
Chapter 21

Time Reversal Symmetry

In this chapter we consider the properties of the time reversal operator
for the case of no spin and when the spin-orbit interaction is included.
The effect of time reversal symmetry on the energy dispersion relations
is then considered, first for the case of no spin and then including the
spin-orbit interaction.

In high energy physics, arguments regarding time inversion were es-
sential in providing guidance for the development of a theory for the
fundamental particles. The CPT invariance in particle physics deals
with charge conjugation (C) which is the reversal of the sign of the
electrical charge, parity (P) which is spatial inversion, and time inver-
sion (T).

21.1 The Time Reversal Operator

Knowledge of the state of a system at any instant of time t and the
deterministic laws of physics are sufficient to determine the state of
the system both into the future and into the past. If ψ("r, t) specifies
the time evolution of state ψ("r, 0), then ψ("r,−t) is called the time-
reversed conjugate of ψ("r, t). The time-reversed conjugate state is
achieved by running the system backwards in time or reversing all the
velocities (or momenta) of the system.

The time evolution of a state is governed by Schrödinger’s equation
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(one of the deterministic laws of physics)

ih̄
∂ψ

∂t
= Hψ (21.1)

which is satisfied by a time-dependent wave function of the form

ψ("r, t) = e
−iHt

h̄ ψ("r, 0) (21.2)

where T̃ ≡ exp [−iHt/h̄] is the time evolution operator. Under time
reversal t → −t we note that ψ → ψ∗ so that

T̂ψ("r, t) = ψ("r,−t) = ψ∗("r, t). (21.3)

In the following section, we derive some of the important properties of
T̂ .

21.2 Properties of the Time Reversal Op-
erator

The important properties of the time reversal operator include:

1. commutation: [T̂ ,H] = 0
Because of energy conservation, the time reversal operator T̂
commutes with the Hamiltonian T̂H = HT̂ . Since T̂ commutes
with the Hamiltonian, eigenstates of the time reversal operator
are also eigenstates of the Hamiltonian.

2. anti-linear: T̂ i = −iT̂
From Schrödinger’s equation (Eq. 21.1), it is seen that the reversal
of time corresponds to a change of i → −i, which implies that
T̂ i = −iT̂ . We call an operator anti-linear if its operation on
a complex number yields the complex conjugate of the number
rather than the number itself T̂ a = a∗T̂ .

3. action on wave functions: T̂ψ = ψ∗T̂
Since T̂ψ = ψ∗T̂ , the action of T̂ on a scalar product is

T̂ (ψ,φ) =
∫

φ∗("r)ψ("r)d3r T̂ = (ψ,φ)∗T̂ (21.4)
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4. In the case of no spin T̂ = K̂ where K̂ is the complex conjugation
operator. With spin, we show below that T̂ = K̂σy where σy is
the Pauli spin operator,

σy =

(
0 −i
i 0

)

.

We will see below that both T̂ and K̂ are anti-unitary operators.
From Schrödinger’s equation (no spin), the effect of T̂ on "p is to
reverse "p (time goes backward) and T̂ leaves V ("r) invariant, so
that indeed H is invariant under T̂ ; and furthermore T̂ = K̂ for
the case of no spin. When spin is included, however, the Hamil-
tonian H must still be invariant under T̂ . We note that T̂"p = −"p
and T̂ "L = −"L (orbital angular momentum). We likewise require
that T̂ "S = −"S where "S = spin angular momentum. If these
requirements are imposed, we show below that the H is still in-
variant under T̂ (i.e., H commutes with T̂ ) when the spin-orbit
interaction is included:

H =
p2

2m
+ V ("r) +

h̄

4m2c2
"σ · ("∇V × "p). (21.5)

We note that K̂[σx,σy,σz] = [σx,−σy,σz] when the spin compo-
nents are written in terms of the Pauli matrices

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0
0 −1

)

(21.6)

since only the Pauli matrix σy contains i. Thus K̂ by itself is not
sufficient to describe the time reversal operation on the Hamilto-
nian H (Eq. 21.5) when the spin-orbit interaction is included. We
will see below that the product K̂σy can describe time reversal of
H.
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Let us now consider the effect of K̂σy on the spin matrices K̂σy[σx,σy,σz].
We note that

σyσx = −σxσy so that K̂σyσx = −K̂σxσy = −σxK̂σy

σyσz = −σzσy so that K̂σyσz = −K̂σzσy = −σzK̂σy

K̂σyσy = −σyK̂σy since, from above K̂σy = −σyK̂.

