
Chem 163, Problem Set 1
Due 9/8/2022 in class

September 1, 2022

1 Daily ATP consumption

1. How many Calories do you eat in a day? Give an estimate and convert
this to joules. (Recall that 1 Cal = 1 kcal = 1,000 cal.)

2. Approximately how many Watts does your metabolism consume?

3. Approximately 50% of the calories you eat end up being used via ATP
hydrolysis, which provides about 50 kJ/mol ATP. How many moles
of ATP does your body use in a day? How many kilograms is this?
Express this as a fraction of your estimated body weight. Does this
number seem strange? Explain. (The molecular weight of ATP is 507
g/mol.)

4. Typical ATP concentration in the body is 1-10 mM. Estimate the vol-
ume of the body and the number of moles of ATP in the body.

5. How many times per day does each molecule of ATP get used? If you
suddenly stopped producing ATP, how long would you have before your
body ran out?

2 Number of bacteria in your body

Estimate the volume of your body. A useful approach is to start with your
mass, and then calculate volume making a reasonable assumption about your
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density (what happens when you go swimming?). Estimate the number of
human cells in your body.

Your intestines have about 1 L of bacteria in them. Estimate the number
of bacteria in your intestines, assuming the bacteria are close-packed next to
each other. Compare to the number of cells in your body. Are you surprised?

3 Pair-wise diffusion

Suppose you have two particles, A and B, with diffusion coefficients DA and
DB respectively, diffusing on a 1-D line. In a time-step ∆t, what is the
distribution of displacements for each particle? What is the distribution
of changes in the distance between the particles, xAB? What is the mean-
square change in distance between the particles as a function of time? Can
you assign an effective diffusion coefficient to the inter-particle distance?

4 Log-normal distribution

The generality of the Central Limit Theorem might make you think that
all iterated random processes lead to a Gaussian (a.k.a. Normal) distribu-
tion. This is not the case, as we will discover in this problem! Consider
an exponentially growing bacterial population in a fluctuating environment
(e.g. the grad student sometimes forgets to feed the poor creatures). The bac-
terial population can be modeled as a multiplicative random walk, starting
at x = x0. x evolves in time according to the following rules

x(t+ 1) = x(t)× (1 + ϵ): probability p

x(t+ 1) = x(t)× (1 + δ): probability q,

where |ϵ| ≪ 1 and |δ| ≪ 1, but ϵ and δ can be positive or negative.
Let y = lnx. For large t, what is the probability distribution P (y)?

What are the mean, µ, and variance, σ2, of this distribution? Now we want
the probability distribution, mean, and variance of x. This scenario comes
up quite often in probability theory: we have some random variable y, with
a known probability distribution, P (y)dy (you just calculated it!). Then
we have another variable, x, which we can express as some function x =
f(y). We want to know the probability distribution of x, Q(x)dx. If x is a
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monotonically varying function of y, then

Q(x)dx = P (y)

∣∣∣∣dydx
∣∣∣∣ dx.

What is the probability distribution of x for large t? This distribution,
Q(x) is called the “log-normal” distribution. Do you understand why?

Calculate the mean of this distribution. Feel free to express your answers
in terms of the mean, µ, and variance, σ2, of P (y) (this is not a totally
trivial integral to evaluate; feel free to use Mathematica or to look it up).
On average, which grows faster: the bacteria of the sloppy grad student who
sometimes forgets to feed the bacteria, and then overcompensates by giving
them extra food at later times, or the bacteria of the fastidious grad student
who maintains the same average growth rate, µ, at all times?

The log-normal also describes the distribution of the intensity of radiation
(e.g. light) transmitted through a medium composed of a random distribu-
tion of many small absorbing or scattering objects. For instance, it applies
to sunlight propagation through clouds, cellphone signals traveling through
cities, and light penetrating the forest canopy.

5 Working with Matlab

The purpose of this problem is to get you conversant with Matlab, and to
demonstrate the Central Limit Theorem numerically.

If you don’t have Matlab already installed on your computer, download
and install it from:

http://downloads.fas.harvard.edu/download
Alternatively, Matlab is installed on the computers in the computer lab

in the Science Center Basement.
If you haven’t used Matlab before, download and read the “Getting

Started” guide, accessible from the Help menu when you open Matlab. The
most important parts of this guide to look at are: “Matrices and Arrays,”
“Graphics,” and “Programming.”

For the purpose of these exercises we ask that you put all of your com-
mands in a script, so that you can submit a printout which, if run, would
generate the results you will turn in.

Create a row vector, P1, of dimension (1,101), filled with zeros (look
up the zeros command by typing help zeros at the command line; other
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commands can be looked up in this way too). Now fill some elements near the
middle of this array with positive nonzero values, normalized so that sum(P1)
= 1. This array will be the probability distribution for the displacements of
each step of a random walk.

