tasks in the Perception Test

We defined six computational tasks based on the annotations available in the Perception Test. We
summarise in Table 5 the task definitions: input, output, and metric. It can be observed that the
Perception Test combines lower-level dense prediction tasks like object and point tracking, whose
outputs are box and point trajectories, with higher-level tasks like video question answering. For
all the tasks, the video and audio are available as inputs, together with a task specification where
applicable, e.g. the coordinates of a box to track for object tracking, or a language question and
options for multiple-choice videoQA. Note that many other computational tasks can be defined based
on the available annotations, e.g. video object detection, grounded temporal action/sound localisation,
and more.

Single object tracking: In this task, the model should separately track every single object box
labelled in the dataset starting from one of its first frames. In some cases (≈ 20%) where the object
is entering the field of view at the beginning or during the video, the first box may span only a
few pixels, so it does not contain a representative view of the object. To deal with this problem,
we use a heuristic to select a later frame, when the object is not touching the image boundary, to
identify the query box for each object track. Performance is evaluated using the standard average
intersection-over-union (IoU) metric, (also called average overlap), for evaluating long-term tracking
without tracker re-initialization. It is defined as the average IoU over the entire track between the
predicted and the ground-truth boxes [32, 11]. We also provide code for more fine-grained analysis,
e.g. performance on objects in videos shot with static vs. moving cameras, objects involved in actions
etc.

Cups-game subset: For the occluded object involved in cups-games, we use intersection as a metric
for tracking (as opposed to Intersection-over-Union), to deal with the uncertainty of the position
when the object is occluded.

Single point tracking: In this task, given a set of ground truth initial 2D point coordinates, the model
should separately trace their spatial trajectories throughout the video. Performance is evaluated using
the recently proposed average Jaccard metric for evaluating both long-term point tracking position
and occlusion accuracy. This metric checks how similar the predicted and the ground-truth point
tracks are, based on the average number of true positive matches, divided by the sum of true positives,
false positives, and false negatives over the entire track [30, 19].

Temporal action / sound localisation: We define these two tasks similarly, as temporal segment
detection problems. Given a video, the model predicts potentially overlapping temporal 1d-segment
covering the actions/sounds and classifies them using a fixed set of labels. Performance is evaluated

8



Task Output Metric
Object tracking box track Avg. IoU
Point tracking point track Avg. Jaccard
Temporal action localisation list of action segments mAP
Temporal sound localisation list of sound segments mAP
mc-vQA answer (1 out of 3) top-1 accuracy
g-vQA list of box tracks HOTA

Table 5: Computational tasks in the Perception Test: the model receives a video with audio, plus a
task-specific input (e.g. the coordinates of a bounding box for the object tracking task), and produces
a task-specific prediction, evaluated using dedicated metrics.

Object Tracking All Static camera Moving camera
all objects 0.66 / 0.67 0.70 / 0.69 0.42 / 0.54
action objects 0.48 / 0.53 0.50 / 0.54 0.31 / 0.47
sound objects 0.56 / 0.60 0.58 / 0.61 0.40 / 0.53
g-vQA boxes 0.38 / 0.50 0.43 / 0.51 0.26 / 0.47

Table 6: Static dummy baseline / SiamFC results, measured as average IoU, across different categories
of objects in the Perception Test. Since many objects are static, the performance of the dummy baseline
is good overall, but it degrades considerably when motion is involved, whereas the SiamFC tracker is
more robust.

using the standard mean AP over classes [54] based on temporal IoU between predicted and ground
truth temporal segments.

Multiple-choice video question-answering: In this task, the model receives, in parallel with the
video, a question and three possible answers, out of which only one is correct, and the model has
to pick one answer (33% random chance). For most of the questions, watching the video and
reading the question are enough for providing a correct answer. A limited number of questions are
formulated in a generic way, so the options are necessary for choosing the answer: e.g. Which of the
following statements describes the scene better?. In some cases, choosing the answer by elimination
of the false options may be simpler. Performance is evaluated by measuring top-1 accuracy. For
a couple of scripts, the videos must be trimmed to not reveal the answer: in the cups-games and
stable configurations videos, we provide a frame id where the video should be trimmed. For the train
and validation splits we release the entire videos together with the cut frame id information. In the
held-out test split, only the trimmed videos are available for these particular video types.

