
GRR Rapid
Response

Darren Bilby, Joachim Metz - Google

Practical IR with GRR
OSDF 2013

Agenda

Presentation: GRR Architecture

Exercise 1: Installation and doing something useful

Presentation: How flows work

Presentation: Customization

Exercise 2: Client Customization

Break - 15 Minutes

Presentation: VFS and Pathspecs

Presentation: Audit controls

Exercise 3: Using the Console

Presentation: Hunting

Break 15 Minutes

Presentation: Getting data out of GRR

Exercise 4: Running a Hunt

Presentation: Artifacts

Exercise 5 Artifacts

Today
Extra instructions at:
 https://code.google.com/p/grr/wiki/OSDFWorkshopInfo2013

Ask any question you want

Instructors:
 Darren Bilby - Google
 Joachim Metz - Google

https://code.google.com/p/grr/wiki/OSDFWorkshopInfo2013

What is GRR?

https://code.google.com/p/grr/wiki/ProjectFAQ

● Built, maintained, used by Google…. and others

● GRR Rapid Response (no Google)

● Long term support

● Prioritized for IR capabilities but used for other things

● Built by engineers for engineers

https://code.google.com/p/grr/wiki/ProjectFAQ
https://code.google.com/p/grr/wiki/ProjectFAQ

Architecture

● Client
● Frontend Server
● Admin UI
● Worker, Enroller
● Console

Exercise 0

● Install the server as per:
○ https://code.google.com/p/grr/wiki/GettingStarted

● Check the user manual for downloading
clients
○ http://grr.googlecode.com/git/docs/user_manual.

html#_downloading_agents

https://code.google.com/p/grr/wiki/GettingStarted
https://code.google.com/p/grr/wiki/GettingStarted
http://grr.googlecode.com/git/docs/user_manual.html#_downloading_agents
http://grr.googlecode.com/git/docs/user_manual.html#_downloading_agents
http://grr.googlecode.com/git/docs/user_manual.html#_downloading_agents

Communications

● Client polls the server for work
● Defaults to once every 10 minutes
● Client backs off
● Messages are protobufs
● Signed and encrypted end to end
● Unique key-pair generated at enrolment time

Client

● Python code compiled with pyinstaller
● Single directory
● Logging to syslog, event log, file
● Windows zip installer
● Linux deb/rpm
● OSX pkg file
● Resource constraints

Datastore

● Built on Mongodb
● Can also run on Mysql
● Abstraction makes replacing it easy

● Built on AFF4
○ Every object has a URN, and some attributes

Exercise 1

Do something useful With GRR

Instructions at:
 https://code.google.com/p/grr/wiki/OSDFWorkshopInfo2013

Life of a Flow
Flow

Queue Client Queue
1. Admin UI creates
flow with StartFlow

2. CallClient creates
Requests on the Flow
Queue 3. CallClient copies Requests

to the Client Queue

ClientFrontend

4. Client Requests
Work

5. Frontend sends
requests to Client

6. Client sends responses. Frontend
writes them to Flow queue.

7. Client sends Status response
to indicate completion.

8. Frontend notifies worker that
responses are ready

Worker
Queue

9. Worker reads responses and
runs next flow state.

Life of a Flow

Step1: Flow created
1. StartFlow run, Start state is executed
2. Create the flow object aff4:/C.

0000000000001/flows/W:B1C77B76
3. Create requests in the flow
4. Copy requests to the Client Queue aff4:/C.

0000000000001/tasks

Grep Memory https://code.google.com/p/grr/source/browse/lib/flows/general/memory.py#462

https://code.google.com/p/grr/source/browse/lib/flows/general/memory.py#462

Life of a Flow

Life of a Flow
Step 2: Client picks up requests

1. Client requests are marked leased for 10 minutes
2. Client sends multiple responses back using

SendReply
3. Frontend writes responses to the flow state aff4:/C.