Thus we obtain
K̂σy"σ = −"σK̂σy

so that the operator K̂σy transforms "σ (or "S) into −"σ (or −"S).
Clearly σy does not act on any of the other terms in the Hamil-
tonian. We note that K̂ cannot be written in matrix form.

Since K̂K̂ = K̂2 = 1, we can write the important relation T̂ =
K̂σy which implies K̂T̂ = σy = unitary operator. Thus σ†

yσ
−1
y =

1 and since σ2
y = σyσy = 1 we have σ†

y = σy and σ†2
y = 1, where

the symbol † is used to denote the adjoint of an operator.

5. In the case of no spin T̂ 2 = 1, since K̂2 = 1 and T̂ = K̂. With
spin we will now show that T̂ 2 = −1. Since T̂ = K̂σy when the
effect of the electron spin is included,

T̂ 2 = (K̂σy)(K̂σy) = −(σyK̂)(K̂σy) = −σyK̂
2σy = −σyσy = −1.

More generally if we write K̂T̂ = U = unitary operator (not
necessarily σy), we can then show that T̂ 2 = ±1. Since two
consecutive operations by T̂ on a state ψ must produce the same
physical state ψ, we have T̂ 2 = C1 where C is a phase factor eiφ

of unit magnitude. Since K̂2 = 1, we can write

K̂2T̂ = T̂ = K̂U = U ∗K̂ (21.7)

T̂ 2 = K̂UK̂U = U ∗K̂2U = U∗U = C1 (21.8)

We show below that C = ±1. Making use of the unitary property
U †U = UU † = 1, we obtain by writing U ∗ = U∗UU † = CU †,

U∗ = CU † = CŨ∗ (21.9)
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Taking the transpose of both sides of Eq. 21.9 yields

Ũ∗ = U † = CU∗ = C(CŨ∗) = C2U † or C2 = 1 and C = ±1.
(21.10)

We thus obtain either T̂ 2 = +1 or T̂ 2 = −1.

6. Operators H,"r, V ("r) are even under time reversal T̂ ; operators
"p, "L,"σ are odd under T̂ . Operators are either even or odd under
time reversal. We can think of spin angular momentum classically
as due to a current loop in a plane ⊥ to the z-axis. Time reversal
causes the current to flow in the opposite direction.

7. T̂ and K̂ are anti-unitary operators, as shown below.

In this subsection we show that T̂ T̂ † = −1 and K̂K̂† = −1, which is
valid whether or not the spin is considered explicitly. The properties of
the inverse of T̂ and K̂ are readily found. Since K̂2 = 1, then K̂K̂ = 1
and K̂−1 = K̂. If for the case where the spin is treated explicitly
T̂ 2 = −1, then T̂ T̂ = −1 and T̂−1 = −T̂ ; T̂ = K̂σy for the case of spin.
For the spinless case, T̂ 2 = 1 and T̂−1 = T̂ .

Since complex conjugation changes i → −i, we can write K̂† = −K̂
so that K̂ is anti-unitary.

We now use this result to show that both T̂ and K̂ are anti-unitary.
This is the most important property of T̂ from the point of view of
group theory. Since K̂ = T̂ in the absence of spin, and since K̂ is anti-
unitary, it follows that T̂ is anti-unitary in this case. However, when
spin is included, T̂ = K̂σy and

σy = K̂T̂

σ†
y = T̂ †K̂†.

(21.11)

Since σy is a unitary operator, thus T̂ †K̂†K̂T̂ = 1 but since K̂†K̂ = −1
it follows that T̂ †T̂ = −1, showing that T̂ is also anti-unitary.