Grounded video question-answering: This task is similar to conditional multiple-object tracking,
with the conditioning given as a language task or question as opposed to a class label [38]. The
answers are object tracks defined throughout the video and we use HOTA [39] metrics to evaluate
performance. In some situations, the initial parts of the track might not be relevant for the question,
e.g. Track the object that was removed from the table and the object is removed halfway through the
video. However, given that we do not enforce causal processing of the video, the track prediction for
the initial part can still be done in hindsight.

6 Baselines

Ideally, a single model should be able to perform all the tasks in the Perception Test, in a zero/few-
shot setting or by fine-tuning on our limited training set. Since such a model is not available in the
literature, we include results obtained with per-task baselines on the validation split for all the six
tasks in the Perception Test.

For the multiple-choice video QA, we also include the results of a human baseline.

Object tracking: We report baseline results using the SiamFC model [8] (UniTrack [49] imple-
mentation). SiamFC was chosen due to its high-performance on a number of single-object tracking
benchmarks when running in zero-shot setting [21]. The results for the different categories of objects
(involved in actions or in sounds, etc) are included in Table 6, aggregated based on camera motion.

Point tracking: We report baseline results using a TAP-Net model [19] trained on Kubric [30] and
transferred zero-shot. The model operates on 256x256 resolution (aspect ratio is not preserved) and
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consumes the whole video directly. Table 7 shows the results. As expected, both moving points and
points seen through a moving camera are considerably harder to track.

Point tracking All points Static camera Moving camera
static baseline 0.361 0.410 0.088
TapNet 0.401 0.414 0.328

Table 7: Static dummy baseline vs TapNet [19] results (average Jaccard, higher is better) for the point
tracking task on the validation set. Note that the TapNet model was not trained on this benchmark, it
was evaluated zero-shot. Please see more details in supplementary material.

Temporal action localisation: We obtained baseline results for temporal action localisation using
ActionFormer [54] with different pretrained features: TSP video features from [5] pre-trained on
ActivityNet, MMV audio features from [2] pre-trained on AudioSet, and a multimodal input by
concatenating the video and audio features. We trained the transformer blocks and the classification
and regression heads to accommodate for the number of classes included in our dataset. The resulting
mean average precision is included in Table 8, top. The baseline struggles mostly with rare action
classes and pretend actions, which are confused with their non-pretend counterpart class. Using
only the audio modality leads to very poor performance, whereas using multimodal inputs does not
increase the performance significantly. More details are given in the appendix.

Temporal Action Localisation
Model Modality @0.1 @0.2 @0.3 @0.4 @0.5 Avg # epochs
ActionFormer video 17.67 16.56 15.13 13.28 11.07 14.74 35
ActionFormer audio 7.25 6.53 5.70 4.67 3.64 5.56 55
ActionFormer video+audio 18.82 17.63 15.98 13.99 11.37 15.56 35

Temporal Sound Localisation
Model Modality @0.1 @0.2 @0.3 @0.4 @0.5 Avg # epochs
ActionFormer video 17.85 15.54 13.81 12.11 5.89 13.04 55
ActionFormer audio 16.28 13.58 10.80 8.43 5.87 10.99 80
ActionFormer video+audio 22.24 18.99 15.36 11.99 8.74 15.46 55

Table 8: Mean average precision (mAP) for temporal action localisation (top) and sound localisa-
tion (bottom) tasks using ActionFormer as baseline. IoU for 0.1-0.5 are averaged as in [15]. # epochs
represents the number of training epochs used to obtain the best results for each experiment setup.

Temporal sound localisation: We use the same model architecture and pre-trained features as above.
We trained from scratch the transformer blocks and the classification and regression heads. For
both training and evaluation, we keep only 11 sound classes, excluding the classes corresponding
to indistinguishable sounds (e.g. Other:background, Other:human), as they hinder learning. The
resulting mean average precision is included in Table 8, bottom. The best performance is obtained
when features from both modalities are used as input. More details are included in the appendix.

Multiple-choice videoQA: For this task, we report the results of Flamingo [3] – a state-of-the-art
video-language model, together with a dummy frequency-based baseline and a human baseline; see
Table 9, Figure 2 and 3.

Frequency baseline. Given that we have a fixed set of question-answer pairs defined over multiple
videos, we compute a simple baseline that always picks the most frequent correct answer (on the
training set) during evaluation; this baseline obtains 47%. One can also compute this baseline on
a random subset of training examples for each question type, see Table 9. This is a fairer dummy
baseline for models using few-shot evaluation.

