GRR Rapid xeeq;
Response

Practical IR with GRR
DFRWS EU 2015

Agenda

e Introduction to GRR

e Demo: Setting up your own GRR server

e Hands on work

Easy stuff (Files, Registry, ...)

More advanced stuff (Investigating live memory)

Super interesting stuff (Using Rekall on live memory)

Stuff at scale (Collect all the things everywhere at the same
time)

e Discussion

O O O O

Remote Forensics at Google Scale

e Joe saw something weird, check his machine
o (p.s. Joe is on holiday in Cambodia and on 3G)

e Forensically acquire 25 machines for analysis
o (p.s. they're in 5 continents and none are Windows)

e Tell me if this machine is compromised
o (while you're at it, check 100000 of them - i.e. "hunt" across the fleet)

What is GRR?

What is GRR?
e “GRR Rapid Response”
e Agent based forensics investigation tool

e Open source (Apache License 2.0)

e Long term support

What is GRR?

e Built, maintained, used by Google... and others
o 6 full time developers
o Lots of people helping out

e Built by engineers for engineers

FAQ: https://github.com/google/grr-doc/blob/master/faq.adoc

https://github.com/google/grr-doc/blob/master/faq.adoc

Architecture

e Client
e Frontend Server e’
® Admln UI / lLoad balancerl \
o Worker Frontend Frontend
Server Server
‘ CO”SOIG I I Message
— Queues

Console RDF DB VARIKET
Flow restorationan:
execution.
CLI
Console Worker

Datastore

e Default db is Mongodb (for now...)
e Can also run on Mysal, Filesystem (SQLite),

RemoteDataStore (see presentation)
o Abstraction makes replacing it easy

e Built on AFF4

o Every object has a URN, and some attributes
m EXx.: Client urn “aff4:/C.1c0162518681e509"

e Attributes: architecture, mac_addresses, usernames, ...

Datastore

e Data is versioned
o Usually nothing is deleted ever
m Just new version are added
m -> The complete history is kept in the GRR DB

Clients

e Clients for Windows, Mac, Linux
o Stable, robust, low-impact
m Python
m Memory, CPU limited
m \Watchdog process
o Contains very little logic
m encoded in “Flows” on the server

Communications

Client polls the server for work
Defaults to once every 10 minutes
Messages are protobufs

Signed and encrypted end to end
Default connection via "HTTP”

Audit Controls

e GRR is remote root equivalent

e Audit controls

o Multi-party authorization
o Audit hooks

o Made possible by passing ACLToken

objects

o User, reason, expiry
o Not enabled today, you can ignore them

Demo

e Setting up your own GRR server

o System is fairly complex

m but we have a script :)
o Minimal hardware requirement: one box
o Should be up and running in 10 - 15 mins

m Including key generation, client customization
and generation, ...

Workshop test environment

e GRR server at
o <server taken down until the next workshop, sorry>

e Clients connected:
o 2 Windows server 2008, 2 Windows server 2012
o 2 Ubuntu 14.04, 1 RHEL 7.1
o 1 Mac running Mavericks

Demo

e \Norkshop server

Exercise 1 - Introduction to GRR

e Server IP: <taken down>
e User accounts: User<n>/Password<n>

e Search the client database
o “." gives all clients

e Look at client info
o Look at Mac, Linux clients as well

e Check out /fs/os in the VFS
o Also /fs/tsk, /registry for Win clients

Flows

e Flows encapsulate logic

o Clients are “dumb”

m Client actions are basic building blocks
e “Get me this file”, “List this directory”
m -> Clients don’t need to be updated frequently
o Flows interpret the data received

m EXx.. Get browser plugins
e Downloads file(s) with known paths
e Parses received data to find plugin directories
e Downloads those directories

Flow Processing

e Flows are processed on the Worker(s)
O Completely asynchronous

m [riggered by incoming responses from a client or
from a subflow
o Flows schedule more tasks
m Call one or more client actions
m Call a subflow

Flow Processing

e Flows are processed on the Worker(s)

o Flows are then suspended and stored in the
datastore

m If client goes away, flow just resumes at a later
time
o In the end, results are produced
m Shown in the Ul
m Sent back to parent flows

Launching Flows

e |Launching flows demo

FileFinder

e Flow to search for files by multiple criteria
o path, name, contents (literal / regex), time

e \When a file matches, an action is run

o Download, hash, send to socket, just report
existence

FileFinder

e Demo, this will be next exercise

Exercise 2 - File downloading

e Client C.3718d5d27f51d6ea
e Getallistofall DLLs (*.dll) in C:
\Windows\System32

e Get the partition boot sector C:\$BOOT
o Windows API will hide this! Use pathtype TSK

e There is a file containing the string
"malware" in <Desktop>\Browsercache. Try
to find it.