Furthermore K̂ and T̂ behave differently from all the operators that
we have thus far encountered in group theory, such as the point group
operations (rotations, improper rotations, mirror planes, inversion and
R= rotation of 2π for spin problems). Thus in considering symmetry
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operations in group theory, we treat all the unitary operators separately
by use of character tables and all the associated apparatus, and then we
treat time reversal symmetry as an additional symmetry con-
straint. We will see in Chapter 22 how time reversal symmetry enters
directly as a symmetry element for magnetic point groups.

We discuss first in §21.3 and §21.4 the general effect of T̂ on the
form of E("k) for the case of electronic bands (a) neglecting spin and
(b) including spin. After that, we will consider the question of de-
generacies imposed on energy levels by time reversal symmetry (the
Herring Rules).

21.3 The Effect of T̂ on E(!k), Neglecting
Spin

If for the moment we neglect spin, then the time reversal operation
acting on a solution of Schrödinger’s equation yields

T̂ψ("r) = ψ∗("r). (21.12)

Since the Hamiltonian commutes with T̂ , then both ψ("r) and ψ∗("r)
satisfy Schrödinger’s equation for the same energy eigenvalue, so that
a two-fold degeneracy occurs. We will now show that time reversal
symmetry leads to two symmetry properties for the energy eigenvalues
for Bloch states: the evenness of the energy eigenvalues E("k) = E(−"k),
and the zero slope of En("k) at the Brillouin zone boundaries.

The effect of the translation operation on a Bloch state is

ψk("r + "Rn) = ei"k·"Rnψk("r) (21.13)

and the effect of time reversal is

T̂ψk("r) = ψ∗
k("r). (21.14)

We can write the following relation for the complex conjugate of Bloch’s
theorem

ψ∗
k("r + "Rn) = e−i"k·"Rnψ∗

k("r) (21.15)
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and we can also rewrite Eq. 21.15 in terms of "k → −"k as

ψ∗
−k("r + "Rn) = ei"k·"Rnψ∗

−k("r) (21.16)

which upon comparing Eqs. 21.13, 21.15 and 21.16 implies that for
non-degenerate levels the time reversal operator transforms "k → −"k

T̂ψk("r) = ψ−k("r) = ψ∗
k("r). (21.17)

If the level is doubly degenerate and ψk("r) and φk("r) are the corre-
sponding eigenstates, then if T̂ψk("r) = φk("r) = ψ−k("r), no additional
degeneracy is required by time reversal symmetry. Time reversal sym-
metry thus implies that for a spinless system

En("k) = En(−"k) (21.18)

and the energy is an even function of wave vector "k whether or not
there is inversion symmetry.

Using this result (Eq. 21.18) and the E("k) = E("k + "K) periodicity
in "k space, we obtain:

E




"K

2
− δ"k



 = E



−
"K

2
+ δ"k



 = E




"K

2
+ δ"k



 (21.19)

where δ"k is an infinitesimal distance to the Brillouin zone boundary.
Thus referring to Fig. 21.1, E("k) comes into the zone boundary with
zero slope for both the lower and upper branches of the solutions in
Fig. 21.1. For the case where there is degeneracy at the zone boundary,
the upper and lower bands will have equal and opposite slopes.

We have been using the symmetry properties in Eqs. 21.18 and
21.19 throughout our solid state physics courses. In the most familiar
cases, E("k) depends on k2. Figure 21.1 taken from Kittel illustrates
the symmetry properties of Eqs. 21.18 and 21.19 for a simple parabolic
band at "k = 0.

Let us now consider the consequences of these ideas from a group
theoretical point of view, and enumerate Herring’s rules. If ψ("r) belongs
to the irreducible representation D, then T̂ψ("r) = ψ∗(r) will transform
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Figure 21.1: Simple E("k) diagram from Kittel for a spinless electron
illustrating both E("k) = E(−"k) and the zero slope of E("k) at the
Brillouin zone boundary.
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Table 21.1: Character table for point group C4.