Human baseline. We ran a small study for the mc-vQA task with human participants. We used
126 questions from the dataset, with one video per question selected at random. We recruited 30
crowd-sourced participants (half male, half female, with advanced English skills), different from
the raters annotating the videos. Each participant answered a subset of 42 questions, resulting in 10
answers per question. The performance per area and type of reasoning is detailed in Figure 2. The
overall average accuracy was 91.4%. The mistakes occurred in situations difficult to judge from the
given viewpoint, e.g. if a configuration of objects would be stable (without seeing the end of the
video), or in edge cases where humans overlooked details happening very early on in the video. It is
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worth noting that running the study was straightforward, the participants did not require any training,
similar to a zero-shot setup. The median time spent to answer 42 questions was 30 minutes.

Flamingo. We run the model with a maximum of 30 frames sampled at 1fps, spatial resolution 320.
When the videos are longer than 30 seconds, we use only the middle clip. The audio modality is
ignored as the original model was not trained to deal with it. The different options are scored based on
likelihood. We considered zero-shot and 8-shot settings. In the zero-shot setting, the smaller version
of the model obtains 43.6% on the test set. In the 8-shot setting, we sample 8 examples and associated
ground truth responses from each question in the training set and use as prompts. The resulting
accuracy is 45.8%, again obtained by the smaller version of the model. Flamingo struggles the most
on counterfactual questions, where its accuracy is below random, pointing to an important ability that
our models clearly lack [43]. Interestingly, the larger versions of the model (due to larger language
branches) seem to fare worse, which suggests that the difficulty of the tasks is on the vision side, not
the language side. Figure 3 details the performance across skills compared to random baseline. It can
be observed that on several skills, e.g. (Piaget) conservation task or change detection, Flamingo is
below random.

mc-vQA 0-shot 8-shot Full
Flamingo-3B 43.6 45.8 -
Flamingo-9B 40.5 44.4 -
Flamingo-80B 41.6 45.4 -
Frequency 33.3 43.0 47.0
Human 91.4 - -

Table 9: mc-vQA top-1 accuracy (higher is better), for different evaluation modes and different
models, including a human baseline, on the validation split. The frequency baseline picks the most
frequent answer in the training set (for zero-shot this corresponds to random chance). "-" refers to
numbers that were not collected.

Figure 2: Zero-shot human baseline results for a subset of questions and videos in the Perception Test,
compared to 8-shot Flamingo-3B results on the entire validation set. The black dashed line indicates
the random baseline. Even in the 8-shot regime, Flamingo is far from the zero-shot human baseline
and seems to struggle the most with memory-related skills and counterfactual reasoning.

Grounded video question-answering: In absence of a dedicated baseline in the literature for the
type of grounded videoQA that we propose (input: text query, output/answer: object tracks), we
obtain a simple baseline by running MDETR [35] on the middle frame of each video using the
query as input, and then we use Stark tracker [50] to propagate the MDETR detections forward and
backward in the video. We measure the performance of this baseline using HOTA metrics, which
integrate detection, association, and localisation scores. As expected, the performance of this baseline
is poor; see Table 10 and Figure A6 in the appendix. The failures are caused mainly by poor detection
results – since the tasks are temporal in nature, extracting seed boxes from the middle frame is not
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Figure 3: 8-shot Flamingo-3B performance on the validation set across skills. The black dashed line
indicates the random baseline.

Model HOTA LocA DetA AssA
MDETR+Stark 0.1 0.68 0.03 0.33

Table 10: HOTA results on the validation split for the grounded vQA task in the Perception Test.

sufficient to solve the tasks, calling for models capable of dealing with both spatial and temporal
dimensions.

7 Conclusion

We propose a diagnostic benchmark for multimodal models, that probes for memory, abstraction,
physics, and semantic capabilities, across visual, audio, and text modalities, using real-world videos
purposefully designed and filmed to show interesting perceptual situations. Solving the tasks requires
different types of reasoning: descriptive, explanatory, predictive, and counterfactual. The videos are
densely labeled with six types of annotations (objects and point tracks, action and sound segments,
multiple-choice and grounded video question-answer pairs), which enables evaluating models across
many different dimensions on a common set of videos. It also sets up a foundation for more advanced
future tasks that combine these annotations in various ways.

