
Chem 163 2022 
HW 6, Due Thurs Nov. 3, 2022 
Modeling dynamical systems 
 
1) Integrate-and-fire neuron 
In this problem we’ll make a simple Matlab simulation of an integrate-and-fire neuron.  The membrane 
voltage evolves following: 
 
𝐶𝐶 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚∞ (𝑉𝑉)(𝑉𝑉 − 𝐸𝐸𝑁𝑁𝑁𝑁) + 𝑔𝑔𝐾𝐾(𝑉𝑉 − 𝐸𝐸𝐾𝐾) = 𝐼𝐼,   [1] 
 
where C is the membrane capacitance, m∞(V) is the sodium activation gate, V is the membrane voltage, 
gNa and gK are the sodium and potassium conductances respectively, ENa and EK are the corresponding 
reversal potentials, and I is the injected current.   
 
A) Suppose the sodium activation gate, m∞(V) is modeled as an activating conductance (open at more 
positive voltage) with a V1/2 = -40 mV and a gating charge of qNa = +6.  Write an expression for m∞(V) 
assuming that this conductance responds fast enough to always be at equilibrium.   
 
B) Let’s assume that the potassium conductance is a simple Ohmic leak with reversal potential EK. 
 
Let C = 100 pF 
𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 5 nS (nanosiemens) 
ENa = 40 mV 
V1/2 = -40 mV 
 
Make plots of: 
m∞ vs. V 
𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚∞(𝑉𝑉)(𝑉𝑉 − 𝐸𝐸𝑁𝑁𝑁𝑁) vs. V 
 
C) Assume that EK = -60 mV.  Make a plot which overlays graphs of 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚∞ (𝑉𝑉)(𝑉𝑉 − 𝐸𝐸𝑁𝑁𝑁𝑁) + 𝑔𝑔𝐾𝐾(𝑉𝑉 − 𝐸𝐸𝐾𝐾) 
for gK ranging from 0 to 10 nS, in steps of 1 nS. 
  
D) Assume gK = 5 nS.  For injected currents, I, ranging from -200 pA to 200 pA in steps of 1 pA, calculate 
the equilibrium voltage(s).  Make a plot showing the voltage(s) as a function of I.  Indicate stable 
equilibria with points (Matlab ‘.’ linespec) and unstable equilibria with open circles (Matlab ‘o’ linespec). 
 
E) Now let’s look at the dynamics.  Set up an integrate-and-fire neuron where the maximum voltage (the 
‘threshold voltage’) is Vth = -20 mV, the ‘reset voltage’ is Vr = -70 mV, and the dynamics between Vr and 
Vth are governed by Eq. 1 above.  If the voltage ever crosses Vth, it is immediately reset to Vr. 
 
Set up a time axis of duration 10 s in steps of 0.1 ms.  Set up a current ramp I that goes from 0 to 50 pA 
during the first 5 s, and then goes from 50 to 0 pA during the second 5 s, i.e. the current vs. time should 
look like this: 



 
 
Simulate the voltage vs. time.  Your result should look something like this: 

 
 
Now repeat this calculation with Vr = -50 mV and make a plot of V vs. t.  What is different about the plot 
of V vs. t? 
 
Now repeat this calculation with Vr = -45 mV and make a plot of V vs. t.  Can you explain what is going 
on? 
 
2) Izhikevich model neuron 
This problem is based on a famous article by the author of our textbook on Dynamical Systems in 
Neuroscience: 
Izhikevich, Eugene M. "Simple model of spiking neurons." IEEE Transactions on neural 
networks 14.6 (2003): 1569-1572. 
Read this article (it is short!). 
 
A) The Izhikevich model is a generalization of the simple quadratic integrate and fire model.  The 
Izhikevich model includes the fact that the parameters of an integrate-and-fire neuron can change 
depending upon the past history of spiking.  Many neurons have additional feedback channels, such as 
Ca2+-gated K+ channels, which suppress excitability if a neuron is spiking at a high rate, i.e. the spiking 
threshold depends on the history.  These feedbacks can lead to rich dynamics.  A striking feature of the 
Izhikevich model is that it can capture many of the firing patterns observed in the brain with just a few 
simple parameters. 
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The parameter u in the model captures the slow feedbacks: it acts as another current which is added to 
the injected current. 
 
Write a Matlab program to simulate the Izhikevich model (Eqs. 1 – 3 from the Izhikevich paper).  Note 
that in the Izhikevich formulas, V is measured in mV and t in ms. 
 
Simulate a 1 s voltage waveform using the Izhikevich model with the following parameters: 
a=0.02; 
b=0.2; 
c=-65; 
d=2; 
Vth = 30; % mV 
dt = 0.001; % ms 
t = (0:dt:1e3); % in ms 
 
Have the voltage start at -60 mV and the parameter u start at 0.  Set the current to jump from I = 0 to I = 
10 at 0.1 s.  The input current should look like this: 

 
Your result should look like this: 

 
 
 
Now repeat this exercise with the following sets of parameters: 
 
a=0.02; 
b=0.2; 
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c=-55; 
d=4; 
 
and: 
 
a=0.02; 
b=0.2; 
c=-50; 
d=2; 
 
These parameters mimic the behavior of different types of cortical neurons. 
 