C4 (4) E C2 C4 C3
4 Time reversal

x2 + y2, z2 Rz, z A 1 1 1 1 (a)
x2 − y2, xy B 1 1 −1 −1 (a)

(xz, yz)
(x, y)
(Rx, Ry)

}

E
1
1

−1
−1

i
−i

−i
i

(b)
(b)

according to D∗ which consists of the complex conjugate of all the
matrices in D.

We can distinguish three different possibilities in the case of no
spin:

(a) All of the matrices in the representation D can be written as
real matrices. In this case, the time reversal operator leaves the
representation D invariant and no additional degeneracies in E("k)
result.

(b) If the representations D and D∗ cannot be brought into equiv-
alence by a unitary transformation, there is a doubling of the
degeneracy of such levels due to time reversal symmetry. Then
the representations D and D∗ are said to form a time reversal
symmetry pair and these levels will stick together.

(c) If the representations D and D∗ can be made equivalent under
a suitable unitary transformation, but the matrices in this repre-
sentation cannot be made real, then the time reversal symmetry
also requires a doubling of the degeneracy of D and the bands
will stick together.

To illustrate these possibilities, consider the point group C4 (see
Table 21.1). Here irreducible representations A and B are of type (a)
above and each of these representations correspond to non-degenerate
energy levels. However, the two representations labeled E are complex
conjugates of each other and are of type (b) since there is no unitary
transformation that can bring them into equivalence. Thus because of
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the time reversal symmetry requirement, representation E corresponds
to a doubly degenerate level. This is an example where time reversal
symmetry gives rise to an additional degeneracy.

The time reversal partners are treated as different representations
when applying the following rules on character:

1. The number of irreducible representations is equal to the number
of classes.

2.
∑

i (
2
i = h.

Using the character table for the group of the wave vector, we can
distinguish which of the 3 cases apply for a given irreducible repre-
sentation using the Herring test (ref. C. Herring, Phys. Rev. 52, 361
(1937)). Let Q0 be an element in the space group which transforms "k
into −"k. Then Q2

0 is an element in the group of the wave vector "k and
all elements in the group of the wave vector are elements of Q2

0. If the
inversion operator i is contained in the group of the wave vector "k, then
all the elements Q0 are in the group of the wave vector "k. If i is not an
element of the group of the wave vector "k, then the elements Q0 may
or may not be an element in the group of the wave vector. Let h equal
the number of elements Q0. The Herring space group test is then

∑
Q0

χ(Q2
0) = h case (a)

= 0 case (b)
= −h case (c)

where χ is the character for a representation of the group of the wave
vector "k. These tests can be used to decide whether or not time reversal
symmetry introduces any additional degeneracies to this representation.
Information on the Herring test is contained for every one of the 32
point groups in the character tables in Koster’s book.

To apply the Herring test to the point group C4, and consider the
group of the wave vector for "k = 0. Then all four symmetry operations
take "k → −"k since "k = 0. Furthermore, E2 = E,C2

2 = E,C2
4 = C2 and

(C3
4)2 = C2 so that for representations A and B

∑

Q0

χ(Q2
0) = 1 + 1 + 1 + 1 = 4 (21.20)
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from which we conclude that A and B correspond to case (a), in agree-
ment with Koster’s tables.

On the other hand, for each representation under E,
∑

Q0

χ(Q2
0) = 1 + 1 + (−1) + (−1) = 0 (21.21)

from which we conclude that representations E correspond to case (b).
Therefore the two irreducible representations under E correspond to
the same energy and the corresponding E("k) will stick together. The
two representations under E are called time reversal conjugate rep-
resentations.

21.4 The Effect of T̂ on E(!k), Including
the Spin-Orbit Interaction

When the spin-orbit interaction is included, then the Bloch func-
tions transform as irreducible representations of the double group. The
degeneracy of the energy levels is different from the spinless situation,
and in particular every level is at least doubly degenerate.

