
Chem 163 2022 
HW 7, Due Thurs Nov. 10, 2022 
Waves in excitable media, polymers, rods 
 
1) Final project progress 
Please write an outline of the calculations or simulations you will do for your final project.  You can 
approach this as an exercise in writing a problem set: break your project into discrete pieces and frame 
the question for each in a form that can be answered by a calculation or simulation.  
 
2) Action potential propagation 
 
In the last homework you developed a simple conductance-based neuron model: 
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𝑑𝑑𝑑𝑑
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In this problem you will extend the model to include conduction between cells.  In the heart, 
cardiomyocytes couple to each other through electrical gap junctions (connexins).  A current will flow 
between neighboring cells whose membrane voltages differ.  The voltage equation then becomes: 
 

𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚∞ (𝑉𝑉)(𝑉𝑉 − 𝐸𝐸𝑁𝑁𝑁𝑁) + 𝑔𝑔𝐾𝐾𝑛𝑛(𝑉𝑉, 𝑡𝑡)(𝑉𝑉 − 𝐸𝐸𝐾𝐾) = 𝐼𝐼 + 𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙2∇2𝑉𝑉 

 
where gcxn is the conductance of the connexin channels, and l is the length scale of an individual cell.  In 
discrete space in 1 dimension, i.e. where we treat each cell as a unit, the equation becomes: 
 

𝐶𝐶
𝑑𝑑𝑉𝑉𝑖𝑖
𝑑𝑑𝑑𝑑

+ 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚∞ (𝑉𝑉𝑖𝑖)(𝑉𝑉𝑖𝑖 − 𝐸𝐸𝑁𝑁𝑁𝑁) + 𝑔𝑔𝐾𝐾𝑛𝑛𝑖𝑖(𝑉𝑉𝑖𝑖, 𝑡𝑡)(𝑉𝑉𝑖𝑖 − 𝐸𝐸𝐾𝐾) = 𝐼𝐼𝑖𝑖 + 𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝑖𝑖+1 + 𝑉𝑉𝑖𝑖−1 − 2𝑉𝑉𝑖𝑖) 

 
Here i is the index of the cell.  At the left edge, the Laplacian becomes just 𝑉𝑉2 − 𝑉𝑉1 and at the right edge, 
the Laplacian becomes 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒−1 − 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒. 
 

A) Adjust your HHmodel equation so that it can take a vector for V and for n, and add a gap 
junction term which couples the current from each cell to its neighbors, as above.  Let there be 
an external current Iinj injected into cell 1.   

 
Let’s add a gCxn term to the set of parameters. The function header then becomes: 

 
Function [dvdt, dndt] = HHmodel(V, n, params); 
% V is the membrane voltage 
% n is the gating variable on a Kv channel 
% params is a vector containing: 



% [membrane capacitance (F), gNa (S), ENa (V), VNaHalf (V),  
% qNa (dimensionless), gK (S), EK (V), VKHalf (V), 
% qK (dimensionless), tau(V = VKHalf), gCxn (S), I (Amps)] 
 
 

B) Adjust your HHwrapper equation to accept a time-dependent current.  The easiest way to do 
this is to change it as below.  Here iTimes are a set of times where the current is specified, and 
iVals are the corresponding values.  The first and last values of iTimes should be the start and 
stop times of the interval used in ode45.  The wrapper uses linear interpolation (‘interp1’) to 
infer the injected current at other times. 

 
function out = HHwrapper(t, y, params, iTimes, iVals); 
% function out = HHwrapper(t, y, params, iTimes, iVals); 
% 
% wrapper function for HHmodel that concatenates the outputs into a single 
% vector.  Useful for evaluating with ode solvers. 
% 
% params is a vector containing: 
% [membrane capacitance (F), gNa (S), ENa (V), VNaHalf (V),  
% qNa (dimensionless), gK (S), EK (V), VKHalf (V), 
% qK (dimensionless), tau(V = VKHalf), gCxn (S)] 
% 
% NOTE: params does not contain Iinj--this parameter is extracted from the  
% time-dependent current 
% 
% y is a vector whose elements 1:nCells are the voltages in each cell, and  
% whose elements (nCells+1):end are the n variables in each cell. 
  
