
GRR Rapid
Response

Andreas Moser, Google

Practical IR with GRR
DFRWS EU 2015

Agenda

● Introduction to GRR
● Demo: Setting up your own GRR server
● Hands on work

○ Easy stuff (Files, Registry, …)
○ More advanced stuff (Investigating live memory)
○ Super interesting stuff (Using Rekall on live memory)
○ Stuff at scale (Collect all the things everywhere at the same

time)
● Discussion

Remote Forensics at Google Scale

● Joe saw something weird, check his machine
○ (p.s. Joe is on holiday in Cambodia and on 3G)

● Forensically acquire 25 machines for analysis
○ (p.s. they're in 5 continents and none are Windows)

● Tell me if this machine is compromised
○ (while you're at it, check 100000 of them - i.e. "hunt" across the fleet)

What is GRR?

What is GRR?
● “GRR Rapid Response”

● Agent based forensics investigation tool

● Open source (Apache License 2.0)

● Long term support

What is GRR?

● Built, maintained, used by Google… and others
○ 6 full time developers
○ Lots of people helping out

● Built by engineers for engineers

FAQ: https://github.com/google/grr-doc/blob/master/faq.adoc

https://github.com/google/grr-doc/blob/master/faq.adoc

Architecture

● Client
● Frontend Server
● Admin UI
● Worker
● Console

Datastore

● Default db is Mongodb (for now...)
● Can also run on Mysql, Filesystem (SQLite),

RemoteDataStore (see presentation)
○ Abstraction makes replacing it easy

● Built on AFF4
○ Every object has a URN, and some attributes

■ Ex.: Client urn “aff4:/C.1c0162518681e509”
● Attributes: architecture, mac_addresses, usernames, ...

Datastore

● Data is versioned
○ Usually nothing is deleted ever

■ Just new version are added
■ -> The complete history is kept in the GRR DB

Clients

● Clients for Windows, Mac, Linux
○ Stable, robust, low-impact

■ Python
■ Memory, CPU limited
■ Watchdog process

○ Contains very little logic
■ encoded in “Flows” on the server

Communications

● Client polls the server for work
● Defaults to once every 10 minutes
● Messages are protobufs
● Signed and encrypted end to end
● Default connection via “HTTP”

Audit Controls

● GRR is remote root equivalent
● Audit controls

○ Multi-party authorization
○ Audit hooks

● Made possible by passing ACLToken
objects
○ User, reason, expiry
○ Not enabled today, you can ignore them

Demo

● Setting up your own GRR server
○ System is fairly complex

■ but we have a script :)
○ Minimal hardware requirement: one box
○ Should be up and running in 10 - 15 mins

■ Including key generation, client customization
and generation, ...

Workshop test environment

● GRR server at
○ <server taken down until the next workshop, sorry>

● Clients connected:
○ 2 Windows server 2008, 2 Windows server 2012
○ 2 Ubuntu 14.04, 1 RHEL 7.1
○ 1 Mac running Mavericks

Demo

● Workshop server

Exercise 1 - Introduction to GRR

● Server IP: <taken down>
● User accounts: User<n>/Password<n>
● Search the client database

○ “.” gives all clients
● Look at client info

○ Look at Mac, Linux clients as well
● Check out /fs/os in the VFS

○ Also /fs/tsk, /registry for Win clients

Flows

● Flows encapsulate logic
○ Clients are “dumb”

■ Client actions are basic building blocks
● “Get me this file”, “List this directory”

■ -> Clients don’t need to be updated frequently
○ Flows interpret the data received

■ Ex.: Get browser plugins
● Downloads file(s) with known paths
● Parses received data to find plugin directories
● Downloads those directories

Flow Processing

● Flows are processed on the Worker(s)
○ Completely asynchronous

■ Triggered by incoming responses from a client or
from a subflow

○ Flows schedule more tasks
■ Call one or more client actions
■ Call a subflow

Flow Processing

● Flows are processed on the Worker(s)
○ Flows are then suspended and stored in the

datastore
■ If client goes away, flow just resumes at a later

time
○ In the end, results are produced

■ Shown in the UI
■ Sent back to parent flows

Launching Flows

● Launching flows demo

FileFinder

● Flow to search for files by multiple criteria
○ path, name, contents (literal / regex), time

● When a file matches, an action is run
○ Download, hash, send to socket, just report

existence

FileFinder

● Demo, this will be next exercise

Exercise 2 - File downloading

● Client C.3718d5d27f51d6ea
● Get a list of all DLLs (*.dll) in C:

\Windows\System32
● Get the partition boot sector C:\$BOOT

○ Windows API will hide this! Use pathtype TSK
● There is a file containing the string

"malware" in <Desktop>\Browsercache. Try
to find it.

