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3.7 Saturation parameters (T)

Consider an ensemble of atoms that are illuminated by a light field. Suppose we
want to measure some property of the atoms with the light — for example, we are
interested in determining the strength of a particular transition. In this situation,
we need to be careful that the light field itself does not perturb the property of the
atoms we are trying to measure. On the other hand, perhaps we are interested in
observing some nonlinear optical process or maybe we want to optically pump all
of the atoms into a particular Zeeman sublevel. In these cases, it is necessary that
the light field strongly perturb the atomic system.

The crucial parameter that characterizes what regime we are in — whether or
not the light field strongly perturbs the populations of the atomic states — is called
the saturation parameter . The general form of the saturation parameter is

o — exmtatl'on rate . (3.156) -
relaxation rate

The tricky part is that the exact form of « and the behavior of the system as a
function of « depend on the specific system under consideration — the atomic level
structure, the relaxation mechanisms, etc. In this problem, we consider a Variéty
of systems in order to gain familiarity with calculating saturation parameters and
understanding their implications.

In the following cases (a) and (b), assume that the light is tuned to resonance
and that the optical depth is small, i.e.

Nogwd < 1, (3.157)

where £ is the length of the atomic sample, n is the atomic number density, and
Oas 1S the appropriate absorption cross-section (see Problems 3.5 and 3.6). The
quantity £y = (nogs)  is commonly referred to as the absorption length. The
condition (3.157) ensures that the intensity of the light field does not significantly
change as the light propagates through the sample and, as long as all dimensions
of the atomic sample are similarly small, that high atomic density effects such as
radiation trapping® are not important. Additionally we assume that the average
spacing between the atoms n~1/3 is considerably larger than the wavelength of the
light A. This allows us to ignore effects that involve cooperative behavior of the

atoms [such as Dicke superradiance (Dicke 1954), see Problem 3.14].

(a) Consider two-level stationary atoms for which the only source of line broad-
ening is the spontaneous decay of the upper state |e) back to the lower state
|g) (Fig. 3.5). Calculate the saturation parameter « for the |g) — |e) transition

8 If the atomic density is sufficiently high, there can be a significant probability that spontaneously
emitted photons are re-absorbed. Thus the photons must diffuse out of the atomic sample, which
affects, for example, measurements of excited state lifetimes. See, for example, Corney (1988).

S




146 INTERACTION OF ATOMS WITH LIGHT

e
|
.

Y,

0 |
Lpump

19>

F1G. 3.5 Level diagram for the two-level system considered in part (a).

for narrow-band (monochromatic) incident light, and find the dependence of the
fluorescence intensity on . '

Solution

The excitation rate I'ymp, (We can think of the light effectively “pumping” the atoms
into the excited state) is given by Eq. (3.132) from Problem 3.4:
d2e2
Lpump = — (3.158)
Yo

where d is the dipole matrix element (e|d|g) between the states, E¢ is the amplitude
of the light electric field, 7 is the spontaneous decay rate of |e) to |g), and we have
set i = 1. The relaxation rate in this problem is g, so from (3.156) we have

Cpump _ d2E2
p=— = 0 (3.159)
70 70

The fluorescence intensity /r is proportional to the number of atoms in the
excited state V. multiplied by the spontaneous decay rate yy. To find the popula-
tion of the upper state we can write rate equations for the number of atoms in the
excited state IV, and the number of atoms in the ground state N,:

dN, ‘
= LoumplNg 4 (90 + Lpump) Ne (3.160) ‘
dN.,

= = +TpmpNy = (70 + Dpump)Ne - (3.161)




SATURATION PARAMETERS (T) 147

0.5 ——
0.4
]\/:z 0.3
]\[‘[Ot 0.2
0.1
0 1 2 3 4 5

K

FIG. 3.6 Fractional population of excited state as a function of the saturation parameter x for the
case described in part (a). The fluorescence intensity Iz is proportional to o Ne.

We also know that N, + NV, g = N where N is the total number of atoms in the
sample. We have included the pumping rate for both the |g) — |e) transition and
the |e) — |g) transition because at sufficiently high light powers (x = 1), stimu-
lated emission from the upper state becomes important compared to spontaneous
emission. It is clear that the stimulated emission and absorption rates should be the
same from time-reversal symmetry [this can also be seen from Einstein’s famous
argument involving an atomic gas in thermal equilibrium with a photon gas, which
was used to derive the A and B coefficients; see, for example, Griffiths (1995) or
Bransden and Joachain (1989)]. In equilibrium, dN,/dt and d N, /dt are zero, and
we find that

K

= 175N (3.162)

€

so the fluorescence intensity is proportional to x/(1 + 2x) (Fig. 3.6).

(b) Now suppose we have a three-level system as shown in Fig. 3.7. The incident

light is resonant with the |g) — |e) transition and the excited state |¢) primarily

decays to a metastable level |m) at a rate . There is a slow relaxation rate 7, <
~o of the metastable level back to the ground state. The states |m) and |g) could
be, for example, different ground state hyperfine levels, and v, could be the result
of collisional relaxation. Again assume that Doppler broadening may be ignored
and that the excitation light is monochromatic.

Calculate the saturation parameter « for this situation, and find the dependence
of the fluorescence intensity on .
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FIG. 3.7 Level diagram for the three-level system considered in part (b).