3) Simple conductance-based neuron model 
In the prior examples we had to reset the voltage ‘by hand’ when it crossed a threshold.  In this problem 
we will implement a simple model of a neuron where a voltage-gated K+ channel drives the downstroke 
of the action potential. 
 
The model is: 

𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚∞ (𝑉𝑉)(𝑉𝑉 − 𝐸𝐸𝑁𝑁𝑁𝑁) + 𝑔𝑔𝐾𝐾𝑛𝑛(𝑉𝑉, 𝑡𝑡)(𝑉𝑉 − 𝐸𝐸𝐾𝐾) = 𝐼𝐼 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑛𝑛∞(𝑉𝑉) − 𝑛𝑛

𝜏𝜏(𝑉𝑉)  

 
The new effect is that the potassium channel (KV) now has an activation gate, n, which is not 
instantaneous.  As before, the NaV channel drives the upstroke of the action potential.  But then the 
gradual activation of the KV channel causes the upper fixed point to become unstable, so the voltage 
then returns to baseline. 
 
A) Suppose the KV channel activates at positive voltages, with a half-activation voltage 𝑉𝑉1/2

𝐾𝐾  and a gating 
charge qK.   Write an expression for 𝑛𝑛∞(𝑉𝑉) (this is similar to problem 1A). 
 
B) Calculate the nullclines of this system, i.e. nV(V) for which dV/dt = 0, and nn(V) for which dn/dt = 0.  
Make a plot of these curves for V between -70 and +30 mV with the parameters: 
gNa = 5e-9; % Siemens 
ENa = 0.068;  % Sodium reversal potential, Volts 
VNaHalf = -0.04;  % NaV channel half-activation voltage, Volts 
qNa = 6;  % Dimensionless NaV gating charge 
gK = 15e-9; % Siemens 
EK = -0.08; % Potassium reversal potential, Volts 
VKHalf = -0.037; % KV channel half-activation voltage, Volts 
qK = 3; % Dimensionless KV gating charge 
Iinj = 16e-12;  % Amps 
 
Your result should look something like this: 



 
Identify on your graph the fixed points of the system. 
 
Find a set of parameters for which there is only one fixed point and plot the corresponding nullclines. 
 
C) Suppose that the transition state for opening the KV channel lies half way between the open and 
closed states, i.e. the voltage-induced shift in transition state energy is half of the difference between 
open and closed state energies.  Write an expression for 𝜏𝜏(𝑉𝑉).  You can use a parameter k0 for the 
`attempt frequency’ (assumed to be the same in both the open and closed state) and U0 for the barrier 
height when 𝑉𝑉 =  𝑉𝑉1/2

𝐾𝐾 .   
 
Write an expression for 𝜏𝜏(𝑉𝑉)

𝜏𝜏�𝑉𝑉=𝑉𝑉1/2
𝐾𝐾 �

 and make a plot of this quantity as a function of V, assuming 𝑉𝑉1/2
𝐾𝐾 =

−30 mV. 
 
D) Write a function with the following header: 
Function [dvdt, dndt] = HHmodel(V, n, params); 
% V is the membrane voltage 
% n is the gating variable on a Kv channel 
% params is a vector containing: 
% [membrane capacitance (F), gNa (S), ENa (V), VNaHalf (V),  
% qNa (dimensionless), gK (S), EK (V), VKHalf (V), 
% qK (dimensionless), tau(V = VKHalf), I (Amps)] 
       
 
Use the function ode45 to solve for V(t) and n(t) on t in [0, 3 seconds] using the following parameters: 
 
C = 1e-10;  % Farads 
gNa = 5e-9; % Siemens 
ENa = 0.068;  % Volts 
VNaHalf = -0.04;  % Volts 
qNa  = 6;  % Dimensionless 
gK = 15e-9; % Siemens 
EK = -0.08; % Volts 
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VKHalf = -0.04; % Volts 
qK = 4; % Dimensionless 
tau0 = 50e-3; % seconds 
Iinj = 16e-12;  % Amps 
 
To call the HHmodel function using ode45, it is helpful to have the wrapper function: 
 
function out = HHwrapper(t, y, params); 
% wrapper function for HHmodel that concatenates the outputs into a single 
% vector.  Useful for evaluating with ode solvers. 
  
V = y(1); 
n = y(2); 
[dvdt, dndt] = HHmodel(V, n, params); 
out = [dvdt; dndt]; 
 
To solve the ODEs on the time interval 0 – 3 s with the initial conditions V = -0.02, n = 0.5, you can run 
the code: 
tSpan = [0, 3]; 
y0 = [-0.02; 0.5]; 
[t, y] = ode45(@(t,y) HHwrapper(t,y, params), tSpan, y0); 
 
Then y(:,1) is the voltage waveform and y(:,2) is the n waveform. 
 
Make some plots showing the dynamics on the phase plots (i.e. n vs. V) and vs. time.  Explore the roles 
of the different parameters in the ‘params’ vector, and the initial conditions.  See if you can make a 
system that oscillates stably.  Here are two examples (you’ll have to figure out the parameters!): 
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