Create another row vector, x, that goes from -50 to 50. Calculate the
expectation value ⟨x⟩ by summing x(i)*P1(i) for i = 1:101. There are at
least three ways to do this sum:

� write a for loop that tallies the sum;

� look up the .* operation. Evaluate sum(x.*P1)

� perform a matrix multiplication by evaluating x*P1’.

Approach 3 is by far the most efficient, both to type into the computer and
for the computer to evaluate. Do you understand how it works?

Make sure that |⟨x⟩| < 1. If not, change your single-step distribution.
Make a plot of P1 and print it out.
Now create a second vector, P2, that is the convolution of P1 with itself

(look up the conv command). The vector P2 will be longer than P1 (can you
explain why?). Resize P2 to keep only the middle values, elements 51:151.
Plot P2 and make a printout. P2 is the probability distribution after two
steps of a random walk with single-step distribution given by P1.

Now write a loop to calculate the probability distribution PN after N steps.
Make a printout for a few values of N, say 5, 10, 20, 50. Does the behavior
make sense? Calculate the mean and variance of the distribution after each
of these times. How do they both change with N?

6 Simulating a random walk

In this problem you will re-create the distributions you calculated in the first
problem, by two other means. Let the variable x undergo a random walk
according to the following rules:

x(t+ 1) = x(t)− 1: probability p

x(t+ 1) = x(t) + 1: probability q,

with p+ q = 1.
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1. For the case p = 0.6 and q = 0.4, use the code from problem 1 to
simulate the probability distribution of where you will be after 100
steps, and make a plot of this distribution.

2. Now you will re-create this distribution by direct simulation. Create a
variable x (initialized to 0) and write a for loop to evolve x according
to the rules above (Hint: look up the rand command. How would you
generate an event with probability p, given a random variable uniformly
distributed between 0 and 1?). Have this loop run for 100 steps. Make
a plot showing an overlay of 5 trajectories, all starting at x = 0 (Hint:
look up the hold all command)

3. Now write a program to repeat this 100-step simulation 10,000 times,
storing each of the final values in the variable xfinal(k). You don’t
need to keep the intermediate steps of each trajectory.

4. On the same graph as in part 1, plot a probability distribution, P, of
xfinal (use the hold command to keep one plot while you overlay
another on top). You can use the hist command to generate the
probability distribution. Choose a bin size ∆x and normalization so
that the probability distribution is normalized (i.e. (

∑
P)∆x = 1)!

Report the mean and variance of xfinal (look up the commands mean
and var).

5. Finally, re-create the distribution by application of the central limit
theorem. Analytically calculate what you expect for the mean and
variance, and write the formula for the expected probability distribu-
tion, P (x). Plot this probability distribution on the same plot as the
other two probability distributions. Does the result make sense?

7 Diffusion to capture

In this problem you will simulate 1D diffusion toward an absorbing boundary.
This is a simple model of nutrient transport and uptake, e.g. of sugar diffusing
toward a bacterium. Consider a particle with a diffusion coefficient of D =
100µm2/s.

1. In a time step δt = 1 ms, what is the distribution of 1D displacements
of this particle?
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2. Consider a 1D channel, 10 µm long, with a reflecting boundary at
x = 0, and an absorbing boundary at x = 10µm. Suppose the particle
above is released at x = 1µm. Simulate its trajectory in time steps of
1 ms, using the step size distribution you calculated above (Hint: the
randn command will give you a Gaussian distributed random variable
with mean 0 and variance 1.). If a step takes the particle to a negative
coordinate, implement the reflection by taking the absolute value of
the position. End the simulation when the particle crosses x = 10µm
for the first time. Make a plot of the trajectory.

3. Repeat the above simulation 1,000 times. For each iteration, record (a)
the time elapsed until the particle is absorbed, and (b) the histogram of
particle positions over the entire trajectory, dividing the interval [0, 10]
into bins of 0.5 µm. What is the mean time elapsed before the particle
is absorbed? This is called the ‘mean first-passage time’. Make a plot of
the mean distribution of particle locations. Does this plot make sense?
If particles were released at x = 1µm a constant rate, this distribution
would be proportional to the steady-state concentration profile. Is this
concentration profile a steady-state solution to the diffusion equation?
Why or why not? Does this concentration profile obey the no-flux
boundary condition (∂c/∂x = 0 at x = 0)?

4. Repeat the above simulation 1,000 times, but with absorbing boundary
conditions at x = 0 and x = 10µm. Plot the steady-state concentration
profile. What is the ratio of absorption on the right (at x = 10µm)
vs. absorption at the left (at x = 0)? Now do this again for particles
released at x = 2µm, x = 3µm, ..., x = 9µm. Can you use the diffusion
equation to derive a formula for the branching ratio as a function of the
position where the particles are released? Hint: The rate of absorption
at a boundary is proportional to the flux into the boundary, which is
proportional to the gradient in concentration at the boundary.
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