When the spin-orbit interaction is included, T̂ = K̂σy and not only

do we have "k → −"k, but we also have "σ → −"σ under time reversal
symmetry. This is written schematically as:

T̂ψn,k↑("r) = ψn,−k↓("r) (21.22)

so that the time reversal conjugate states are

En↑("k) = En↓(−"k) (21.23)

and
En↓("k) = En↑(−"k). (21.24)

If inversion symmetry exists as well,

En("k) = En(−"k) (21.25)

then
En↑("k) = En↑(−"k) and En↓("k) = En↓(−"k) (21.26)
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making En↑("k) and En↓("k) degenerate. In more detail, since T̂ = K̂σy

and since

σy ↑ =

(
0 −i
i 0

) (
1
0

)

= i

(
0
1

)

= i ↓

σy ↓ =

(
0 −i
i 0

) (
0
1

)

= −i

(
1
0

)

= −i ↑

we obtain

T̂ψn,k↑("r) = T̂ ei"k·"r
[

un,k↑

(
1
0

)]

= e−i"k·"r
[

iu∗
n,k↑

(
0
1

)]

= e−i"k·"run,−k↓

(
0
1

)

(21.27)
which is a Bloch state for wave vector −"k and spin ↓. Likewise

T̂ψn,k↓("r) = T̂ ei"k·"r
[

un,k↓

(
0
1

)]

= e−i"k·"r
[

−iu∗
n,k↓

(
1
0

)]

= e−i"k·"run,−k↑

(
1
0

)

(21.28)
which is a Bloch state for wave vector −"k and spin ↑ in which we have
written

iu∗
n,k↑ = un,−k↓

and
−iu∗

n,k↓ = un,−k↑.

For a general point in the Brillouin zone, and in the absence of
spin-orbit coupling but including the spin on the electron, the energy
levels have a necessary 2-fold spin degeneracy and also exhibit the
property E("k) = E(−"k), whether or not there is inversion symmetry.
This is illustrated in Fig. 21.2(a). When the spin-orbit interaction is
turned on and there is inversion symmetry then we get the situation
illustrated in Fig. 21.2(b) where the 2-fold degeneracy remains. How-
ever, if there is no inversion symmetry, then the only relationships that
remain are those of Eqs. 21.23 and 21.24 shown in Fig. 21.2(c), and the
Kramers degeneracy results in E↑("k) = E↓(−"k) and E↓("k) = E↑(−"k).

The role of inversion symmetry is also important for the E("k) rela-
tions for degenerate bands. This is illustrated in Fig. 21.3 for degenerate
bands near "k = 0. We take as examples: (a) diamond for which the
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Figure 21.2: Schematic example of Kramers degeneracy in a crystal in
the case of: (a) no spin-orbit interaction where each level is doubly de-
generate (↑, ↓), (b) both spin-orbit interaction and inversion symmetry
are present and the levels are doubly degenerate, (c) spin-orbit interac-
tion and no spatial inversion symmetry where the relations 21.23 and
21.24 apply.

spin-orbit interaction can be neglected and all levels are doubly degen-
erate at a general point in the Brillouin zone, (c) InSb or GaAs which
have Td symmetry (lacking inversion) so that relations 21.23 and 21.24
apply and the two-fold Kramers degeneracy is lifted, (b) Ge or Si which
have Oh symmetry (including inversion) and the two-fold Kramers de-
generacy is retained at a general point in the Brillouin zone.

We give in Table 21.2 the Herring rules (see §21.3) whether or not
the spin-orbit interaction is included. When the spin-orbit interaction

Table 21.2: Summary of rules regarding degeneracies and time reversal.
Case Relation between