We are open-sourcing the videos and the annotations in the train and validation splits, together with
per-task baseline results and evaluation code. A challenge server is available, to evaluate models
on the held-out test split. In principle, any model can be evaluated on our benchmark, either in a
zero/few-shot setting or by fine-tuning on our limited train split. An ideal perception model would
be able to perform all the tasks in our benchmark. We address ethical and societal aspects that our
work may impact in the supplementary material. Our results suggest that state-of-the-art zero-shot
video-language models do only slightly above a dummy frequency based baseline, whereas humans in
the same setting are nearly perfect. This gives a new perspective on understanding models’ limitations
and could help narrowing down areas of improvement to guide research. In addition, by combining
low-level and high-level annotations across multiple modalities and tasks, we hope to enable cross-
pollination between communities that are currently fairly fragmented, e.g. the community working
on tasks like tracking and flow estimation using benchmarks like KITTI [23] or Sintel [9], with the
community working on high-level scene understanding using benchmarks like ImageNet, Kinetics, or
VQA. Finally, we hope to collaborate with the community to continuously grow and improve this
benchmark, by adding new videos, tasks, modalities, tool use, or even new languages, to build a
comprehensive diagnostic test for multimodal perception models.
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Appendix

1 Perception Test at a glance

Figure A1 and the presentation video available at https://github.com/deepmind/perception_
test summarise the types of videos, annotations, and tasks available in the Perception Test.

Figure A1: The Perception Test contains 6 types of annotations (object & point tracks, action & sound segments,
multiple-choice videoQA and grounded videoQA) and tasks spanning 4 skill areas (Memory, Asbtraction,
Physics, Semantics, and 4 types of reasoning (Descriptive, Explanatory, Predictive, Counterfactual). See the
presentation video at https://github.com/deepmind/perception_test for more examples.

17

https://github.com/deepmind/perception_test
https://github.com/deepmind/perception_test
https://github.com/deepmind/perception_test


2 More details about annotations in the Perception Test

The distributions of object and point tracks across camera motion and objects involved in actions,
sounds, and grounded vQA are included in Table A1 and Table A2. Figures A2 and A3 present the
frequency of popular words included in object names, and the distribution of actions and sounds
respectively. Figure A4 shows the distribution of questions across skills.

Camera Static Moving Total
# total objects 165552 26164 191716
# action objects 55344 6923 62267
# sound objects 56158 7666 63824
# g-vQA boxes 6795 2579 9374

Table A1: Object tracks involved in actions, sounds, and grounded-vQA, split by camera motion.

Camera Static Moving Total
# total points 7791 783 8574
# moving points 3800 783 4583
# static points 3991 0 3991

Table A2: Point tracks available in the Perception Test, split by point and camera motion.

3 Point Tracking Baselines

The point tracking algorithms take an input query point which are sampled at the first frame when the
point is visible, and track only into the future in an online setting. During evaluation, we ignore the
predictions for frames earlier than the query frame, as the algorithm can easily assume the previous
points are occluded. We report two baseline results based on this setup: (1) a static dummy baseline
assuming all future points are visible and never change the location, (2) a TAP-Net model [19] trained
on Kubric and transferred zero-shot.

Following [19], we use three evaluation metrics. (1) Position Accuracy (< δx): for a given threshold
δ, we measure the fraction of points that are within the threshold of their ground truth, for frames
where points are visible. For all predictions, we resize them to 256x256 resolution and measure < δx

across 5 thresholds: 1,2,4,8, and 16 pixels. (2) Occlusion Accuracy (OA): a simple classification
accuracy for the point occlusion prediction on each frame. (3) Jaccard at δ: an evaluation metric
considering both occlusion and position accuracy. It is the fraction of ‘true positives’, i.e., points
within the threshold of any visible ground truth points, divided by ‘true positives’ plus ‘false positives’
(points that are predicted visible, but the ground truth is either occluded or farther than the threshold)
plus ‘false negatives’ (groundtruth visible points that are predicted as occluded or the prediction
is farther than the threshold). Our final metric Average Jaccard (AJ) averages Jaccard across all 5
thresholds: 1,2,4,8, and 16 pixels.

Table 3 shows the evaluation results for point tracking based on the three metrics. To further
understand the performance, we split points into two groups: static and moving. Note that there are no
static points in the moving camera scenario, all points are moving. In static camera, we determine a
point is moving if its distance between start frame and end frame is more than 0.01 in the normalized
image coordinate system. As expected, the dummy baseline performs well on static points, reaching
0.722 average jaccard. But TapNet significantly outperforms when points are moving, particularly
in the moving camera setup, improving average jaccard from 0.088 to 0.328. Besides AJ, TapNet
significantly improves the static baseline on occlusion accuracy from 0.675 to 0.849. One interesting
observation is that on both position accuracy (< δx) and jaccard at δ, TapNet starts to outperform
static baseline only when measured above 4 pixel threshold. This is because human annotations still
contain small localization errors and 4 pixel threshold is more reliable than 1 or 2 pixel threshold for
measuring under 256x256 resolution.
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Figure A2: Frequency of objects and log-scale frequency of actions in the Perception Test.

