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References: Zangwill Chapters 18, 19, J. Goldstone and R.L. Jaffe, Physical Review B 45, 14100 (1992).

Problem 1

An electromagnetic wave E = §F exp(—iwt) can induce a net magnetization in a metal. To see this, let the
density and velocity of the electrons at a typical point be n = i + dn exp(—iwt) and v = D + Jv exp(—iwt),
where 7 is the mean density of the electrons and © = 0 is the mean velocity of the electrons. The current
density j = —enwv has two time-dependent pieces, which is §j = —endv = o6 E, where o = ine?/mw is the
collisionless Drude conductivity.

(a) Show that the time-averaged current density is (j) = —iR{edndv*}

(b) Evaluate dn to first order in Jv (using the continuity equation) and show that a piece of (j) has the
form V x M where (the plasma frequency is defined by wg = ne?/meg)
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(¢) Evaluate M when 0 F is linearly polarized. Repeat for circular polarization.

Problem 2

Drude’s conductivity formula fails when the frequency w is low and the mean time 7 between electron
collisions is large. If v is a characteristic electron speed, one says that the normal skin effect becomes
anomalous when the mean distance between collisions ¢ = v7 exceeds the skin depth d(w). To study this
regime, we first write the rate of change of an ohmic current density j(¢) as the sum of a field-driven
acceleration term dj/dt,.. = (0¢/7)E and a collisional deceleration term dj/dt.on = j/7. This reproduces
Ohm’s law in the steady state dj/dt = 0 because
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(a) Approximate dj/dt by 0j/0t and combine the foregoing with the Maxwell equations neglecting the
displacement current) to get a partial differential for B(r,t) that has only first-order time derivatives:
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Let B(z,t) = Boe'**=“Y and confirm that Drude’s frequency-dependent conductivity emerges from
your dispersion relation k(w).

(b) Drude’s conductivity formula overestimates the effect of collisions when £ > 6. A phenomenological way
to correct this exploits the convective derivative to write
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Derive a cubic equation which determines the new dispersion relation. Find k(w) explicitly in the extreme
anomalous limit (where the gradient term dominates) and show that

B(z,t) = Bgexp ((2 - \/g)z/é*(w)) et (5)

The anomalous skin depth §*(w) = 2(A%5/w)'/3 found here describes experiments well in this regime.

The constant A2 = m/ugne?.

(¢) Show that £ < 6 = /2/uowoy is the condition to neglect the non-local gradient term.

Problem 3

Consider time-harmonic solutions to the Maxwell equations in vacuum where the fields are independent of
the azimuthal angle ¢. TEM solutions of this type also have no radial component to the fields: E, = B, = 0.

(a) Show that the conditions stated above decouple the Maxwell curl equations into two subsets, each of
which describes a different type of TEM wave.

(b) Begin with the Maxwell divergence equations and find general solutions for E(r,0,t) and B(r,0,t) for
each of the two TEM wave types.

(¢) The figure below shows the apex of an infinite, solid conducting cone touching the conducting half-space
z < 0. Explain why this structure can be used to guide one of the TEM wave types found above but
not the other.
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Problem 4

A rectangular waveguide with a constant cross section and perfectly conducting walls contains a curved
section as sketched below. Also indicated is a local Cartesian coordinate system where the z-axis and y-axis
remain tangent and normal to the walls, respectively.

(a) The scalar function ® satisfies [V2 + w?/c?|®(y,z) = 0, where V2 = 8%/9y* + 9*/92%. how that the
four vacuum Maxwell equations and conducting wall-boundary conditions are satisfied by time-harmonic
transverse electric (TE) modes of the form

E = ﬁci%fb (6)
¢B=—&xVd (7)



(b) Suppose that the curvature k(z) of the side wall at any point on the guide satisfies ka < 1 so the
Laplacian operator in the local coordinate Cartesian coordinate system is well approximated by

1
V2 =0%/0y* + 0?02 + 5/12(2) (8)
Separate variables in the Helmholtz equation and show that propagating modes exist in the straight

portion of the guide (at least) when w > mc/a.

(c) Show that at least one mode exists in the curved part of the guide for w < m¢/a. Describe the spatial
characteristics of this solution. Hint: Make an analogy with the one-dimensional, time-independent
Schrédinger equation.



