
Phys 232 Problem Set 2
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Problem 1

An example of the preservation of causality and finite speed of propagation in spite of the use of Coulomb
gauge is afforded by dipole source that is flashed on and off at t = 0. The effective charge and current
densities are

ρ(r, t) = δ(x)δ(y)δ′(z)δ(t) (1)

J(r, t) = −ẑδ(x)δ(y)δ(z)δ′(t) (2)

This dipole is of unit strength and it points in the negative z direction

(a) Show that the instantaneous Coulomb potential is

Φ(r, t) = − 1

4πε0
δ(t)

z

r3
(3)

(b) Show that the transverse current Jt is

Jt(r, t) = −δ′(t)
[

2

3
ẑδ(r)− ẑ

4πr3
+

3

4πr3
r̂(ẑ · r̂)

]
(4)

where the factor of 2
3 comes from treating the gradient of z/r3 according to

E(r) =
1

4πε0

[
3r̂(p · r̂)− p

|r − r′|3
− 4π

3
pδ(r − r′)

]
(5)

(c) Show that the electric and magnetic fields are causal and that the electric field is

E(r, t) =
1

4πε0

c sin θ cos θ cosφ

r

[
−δ′′(r − ct) +

3

r2
δ(r − ct)− 3

r
δ′(r − ct)

]
x̂ (6)

+
1

4πε0

c sin θ cos θ sinφ

r

[
−δ′′(r − ct) +

3

r2
δ(r − ct)− 3

r
δ′(r − ct)

]
ŷ

+
1

4πε0

cz

r2

[
sin θ2δ′′(r − ct) + (3 cos2 θ − 1)

(
δ′(r − ct)− δ(r − ct)

r2

)]
ẑ

Hint: You can use

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
(7)

to explain why Eqn. 1 and Eqn. 2 describe a mathematical idealization of a dipole which is flashed on
and off at t = 0. These approximations may also help you make sense of the fields derived in part (c).
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Problem 2

An infinitely long straight wire on the z-axis has a circular cross section and obeys J(ω) = σ0E(ω) for all
ρ ≤ a. After initial transients, the charge density ρ(r, t) ≡ 0 and the current I(t) = I0 cosωt everywhere
inside the wire.

(a) Solve an appropriate Helmholtz equation and find the exact E(r, t) inside the wire. Express the ampli-
tude of the field in terms of I0.

(b) Solve an appropriate Helmholtz equation and find E an B exactly outside the wire.

(c) Use Poynting’s theorem to show that the normal component of the time-averaged Poynting vector 〈§〉
evaluated on any cylindrical surface concentric with the wire always points toward the z-axis.

(d) Use the Poynting vector to calculate the rate at which energy is lost to ohmic heating per unit length of
the wire.

(e) Use the Poynting vector to calculate the rate at which energy is lost to radiation per unit length of wire.
How is this result consistent with conservation of energy and the answer to part (c)?

Problem 3

Two small antennas a distance L apart along the z axis oscillate in phase at the same angular frequency ω
and amplitude α

J(r, t) = αẑδ3

(
r − L

2
ẑ

)
cosωt+ αẑδ3

(
r +

L

2
ẑ

)
cosωt (8)

(a) Find the electric field Erad(r, t) in the radiation zone (r very large compared to the system’s characteristic
diameter and the speed of light times its characteristic time).

(b) Calculate the radiated power delivered dPrad

dΩ per unit solid angle averaged over one cycle of the system.
Note that this problem is equivalent to the case of Fraunhofer (far-field) diffraction of plane waves by
two small slits a nonzero distance apart.