4 Temporal action and sound localisation baselines

For the temporal action and sound localisation baselines, we use features extracted with pre-trained
encoders. For video, we use TSP features extracted using a Resnet(2+1)D-34 model pretrained on
ActivityNet [5]. The resulting features have 512-dim and an effective stride of 32 (corresponding
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Figure A3: Log-scale frequency of sounds in the Perception Test.

Figure A4: Number of multiple-choice video question-answers in the Perception Test across skills in
the four skill areas: Memory, Abstraction, Physics, Semantics. One skill can be assigned to multiple
skill areas—here we choose one as the prime area for each skill.

roughly to one feature per second): every other input frame is skipped and the model performs a
temporal downsampling of 16.

For audio, we extract features using the S3D model pre-trained on AudioSet from MMV [2], with
window length of 960ms, window stride 16000. The input audio is downsampled from 48khz to
16khz (keeping every third sample). This results in roughly 2 features per second, each of dimension
256. When using multimodal inputs, the video features are tiled over time (factor 2) to align them
with the audio features.

Figure A5 shows the confusion matrix for the action localisation task, normalised by columns. It can
be observed that the less frequent actions are often confused with more frequent ones and the model
also confuses pretend actions with their non-pretend versions, e.g. ironing something vs pretending
to iron something or writing or drawing something vs pretending to write or draw.

5 Grounded videoQA baseline

Figure A6 shows HOTA metrics, which integrate detection, association, and localisation scores for
the grounded videoQA baseline formed of MDETR detector and Stark tracker.
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Point tracking static points
static camera

moving points
static camera

moving points
moving camera

static baseline 0.722 0.373 0.088
TapNet [19] 0.496 0.399 0.328

Point tracking OA < δ0 < δ1 < δ2 < δ3 < δ4

static baseline 0.675 0.395 0.512 0.601 0.695 0.784
TapNet [19] 0.849 0.055 0.214 0.687 0.927 0.956

Point tracking Jac. δ0 Jac. δ1 Jac. δ2 Jac. δ3 Jac. δ4

static baseline 0.217 0.301 0.364 0.429 0.495
TapNet [19] 0.025 0.104 0.442 0.699 0.734

Table A3: Static baseline vs TapNet results on the validation set. Top: Average Jaccard (AJ), higher
is better. The static and moving points are based on the point motion described in Appendix 3. There
are no static points in the moving camera scenario. Middle: Occlusion Accuracy (OA) and Position
Accuracy (< δx), higher is better. TapNet outperforms static baseline when measured above 4 pixel
threshold. Bottom: Jaccard at δ, higher is better. TapNet outperforms static baseline when measured
above 4 pixel threshold.

6 Dataset Splits Generation

The 11.6k videos in the Perception Test are split into train, validation, and held-out test splits each
with roughly 20%/50%/30% of the videos respectively. These splits were generated by respecting
two constraints: (1) all videos from each unique combination of (script_id, participant_id)
are kept in the same split; more specifically, each script was filmed by a given participant possibly
with multiple camera configurations, e.g. from different viewpoints, or both with static and moving
cameras. The above constraint ensures that all such variations of a script shot by a participant belong
in the same split to avoid any leakage of video content across splits, and (2) various video attributes
(camera motion, indoor vs. outdoor) and annotations are divided in the same proportion across splits,
e.g. each split will have approximately the above specified fraction of videos with moving camera, or
with point annotations. In particular, each question in the multiple-choice and grounded video QA
tasks applies to a number of videos; this constraint ensures that these videos are distributed across
splits in the specified proportion, such that all questions are present in all the splits.

The above was executed by setting up a linear program with a binary decision variable for each
unique (script_id, participant_id) pair indicating which of the two splits it should be assigned
to, denoted collectively x∈{0, 1}n with n being the number of such unique pairs. Note for splitting
into three splits, the problem is solved twice sequentially. A feature count matrix A∈Rn×d was
constructed, with Aij being the number of videos shot by the ith (script_id, participant_id)
having the jth video-attribute (d being the total number of video attributes). An “attribute” indicating
the total number of videos with a given (script_id, participant_id) was also included to enforce
the number of videos in each split. The following linear program was solved using the CVXPY
interface to the MOSEK mixed-integer solver.

min
x

[(
max

i
(1− ti)