Solution

The relaxation rate referred to in Eq. (3.156) is generally the slowest relaxation
rate in the system, since this process becomes a “bottleneck™ for the incoherent
return of atoms to the ground state. Therefore in this case the saturation parameter
is given by

d2e?
YO Vrel ’

(3.163)

K ==

since . i8 the slowest rate in the problem. N
To verify Eq. (3.163) and find the dependence of the spontaneous emission
intensity on x we again write down the appropriate rate equations as we did in part

(a):

dN, 3
d—tg = —TpumpNg + Vet Nom . (3.164)
dN,

dte =+ pumpNg — Y0 Ne , (3.165)
dN,,
T +v0Ne — YretlNim (3.166)

where we have neglected stimulated emission (since the transition saturates long

before stimulated emission becomes important). We also have the condition Ny, =

Ny + N¢ + Np,. Setting the time derivatives of the populations equal to zero to

obtain the steady state result, after some algebra (and making use of the fact that

Yt << o) we find for the excited state population (Fig. 3.8)

_ K
1+5& v

N - (3.167)

e
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FIG. 3.8 Fractional population of excited state as a function of the saturation parameter « for the
case described in part (b). For the plot we have chosen rej /vo =102

Note that the maximum population in the upper state (obtained for £ > 1) is

N.(max) = 22 Ny . (3.168)
Yo

Again the fluorescence intensity is proportional to ~o N, so the maximum fluores-
cence intensity is smaller than in the two-level case by a factor of 27,/70, since
atoms tend to reside in the “bottleneck” state |m,).

(¢) Now we discuss the phenomenon of power broadening. Consider the atomic
system discussed in part (b) of this problem (Fig. 3.

If one scans the frequency of a laser through the atomic resonance at low light
powers [k < 1, where & is given by expression (3.163)], one finds that the fluo-
rescence intensity measured as a function of detuning has a Lorentzian lineshape
with width 0. R

What is the dependence of the fluorescence intensity Iz(A) on detuning for
large «?

Solution

As the excitation light is tuned through resonance with the |g) — |[e) transition,
the pumping rate Iy, follows a Lorentzian dependence,” so we have an effective
saturation parameter r;(A) that depends on the detuning A of the light from
resonance:

2

v5/4
(A) = 0= 3.169
/fff( ) ’%22 7%/4 ( )

9 This can be seen by calculating the stimulated absorption rate as done in Problem 3.4 without
assuming the excitation light is on resonance, but rather using the Lorentzian profile from Eq. (3.79).
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where x is the resonant saturation parameter [Eq. (3.163)] and the Lorentzian is
normalized to unity on resonance. The effective saturation parameter kqs(A) can
be used directly in the rate equations in place of «, so we obtain from Eq. (3.167)
the fluorescence intensity Jr(A) o< 9N, as a function of detuning:

‘ Keff(A>
Ir(A) x — 7Ny 3.170
F( )Ocl‘{_/ﬂeff(A)le tot ( )
2
Yo/4 1
=K ’Yrethot (3171)
A2 2/4 5/4
+70/ 1+E<A2’Y+’Yg/4)
2
Yo/4
= EYrel Vot - 3172
A2+(1+I€)"}/§/4 Vrel LY tot v ( )
This is just a Lorentzian profile with a width
¥=yv1l+k (3.173)

known as the power-broadened linewidth.

(d) Finally, we consider how Doppler broadening affects our results. If the atoms in
a sample have a thermal distribution of velocities, from the viewpoint of a moving
atom the light frequency is shifted by an amount ~ k-7, where k is the wavevector
of the light and ¥/ is the atomic velocity. Averaging over all atomic velocities, as
mentioned in Problem 3.6, we have for Iz(A) in the limit of large Doppler width
Tp > 40:"° A

Ip(A) = Ip(0)e 2" /Th (3.174)

In contrast to the previously discussed homogeneous broadening mechanisms such
as spontaneous emission and power broadening, Doppler broadening is an example
of inhomogeneous broadening — the probability for emission and absorption is not
the same for all atoms.

Again consider atoms with the energy level structure shown in Fig. 3.7, but
now assume that the atoms have a thermal distribution of velocities. If we tune the
narrow-band excitation light to a particular frequency within the Doppler profile,
the light primarily interacts with a group of atoms whose velocities are such that
the Doppler shifts are less than the homogeneous linewidth. Such a set of atoms is
commonly referred to as a velocity group, illustrated in Fig. 3.9.

What is the dependence of fluorescence intensity on « for such a Doppler-
broadened medium?

1% A more accurate representation of the spectral profile, which takes into account both homoge-
neous and inhomogeneous broadening mechanisms is the Voigt profile, which is a convolution of
Lorentzian and Gaussian profiles [see, for example, Demtroder (1996) and Khriplovich (1991)].
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FIG. 3.9 When narrow-band excitation light is tuned to frequency w within a Doppler-broadened
profile, the fluorescence is due to a particular group of atoms with velocities ¥ whose Doppler
shifts are < ~.

Solution

The fraction NV of the total number of atoms NV, with which the light interacts is
) ,
6N ~ =Ny, (3.175)
I'p

where ~ is the homogeneous linewidth. For the considered case, -y is the power-
broadened linewidth given by Eq. (3.173). Otherwise, the rate equations for the
resonant velocity group remain the same as those considered in part (b), and we
have:

K K Yo
1 ON — N . 3.176
FO<1+H X TxTp tot ( )

Note that in contrast to the Doppler-free case, the fluorescence intensity con-
tinues to increase (o< 1/k) even for x > 1. This continues as long as yov/1 + £ <
T'p. In the opposite limit, v9y/1 -+ & > T'p, Doppler broadening may be ignored.