nCells = length(y)/2; 
 
V = y(1:nCells); 
n = y((nCells+1):end); 
iInj = interp1(iTimes, iVals, t); 
params = [params, iInj]; 
 
[dvdt, dndt] = HHmodel(V, n, params); 
out = [dvdt; dndt]; 
 
 

C) Test your system with a current pulse of magnitude 50 pA from 0.1 to 0.2 s, i.e.: 
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Consider a chain of 50 cells.  A good starting value for the connexin conductance is gcxn = 2.1 nS.  Use the 
function ode45 to solve for V(x,t) and n(x,t) on t in [0, 3 seconds] using the parameters from last week.  
See if you find parameters that lead to a propagating wave. 
 
Here is an example solution, where the injected current is shown in black: 

 
 
3) Radius of gyration of a polymer 
In class we calculated the root-mean-square end-to-end distance for a freely jointed chain 
polymer.  Calculate the root-mean-square distance of one of the ends from the center of mass 
(assume a 3-D FJC with N steps of length b), i.e. 〈(𝐫𝐫𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐫𝐫𝑐𝑐𝑐𝑐)2〉1/2, where the average is over 
all conformations of the polymer.   
Just fyi, the root-mean-square distance of any point on the polymer from the center of mass is 

called the radius of gyration, i.e. 𝑟𝑟𝑔𝑔 = �1
𝑁𝑁
∑ 〈(𝐫𝐫𝑖𝑖 − 𝐫𝐫𝑐𝑐𝑐𝑐)2〉𝑁𝑁
𝑖𝑖=1 �

1/2
. 

 
4) Phillips problem 8.10 or 8.11 (depending on you version). 
DNA subjected to a stretching force exceeding 60 pN undergoes a structural transition from the 
usual B form to the so-called S form (“S” for stretch). Here we examine a simple model of this 
transition based on the freely joined chain (FJC) model of DNA and compare it with 
experimental data.   

a) Consider the FJC model in one dimension.  Each link of the polymer points in the +x or 
the -x direction.  There is a force f in the +x direction applied at one of the ends. To 
account for the B to S transition we assume that thinks are of length b (B state) or a (S 
state), with a > b. Furthermore, there is an energy penalty ε of transforming the link from 
a B state to an S state. (This is the energy, presumably, for unstacking the base pairs.) 
Write down the expressions for the total energy and the Boltzmann factor for each of the 
four states of a single link. 

b) Compute the average end-to-end distance for one link. The average end-to-end distance 
for a chain of N links is N times as large. 

c) Plot the average end-to-end distance normalized by Nb (that is, the relative extension) 
as a function of force using the numbers appropriate for DNA: b = 100 nm, a = 190 nm.  
To estimate ε take the energy per base pair for transforming B-DNA to S-DNA to be 
5 kBT (the length of one base pair is approximately 1/3 nm for B DNA). How does your 
plot compare to the data posted on the website? 



5) Persistence lengths 
This problem will require you to do some research on the Internet or in a library.  Give the 
bending moduli and room temperature persistence lengths of some common materials (you 
should only have to look up one property; calculate the other). 
Double stranded DNA 
Actin filament 
Microtubule 
Pencil 
For the pencil, use a Young’s modulus for wood of 13 GPa, and a radius of 3 mm.  The bending 
modulus of a solid rod is given by 𝜅𝜅 = 𝐸𝐸𝑚𝑚𝐼𝐼, where Em is the Young’s modulus and I is the 
moment area of inertia, given by 𝐼𝐼 = 𝜋𝜋𝑟𝑟4

4
 for a solid cylindrical rod. 

 