2
)
+

1

d

d∑
i=1

(1− ti)
2

]

s.t., ti =
AT

i x

⌈f1AT
i 1⌉

,∀i ∈ {1, . . . , d}

(1− λ) ≤ ti ≤ (1 + λ),∀i ∈ {1, . . . , d}
and, xj ∈ {0, 1},∀j ∈ {1, . . . , n}

with Ai being the ith column of A, f1 ∈ [0, 1] being the target fraction for the split corresponding to
label xj = 1 (e.g. f1 = 0.5 for a 50% test split), and λ = 0.25 is the maximum allowed fractional
deviation from the target value. There were n = 7288 unique (script_id, participant_id) pairs,
and d = 249 video attributes.

21



Figure A5: Confusion matrix for ActionFormer predictions on the action localisation task. To be
considered as a prediction for a certain segment, the model’s confidence has to be above 0.1 and IoU
threshold between the prediction and ground truth above 0.1. Ground truth actions are listed on the
y-axis, sorted by their frequency; entries are normalised by rows. The less frequent actions are often
confused with more frequent actions. The model also confuses pretend actions with their non-pretend
versions, e.g. ironing something vs pretending to iron something or writing or drawing something vs
pretending to write or draw.

7 Annotation collection and cleaning

The different types of annotations were collected using two different approaches:

1. sequential pipeline for the object and point tracks, action and sound segments: (i) a rater
annotates a video for a given task, (ii) a second rater checks the annotation, makes any
necessary corrections, then marks the annotation as complete; (iii) a third rater checks if the
annotation is indeed complete or it needs additional changes, in which case they will send
the video back to step (ii) to be reviewed by a different rater. For difficult tasks like point
tracking or object tracking with hard occlusions, we did multiple annotation cleaning rounds,
each time with specific cleaning guidelines. For example, for the videos in cups-games
category mentioned above, in one cleaning round, the raters were asked to pay attention to
the hidden object, or for videos where the person shows objects to the camera sometimes
repeating the same object, we asked raters to pay attention to assign the same object ID when
the object reappears. Having videos grouped by script type helped in designing specific
cleaning guidelines to ensure good annotation quality.
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Figure A6: HOTA metrics for MDETR+Stark tracker baseline on the validation split of the Perception
Test.

2. parallel pipeline for multiple-choice and grounded videoQA: multiple raters answer in
parallel the same question for the same video and the option chosen by the majority of
raters is kept as final answer. Note that for multiple choice QA, during annotation collection,
the raters were presented with more than 3 options in some cases. For the final dataset, as
the goal was to have the same number of options for all the questions, we chose to keep 3
options to accommodate binary questions as well (where the options used are: Yes, No, I
don’t know). For questions with more than 5 options, the negative options were sampled
based on their frequency as correct options for videos in the same script type. Finally, for
some generic questions, e.g. Which statement describes the scene better?, the answers
were collected initially in open-language format, and then negatives were sampled using the
answers from other videos in the same script type, with additional checks from the research
team to avoid ambiguous distractors.

As a sanity check, for the action and sound annotations, we checked for overlapping objects involved
in both action and sounds (see Figure A7). We observed strong correlations across pairs of action-
sound, indicating consistent annotations across modalities, e.g. the Pouring something into something
action shares the same objects with the Interaction: Fluid sound, the Clapping hands action co-occurs
with the Human (clapping) sound, the Lifting something and putting it back down action co-occurs
with the Object: Hitting sound, Moving something around actions co-occurs with Object: Rolling
sound, and so on.

8 Diversity of participants involved in filming

To have good visual diversity in the dataset, we selected participants from different countries, having
different ethnicity and gender. We include in Table A4 and Figure A8 the self-reported demographics.
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Figure A7: Correlation between action and sound temporal annotations in the Perception Test.

Gender %
Male 46.40

Female, Other 53.60
Ethnicity %

White or Caucasian 28.97
South and East Asian 25.49

Black or African American 21.68
Latino or Hispanic 9.25

Mixed 3.94
Middle Eastern 3.37

Other 7.30

Country %
Philippines 31.38

Brazil 11.27
Kenya 10.02

Indonesia 8.75
Italy 8.03

Romania 7.57
South Africa 5.25

Turkey 4.12
India 3.72

Mexico 1.45
Bulgaria 1.37

United States 0.70
Egypt 0.48
Other 5.87

Table A4: Self-reported demographics (Gender, Ethnicity, Country) of participants involved in
filming.
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Figure A8: Geolocation of participants involved in filming.
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