
Phys 232 Problem Set 6

Released: 4/15/2020
Due: 4/29/2020

References: Zangwill Chapters 18, 19, J. Goldstone and R.L. Jaffe, Physical Review B 45, 14100 (1992).

Problem 1

An electromagnetic wave E = δE exp(−iωt) can induce a net magnetization in a metal. To see this, let the
density and velocity of the electrons at a typical point be n = n̄+ δn exp(−iωt) and v = v̄ + δv exp(−iωt),
where n̄ is the mean density of the electrons and v̄ = 0 is the mean velocity of the electrons. The current
density j = −env has two time-dependent pieces, which is δj = −en̄δv = σδE, where σ = in̄e2/mω is the
collisionless Drude conductivity.

(a) Show that the time-averaged current density is 〈j〉 = − 1
2<{eδnδv

∗}

(b) Evaluate δn to first order in δv (using the continuity equation) and show that a piece of 〈j〉 has the
form ∇×M where (the plasma frequency is defined by ω2

p = ne2/mε0)

M =
iε0eω

2
p

4mω3
(δE × δE∗) (1)

(c) Evaluate M when δE is linearly polarized. Repeat for circular polarization.

Problem 2

Drude’s conductivity formula fails when the frequency ω is low and the mean time τ between electron
collisions is large. If v̄ is a characteristic electron speed, one says that the normal skin effect becomes
anomalous when the mean distance between collisions ` = v̄τ exceeds the skin depth δ(ω). To study this
regime, we first write the rate of change of an ohmic current density j(t) as the sum of a field-driven
acceleration term dj/dtacc = (σ0/τ)E and a collisional deceleration term dj/dtcoll = j/τ . This reproduces
Ohm’s law in the steady state dj/dt = 0 because

dj

dt
=
σ0
τ
E − j

τ
(2)

(a) Approximate dj/dt by ∂j/∂t and combine the foregoing with the Maxwell equations neglecting the
displacement current) to get a partial differential for B(r, t) that has only first-order time derivatives:

∇2

[
B + τ

∂B

∂t

]
= µ0σ0

∂B

∂t
(3)

Let B(z, t) = B0e
i(kz−ωt) and confirm that Drude’s frequency-dependent conductivity emerges from

your dispersion relation k(ω).

(b) Drude’s conductivity formula overestimates the effect of collisions when `� δ. A phenomenological way
to correct this exploits the convective derivative to write

dj

dt
=
∂j

∂t
− v̄ ∂j

∂z
(4)
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Derive a cubic equation which determines the new dispersion relation. Find k(ω) explicitly in the extreme
anomalous limit (where the gradient term dominates) and show that

B(z, t) = B0 exp
(

(i−
√

3)z/δ∗(ω)
)
e−iωt (5)

The anomalous skin depth δ∗(ω) = 2(Λ2v̄/ω)1/3 found here describes experiments well in this regime.
The constant Λ2 = m/µ0ne

2.

(c) Show that `� δ =
√

2/µ0ωσ0 is the condition to neglect the non-local gradient term.

Problem 3

Consider time-harmonic solutions to the Maxwell equations in vacuum where the fields are independent of
the azimuthal angle φ. TEM solutions of this type also have no radial component to the fields: Er = Br = 0.

(a) Show that the conditions stated above decouple the Maxwell curl equations into two subsets, each of
which describes a different type of TEM wave.

(b) Begin with the Maxwell divergence equations and find general solutions for E(r, θ, t) and B(r, θ, t) for
each of the two TEM wave types.

(c) The figure below shows the apex of an infinite, solid conducting cone touching the conducting half-space
z < 0. Explain why this structure can be used to guide one of the TEM wave types found above but
not the other.
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19.3 TEM Waves Guided by a Cone and a Plane Consider time-harmonic solutions to the Maxwell equations
in vacuum where the fields are independent of the azimuthal angle φ. TEM solutions of this type also have
no radial component to the fields: Er = Br = 0.

(a) Show that the conditions stated above decouple the Maxwell curl equations into two subsets, each of
which describes a different type of TEM wave.

(b) Begin with the Maxwell divergence equations and find general solutions for E(r, θ, t) and B(r, θ, t) for
each of the two TEM wave types.

(c) The figure below shows the apex of an infinite, solid conducting cone touching the conducting half-space
z < 0. Explain why this structure can be used to guide one of the TEM wave types found above but not
the other.

z

z=0

19.4 The Lowest Propagating Mode of a Waveguide The TM and TE modes of a hollow-tube waveguide
are determined by the two-dimensional Helmholtz equation [∇2

⊥ + γ 2]ψ = 0 with boundary conditions
ψ |S = 0 and ∂ψ/∂n|S = 0, respectively. The same equation and boundary conditions apply when ψ(x, y)
is the wave function of a free particle in a two-dimensional box with infinite or finite potential walls, and
when ψ(x, y) is the vibrational amplitude of a drumhead whose perimeter is held fixed or left free.