Registry Analysis

● Registry analysis works like file analysis
○ Keys / Directories, Values / Files
○ Same operations supported!

■ Globbing
■ Content match on values

Exercise 3 - Registry

● Client C.a25e72587cd41c3e
● Poke around using the Registry finder

○ Should be straightforward - similar to FileFinder
○ Please don’t schedule huge recursive listings.

● One of the values in
HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Internet Explorer
contains the string "malware". Which one?

Memory Analysis

● GRR comes with memory acquisition drivers
○ Windows, Mac work out of the box
○ Linux is harder

■ needs driver compiled on target machine
■ or use /proc/kcore

● Memory Collector flow
○ Literal / Regex search
○ Download an image live!

Memory Collector

● Demo

Exercise 4 - Memory Inspection

● Client: any Windows
● Use the Memory Collector to find a short

string (ex. “grr”) in memory and inspect the
context.
○ Please use report only, don’t take memory images
○ Also, just get the FIRST_HIT, not all of them

Advanced Memory Analysis

● GRR has Rekall built in
○ https://github.com/google/rekall

● Memory analysis framework
○ Plugins to analyze kernel structures and extract

forensics data
○ Usually works on images, we do it live :)

https://github.com/google/rekall
https://github.com/google/rekall

Advanced Memory Analysis

● Demo

Exercise 5 - Memory Analysis

● Use the AnalyzeClientMemory flow to run
Rekall plugins directly on a client.
○ Candidates: pslist, dlllist, modules

Hunts
● Hunting is running a flow on all the clients in the fleet

● Fleet checks
○ I found this suspicious file on one machine,

which other boxes have it too?

● Baselining
○ Download the Mutexes/RunOnce Keys/… from all machines
○ Which ones stand out?
○ Which ones are new compared to last week?

Hunts
● Demo time - Collect Notepads and Export

Hunt Performance

● Longish lead time
○ Foreman delay
○ Client poll delay

● Once started, checks the whole fleet in hours
○ Mostly depending on client availability

Hunt Performance

Exercise 6 - Fleetwide Process List

● Get a list of all processes running on
Windows machines in the test setup
○ Bonus task, do it also for Linux

● Look at hunt stats
○ Cpu used, network used, worst performers

Embedded Flash Malware

● Inspired by Hacking Team attack
○ Flash based attack inside Office document

● How would we go around finding this using
GRR?

Exercise 7 - Hunt Embedded Flash

● There are files in C:\Temp on the Windows
machines

● Run a hunt to find the documents that
contain embedded Flash
○ That is, they contain the literal “ShockwaveFlash.

ShockwaveFlash”

Artifacts

● Flows are too tricky for simple things
● We wish we could share information better
● Too much duplicate code

○ -> Let's generalize to Artifacts

Artifacts

● Define what to collect
● Define how to parse it
● Define the result they produce
● Data only, no code
● Yaml based format
https://github.com/ForensicArtifacts/artifacts

https://github.com/ForensicArtifacts/artifacts
https://github.com/ForensicArtifacts/artifacts

Artifacts
● Example Artifact:

name: SecurityEventLog
doc: Windows Security Event Log.
collectors:
- action: GetFile
 args: {path: '%%environ_systemroot%%\System32\winevt\Logs\SecEvent.
evt'}
conditions: [os_major_version >= 6]
labels: [Logs]
supported_os: [Windows]
urls: ['http://www.forensicswiki.org/wiki/Windows_Event_Log_(EVT)']

Artifacts

Knowledge Base Interpolation
%%environ_allusersprofile%% → c:\Documents and Settings\All Users
%%systemroot%% → c:\Windows\System32
%%users.appdata%%
 → c:\Documents and Settings\foo\AppData\Roaming
 → c:\Documents and Settings\bar\AppData\Roaming
 → c:\Documents and Settings\baz\AppData\Roaming

https://github.com/google/grr/blob/master/proto/knowledge_base.proto

https://github.com/google/grr/blob/master/proto/knowledge_base.proto
https://github.com/google/grr/blob/master/proto/knowledge_base.proto

Artifacts

● Demo - Artifact Collector flow

Exercise 8 - Artifacts

● Check out the Artifact Collector flow
○ Collect an artifact

■ Event Log? …
● You suspect that the machine C.

a25e72587cd41c3e was owned by a drive by
download. Can you show one of the users went to
pho8.com using Chrome?

The End...

grr-users@googlegroups.com
grr-dev@googlegroups.com

mailto:grr-users@googlegroups.com
mailto:grr-users@googlegroups.com
mailto:grr-dev@googlegroups.com
mailto:grr-dev@googlegroups.com