Registry Analysis

e Registry analysis works like file analysis

o Keys / Directories, Values / Files
o Same operations supported!

m Globbing

m Content match on values

Exercise 3 - Registry

e Client C.a25e72587cd41c3e

e Poke around using the Registry finder

o Should be straightforward - similar to FileFinder
o Please don’t schedule huge recursive listings.

e One of the values in
HKEY LOCAL MACHINE\SOFTWARE\
Microsoft\Internet Explorer
contains the string "malware". Which one?

Memory Analysis

e GRR comes with memory acquisition drivers
o Windows, Mac work out of the box
o Linux is harder
m needs driver compiled on target machine
m Or use /proc/kcore

e Memory Collector flow

o Literal / Regex search
o Download an image live!

Memory Collector

e Demo

Exercise 4 - Memory Inspection

e Client: any Windows
e Use the Memory Collector to find a short
string (ex. “grr’) in memory and inspect the

context.

o Please use report only, don’t take memory images
o Also, just get the FIRST_HIT, not all of them

Advanced Memory Analysis

e GRR has Rekall built in
o https://github.com/gooqgle/rekall

e Memory analysis framework

o Plugins to analyze kernel structures and extract

forensics data
o Usually works on images, we do it live :)

https://github.com/google/rekall
https://github.com/google/rekall

Advanced Memory Analysis

e Demo

Exercise 5 - Memory Analysis

e Use the AnalyzeClientMemory flow to run

Rekall plugins directly on a client.
o Candidates: pslist, dlllist, modules

Hunts

e Hunting is running a flow on all the clients in the fleet

e Fleet checks
o | found this suspicious file on one machine,
which other boxes have it too?

e Baselining
o Download the Mutexes/RunOnce Keys/... from all machines
o Which ones stand out?
o Which ones are new compared to last week?

Hunts

e Demo time - Collect Notepads and Export

Hunt Performance

e Longish lead time
o Foreman delay
o Client poll delay

e Once started, checks the whole fleet in hours
o Mostly depending on client availability

Hunt Performance

Agent Coverage

I I T 1 I 1 I I
.
c .
g :
< :
— Agents issued.
: : — Agents completed.
a i a i a . . .
0 5 10 15 20 25 30 35 40 45

Time (h)

Exercise 6 - Fleetwide Process List

e Get a list of all processes running on

Windows machines in the test setup
o Bonus task, do it also for Linux

e Look at hunt stats
o Cpu used, network used, worst performers

Embedded Flash Malware

e Inspired by Hacking Team attack

o Flash based attack inside Office document
e How would we go around finding this using

GRR?

Exercise 7 - Hunt Embedded Flash

e There are files in C:\Temp on the Windows
machines

e Run a hunt to find the documents that
contain embedded Flash

o Thatis, they contain the literal “ShockwaveFlash.
ShockwaveFlash”

Artifacts

e Flows are too tricky for simple things

e \We wish we could share information better

e To0o much duplicate code
o -> Let's generalize to Artifacts

Artifacts

Define what to collect

Define how to parse it

Define the result they produce
Data only, no code

Yaml based format

https://github.com/ForensicArtifacts/artifacts

https://github.com/ForensicArtifacts/artifacts
https://github.com/ForensicArtifacts/artifacts

Artifacts

e Example Artifact:

name: SecurityEventLog
doc: Windows Security Event Log.
collectors:
- action: GetFile
args: {path: '%%environ_systemroot% %\System32\winevt\Logs\SecEvent.
evi'}
conditions: [os_major_version >= 6]
labels: [Logs]
supported_os: [Windows]
urls: ['http://www.forensicswiki.org/wiki/Windows Event Log (EVT)']

Artifacts

Knowledge Base Interpolation

%%environ_allusersprofile%% — c:\Documents and Settings\All Users
%%systemroot%% — c:\Windows\System32

%%users.appdata%%
— c:\Documents and Settings\foo\AppData\Roaming
— c:\Documents and Settings\bar\AppData\Roaming
— c:\Documents and Settings\baz\AppData\Roaming

https://github.com/google/grr/blob/master/proto/knowledge_base.proto

https://github.com/google/grr/blob/master/proto/knowledge_base.proto
https://github.com/google/grr/blob/master/proto/knowledge_base.proto

Artifacts

e Demo - Artifact Collector flow

Exercise 8 - Artifacts

e Check out the Artifact Collector flow

o Collect an artifact
m EventlLog?...

e You suspect that the machine C.
a25e72587cd41c3e was owned by a drive by
download. Can you show one of the users went to
pho8.com using Chrome?

The End...

arr-users@googlegroups.com
arr-dev@googlegroups.com

mailto:grr-users@googlegroups.com
mailto:grr-users@googlegroups.com
mailto:grr-dev@googlegroups.com
mailto:grr-dev@googlegroups.com