(a) Produce an argument based on the behavior of a quantum particle-in-a-box to argue that one type of
mode (either TE or TM) always has the lowest (non-zero) frequency for a hollow-tube waveguide with
an arbitrary cross sectional shape.

(b) Produce an argument based on the behavior of an elastic drumhead to reach the same conclusion as in
part (a).

Flexible membrane

Hollow shell

19.5 Semi-Circular Waveguide A perfectly conducting waveguide has a cross section in the shape of a semi-
circle with radius R.

(a) Find the longitudinal fields Ez and Bz for the TM and TE modes, respectively. Find also the cut-off
frequency for these modes.

(b) Write explicit formulae for the transverse fields for the lowest cutoff frequency found in part (a).

19.6 Whispering Gallery Modes Consider a hollow conducting tube with a circular cross section of radius R

and infinite length.

(a) Find monochromatic TE (Ez = 0) and TM (Hz = 0) solutions of the Maxwell equations inside the
tube which propagate around the tube circumference and thus do not depend on the longitudinal
coordinate z.
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Problem 4

A rectangular waveguide with a constant cross section and perfectly conducting walls contains a curved
section as sketched below. Also indicated is a local Cartesian coordinate system where the z-axis and y-axis
remain tangent and normal to the walls, respectively.
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(a) The scalar function ! satisfies [∇2
⊥ + ω2/c2]!(y, z) = 0, where ∇2

⊥ = ∂2/∂x2 + ∂/∂y2. Show that
the four vacuum Maxwell equations and conducting wall-boundary conditions are satisfied by time-
harmonic transverse electric (TE) modes of the form

E = x̂ i
ω

c
! cB = −x̂ × ∇!.

(b) Suppose that the curvature κ(z) of the side wall at any point on the guide satisfies κa % 1 so the
Laplacian operator in the local coordinate Cartesian coordinate system is well approximated by

∇2 = ∂2

∂y2
+ ∂2

∂z2
+ 1

2
κ2(z).

Separate variables in the Helmholtz equation and show that propagating modes exist in the straight
portion of the guide (at least) when ω > πc/a.

(c) Show that at least one mode exists in the curved part of the guide for ω < πc/a. Describe the spatial
characteristics of this solution. Hint: Make an analogy with the one-dimensional, time-independent
Schrödinger equation.

19.12 TE and TM Modes of a Coaxial Waveguide An infinitely long coaxial waveguide is formed in the
vacuum volume between two concentric, perfectly conducting cylinders with radii b and a > b.

(a) Find E and B for the TE and TM modes of this guide and find (but do not try to solve) the transcendental
equations that determine the mode frequencies.

(b) Approximate expressions for the TE and TM mode frequencies can be found for the case when
a − b % ρ̄ = 1

2 (a + b). Replace the variable ρ by ρ̄ in appropriate places in the radial part of the
Helmholtz equation and redo the analysis of part (b), now including a determination of the mode
frequencies.

19.13 A Baffling Waveguide The figure below shows the circular cross section of an infinitely long metallic
waveguide with an infinitesimally thin, metallic baffle inserted into its otherwise hollow interior. The baffle
has infinite length and a width equal to the radius R of the waveguide.

(a) Show that the baffle increases the lowest cutoff frequency for TM modes.
(b) Show that the baffle decreases the lowest cutoff frequency for TE modes.

R

19.14 Waveguide Charge and Current

(a) Calculate the induced surface charge density σTM and the longitudinal surface current density KTM

associated with the propagation of a TM mode in a perfectly conducting waveguide with a uniform
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(a) The scalar function Φ satisfies [∇2
⊥ + ω2/c2]Φ(y, z) = 0, where ∇2

⊥ = ∂2/∂y2 + ∂2/∂z2. how that the
four vacuum Maxwell equations and conducting wall-boundary conditions are satisfied by time-harmonic
transverse electric (TE) modes of the form

E = x̂i
ω

c
Φ (6)

cB = −x̂×∇Φ (7)
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(b) Suppose that the curvature κ(z) of the side wall at any point on the guide satisfies κa � 1 so the
Laplacian operator in the local coordinate Cartesian coordinate system is well approximated by

∇2 = ∂2/∂y2 + ∂2/∂z2 +
1

2
κ2(z) (8)

Separate variables in the Helmholtz equation and show that propagating modes exist in the straight
portion of the guide (at least) when ω > πc/a.

(c) Show that at least one mode exists in the curved part of the guide for ω < πc/a. Describe the spatial
characteristics of this solution. Hint: Make an analogy with the one-dimensional, time-independent
Schrödinger equation.
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