D and D∗
Frobenius-
Schur test

Spinless
electron

Half-integral
spin electron

Case (a) D and D∗ are equiva-
lent to the same real ir-
reducible representation

∑
R χ(Q2

0) = h No extra
degeneracy

Doubled
degeneracy

Case (b) D and D∗ are
inequivalent

∑
R χ(Q2

0) = 0 Doubled
degeneracy

Doubled
degeneracy

Case (c) D and D∗ are equivalent
to each other but not to
a real representation

∑
χ(Q2

0) = −h Double
degeneracy

No extra
degeneracy
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Figure 21.3: Schematic examples of energy bands E("k) in diamond, Ge
and GaAs near "k = 0. (a) Without spin-orbit coupling, each band in
diamond has a two-fold spin degeneracy. (b) Splitting by spin-orbit cou-
pling in Ge, with each band remaining doubly degenerate. (c) Splitting
of the valence bands by the spin-orbit coupling in GaAs. The magni-
tudes of the splittings are not to scale.
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is included, there are also three cases which can be distinguished. When
the time reversal operator T̂ acts on a spin dependent wavefunction ψ
which transforms according to an irreducible representation D, then we
have three possibilities:

(a) If the representation D is real, or can be transformed by a unitary
transformation into a set of real matrices, then the action of T̂
on these matrices will yield the same set of matrices. To achieve
the required additional degeneracy, we must have D occur twice.

(b) If representations D and D∗ cannot be brought into equivalence
by a unitary transformation, then the corresponding levels must
stick together in pairs to satisfy the time reversal degeneracy re-
quirement.

(c) If representations D and D∗ can be brought into equivalence but
neither can be made all real, then no additional degeneracy need
be introduced and both make up the time reversal degenerate
pair.

These results are summarized in Table 21.2 for both the case of
no spin and when spin-orbit interaction is included. We now illustrate
these rules with two cases:

1. the double group representations of the point group C4 (symmor-
phic)

2. the double group representation at the L point in Ge (or Si)
where the levels are degenerate by time reversal symmetry (non-
symmorphic)

For the first illustration, we give the character table for the dou-
ble group C4 taken from Koster et al. in Table 21.3. We note that the
Koster table contains an entry for time inversion, which summarizes the
results discussed in §21.1 for the spinless bands. Inspection of this char-
acter table shows that the double group representations involve the 4th

roots of unity (as shown below) and obey the relation χ(Ai) = −χ(Āi)
for each of the pairs of symmetry operations Ai and Āi. Note that
the character table originally given in Koster has some misprints with
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Table 21.3: Character table for C4

C4 E Ē C4 C̄4 C2 C̄2 C−1
4 C̄−1

4 Time
Inv.

Bases
for
C4

Γ1 1 1 1 1 1 1 1 1 a z or Sz

Γ2 1 1 −1 −1 1 1 −1 −1 a xy
Γ3 1 1 i i −1 −1 −i −i b −i(x + iy) or

−(Sx + iSy)
Γ4 1 1 −i −i −1 −1 i i b i(x − iy) or

(Sx − iSy)
Γ5 1 −1 ω −ω i −i −ω3 ω3 b φ(1/2, 1/2)
Γ6 1 −1 −ω3 ω3 −i i ω −ω b φ(1/2,−1/2)
Γ7 1 −1 −ω ω i −i ω3 −ω3 b φ(3/2,−3/2)
Γ8 1 −1 ω3 −ω3 −i i −ω ω b φ(3/2, 3/2)

regard to χ(C−1
4 ) = −χ(C̄−1

4 ), which are corrected in Table 21.3. This
character table shows that the characters for the Γ5 and Γ6 irreducible
representations are time reversal degenerate pairs, and likewise for the
Γ7 and Γ8 irreducible representations:

E Ē C4 C̄4 C2 C̄2 C−1
4 C̄−1

4

Γ5: ω0 ω4 ω ω5 ω2 ω6 ω7 ω3

Γ6: ω0 ω4 ω7 ω3 ω6 ω2 ω ω5

Γ7 ω0 ω4 ω5 ω ω2 ω6 ω3 ω7

Γ8: ω0 ω4 ω3 ω7 ω6 ω2 ω5 ω

Application of the Frobenius–Schur test for Γ5 yields:
∑

χ(Q2
0) = (1)(−1) + (1)(−1) − ω2 − ω2 + 1 + 1 − ω6 − ω6

= −1 − 1 − i − i + 1 + 1 + i + i = 0
(21.29)

where we note that for the double group representations we consider
the character χ(Q0Q̄0) in the Frobenius–Schur test. We thus find that
the representations Γ6, Γ7 and Γ8 are also of the b type with respect to
time reversal symmetry and this information is also given in Table 21.3.
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Table 21.4: Character Table and Basis Functions for the Group D3d
D3d E Ē 2C3 2C̄2 3C′