Problem 4

A current distribution consists of N identical sources. The kth source is identical to the first source except
for a rigid translation by an amount Rk (k = 1, 2, . . . , N). The sources oscillate at the same frequency ω
but have different phases δk. That is,

Jk ∝ e−i(ωt+δk) (9)

(a) Show that the angular distribution of radiated power can be written as the product of two factors:one
is the angular distribution for N = 1; the other depends on Rk

(b) The planes of two square loops (each with side length a) are centered on (and lie perpendicular to) the
z-axis at z = ±a/2. The loop edges are parallel to the x and y coordinate axes. Find the angular
distribution of power, dP

dΩ , in the x− z plane if the current at all points in both loops is I cosωt. Make
a polar plot of the angular distribution for ωa/c = 2π and ωa/c � 1. Identify the multipole character
of the radiation in the latter case.

(c) Repeat part (b) when the current in the upper loop is I cosωt and the current in the lower loop is
−I cosωt.
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Problem 5

Two identical point charges q are fixed to the ends of a rod of length 2` which rotates with a constant angular
velocity 1

2ω in the x− y plane about an axis perpendicular to the rod and through its center.

(a) Calculate the electric dipole moment and p(t). Is there electric dipole radiation?

(b) Calculate the magnetic dipole moment and m(t). Is there magnetic dipole radiation?

(c) Show that the electric quadrupole moment is

Q(t) =
1

2
q`2

1 + cosωt sinωt 0
sinωt 1− cosωt 0

0 0 0

 (10)
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(d) Show that the time-averaged angular distribution of radiated power is
〈
dP

d!

〉
= µ0

4π

q2ω6$4

32πc3

(
1 − cos4 θ

)
,

where θ is the polar angle measured from the z-axis.

20.26 Rotating-Triangle Radiation Three identical point charges q are glued to the corners of an equilateral
triangle that lies in the x-y plane. The charges rotate with constant angular velocity ω around the z-axis,
which passes through the center of the triangle. Find the angular distribution of electric dipole, magnetic
dipole, and electric quadrupole radiation (treated separately) produced by this source.

20.27 Collision Radiation Two point particles with masses m1 and m2 and charges q1 and q2 move slowly toward
one another. For what choices of mass and charge is this motion not accompanied by dipole radiation?

20.28 Radiation of Linear Momentum

(a) Compare the conservation laws for energy and linear momentum for a spherical volume. Use this to
define an angular distribution of the rate at which electromagnetic waves radiate linear momentum,
dPEM/dt d!, by analogy with the definition of the angular distribution of the rate at which electromag-
netic waves radiate energy, dP/d!.

(b) Express dP/d! and dPEM/dt d! entirely in terms of Erad.
(c) Show that the relation between the two quantities computed in part (b) is consistent with the mechanical

properties of electromagnetic plane waves.

20.29 Angular Momentum of Electric Dipole Radiation A collection of N charges lies inside a volume V .
With respect to a fixed origin, the angular momentum of the charges and the electromagnetic fields they
produce within V is

L = ε0

∫

V

d 3r {r × (E × B)} +
N∑

i=1

ri × pi .

(a) Let S be the surface which bounds V . The text used a general conservation law to establish that

dL
dt

= ε0

∫

S

dS · {cB(r × cB) + E(r × E)} + 1
2
ε0

∫

S

dS × r
{
E2 + c2B2} .

Derive this expression using the expression for L stated just above, the Maxwell equations, and the
Lorentz force law.

(b) Suppose that the N charges generate a time-dependent electric dipole moment p(t). Compute dL/dt

when V is chosen as a spherical volume (centered at the origin) so large that only the radiation fields
due to p(t) have any significant magnitude on S. Does the answer surprise you?

(c) Now use the exact fields associated with p(t) and recalculate dL/dt keeping only those terms which
survive in the limit when the sphere radius goes to infinity. Show that

dL
dt

= µ0

4π

1
2πc

∫

S

d! ([p̈]ret × r̂) (r̂ · [ṗ]ret) ,

where [p]ret = p(t − r/c).
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(d) Show that the time-averaged angular distribution of radiated power is〈
dP

dΩ

〉
=
µ0

4π

q2ω6`4

32πc3
(1− cos4 θ) (11)

where θ is the polar angle measured from the z-axis.
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