2 3C̄′
2 I Ī 2S6 2S̄6 3σd 3σ̄d Time

Inv.
Bases

L+
1 Γ+

1 1 1 1 1 1 1 1 1 1 1 1 1 a R
L+

2 Γ+
2 1 1 1 1 −1 −1 1 1 1 1 −1 −1 a Sx

"L+
3 Γ+

3 2 2 −1 −1 0 0 2 2 −1 −1 0 0 a (Sx − iSy),
−(Sx + iSy)

L−
1 Γ−

1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 a zSz

L−
2 Γ−

2 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 a z
L−

3 Γ−
3 2 2 −1 −1 0 0 −2 −2 1 1 0 0 a (x − iy),

−(x + iy)

L+
6 Γ+

4 2 −2 1 −1 0 0 2 −2 1 −1 0 0 c φ(1/2,−1/2)
L+

4 Γ+
5 1 −1 −1 1 i −i 1 −1 −1 1 i −i b φ(3/2,−3/2)

−iφ(3/2, 3/2)
L+

5 Γ+
6 1 −1 −1 1 −i i 1 −1 −1 1 −i i b − (φ(3/2, 3/2)

−iφ(3/2,−3/2))
L−

6 Γ−
4 2 −2 1 −1 0 0 −2 2 −1 1 0 0 c Γ+

4 × Γ−
1

L−
4 Γ−

5 1 −1 −1 1 i −i −1 1 1 −1 −i i b Γ+
5 × Γ−

1
L−

5 Γ−
6 1 −1 −1 1 −i i −1 1 1 −1 i −i b Γ+

6 × Γ−
1

For the L-point levels in Ge, see the E("k) diagram in Fig. 19.2b
for the case where the spin-orbit interaction is included. The character
table appropriate to the L-point is given in Table 21.4. The designation
for the L-point representations have been added on the left column of
Koster’s table.

For a Λ point, the operations E, 2C3 and 3C2 take "k → −"k. For the
L-point, all operations are of the Q0 type, so that for the representations
L1, L2 and L3, we have Σχ(Q2

0) = 12, yielding representations of type
a, in agreement with the character table for D3d (Table 21.4).

For the double group representation L+
6 we obtain

L+
6 = Σχ(Q2

0) = −4 − 2 + 0 − 4 − 2 + 0 = −12 type (c) (21.30)

where again we write Q0Q̄0 for Q2
0. For the double group representation

L+
4 the Frobenius–Schur test yields:

L+
4 : Σχ(Q2

0) = −1 − 2 + 3 − 1 − 2 + 3 = 0 type (b) (21.31)

Likewise L+
5 is of type b. Since L+

4 and L+
5 are complex conjugate rep-

resentations, L+
4 and L+

5 form time reversal degenerate pairs. Similarly,
L−

4 and L−
5 are type b representations and form time reversal degenerate

pairs (see Fig. 19.2b).
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With this discussion of time reversal symmetry, we have explained
all the entries to the character tables, and have explained why because
of time reversal symmetry certain bands stick together on the E("k) di-
agrams. In the following Chapter we see how the time reversal operator
becomes a symmetry element in magnetic point groups.

21.5 Selected Problems

1. Consider the space group D4
6h (#194) which we discussed in con-

nection with the lattice modes for graphite. We will now concern
ourselves with the electronic structure. Since the Fermi surfaces
are located close to the HK axes in the Brillouin Zone it is im-
portant to work with the group of the wave vector at points H,
K and P (see diagram).

(a) Using Miller and Love, and Koster et al., give the charac-
ter table including double groups for the group of the wave
vector at point K. Classify each of the irreducible represen-
tations according to whether they behave as a, b or c under
time reversal symmetry.

(b) Find the compatibility relations as we move away from K
toward H.