0000000000001/flows/W:B1C77B76/state

4. Client sends a final Status reply
5. Frontend sees the Status and tells the worker to

process the Flow by writing to queue aff4:/W
6. Cleans out requests

Life of a Flow

Step 3: Worker processes responses
1. Once notified, a worker picks up requests
2. Checks for Status message and ensures all

responses are complete
3. Worker loads the flow and executes the next state

with the responses returned

@flow.StateHandler()
 def Done(self, responses):

Flow Summary

● Basic building blocks that can be chained
together to do more complex tasks

● Completely asynchronous

Client
Customization

Customization

● GRR is open source
● Attackers will end up knowing to look for it

Goal:
"The attacker has the same problem as us.
They land on a machine, and have to find the
response agent… just like we have to find the
malware."

Customization

Building Clients
1. Use existing template and repack

○ registry keys, service names, logs
2. Install dependencies, build from source

○ Absolutely anything

GRR Configuration System

● 3 Levels
○ Default values in code
○ Master config file /etc/grr/grr_server.yaml
○ Overrides Config.writeback /etc/grr/server.local.yaml
○ Overrides in --secondary_config

● Handles multiple "Contexts"

GRR Client Configuration

How your config gets added to the client:
1. Apply the correct context to the server config
2. Extract the relevant variables for the client
3. Write the client config yaml file
4. Inject it into the template

Exercise 2

Exercise 2: Client Customization

● Edit the config to build a client with a
different name

● Repack the new client and install it

VFS and Pathspecs

● Virtual filesystem
○ OS
○ TSK
○ Registry
○ Derived files

● AFF4 Namespace and System Namespace
● Mappings between are Pathspecs

Pathspecs

● aff4:/C12345/fs/os/C:
● Literal vs Case Insensitive
● Handles recursion

The Console

● IPython
○ Explore and execute code
○ <tab><tab> ? ?? cpaste
○ x = !ls /etc/

● grr_console
○ Raw interface to everything GRR

Audit Controls

● GRR is remote root equivalent
● Audit controls

○ Multi-party authorization
○ Audit hooks
○ Gateway mechanism to allow console with audit

● Made possible by passing ACLToken
objects
○ User, reason, expiry
○ You can mostly ignore them or set None

Exercise 3: Using the Console

● Searching for clients
● Starting flows
● Reading data from console

Hunts

● Specialized Flows that run on multiple clients
● Scheduled using rules
● Maintain detailed statistics and outliers

● SendReply data from all flows go to one
place

Hunt Stats

Exercise 4: Running a Hunt

1. Run a hunt on all Windows machines to
retrieve the Event Logs

2. Figure out how much CPU it used on the
machine to do that

3. Run the file exporter to dump the results to
the disk using the command line

Artifacts

● Flows are too tricky for simple things
● We wish we could share information better
● Too much duplicate code
 ----------> Let's generalize to Artifacts
● Define what to collect
● Define how to parse it
● Define what they produce

Artifacts

Knowledge Base Interpolation
%%environ_allusersprofile%% → c:\Documents and Settings\All Users
%%systemroot%% → c:\Windows\System32
%%users.name%% → c:\Documents and Settings\foo\AppData\Roaming
 → c:\Documents and Settings\bar\AppData\Roaming
 → c:\Documents and Settings\baz\AppData\Roaming

https://code.google.com/p/grr/source/browse/proto/knowledge_base.proto

https://code.google.com/p/grr/source/browse/proto/knowledge_base.proto
https://code.google.com/p/grr/source/browse/proto/knowledge_base.proto

Artifacts: Path Syntax
All Chrome History Files can be written as:
%%users.localappdata%%\Google\Chrome\User Data*\History

COLLECTORS = [
 Collector(action="GetFiles",
 args={"path_list": ["%%users.localappdata%%\\Google\\Chrome\\User"

 "Data*\\History"]},
)
]

● Works across all Windows versions
● No need to remember paths!

Artifacts: Simple File Artifact
class LinuxPasswd(Artifact):
 """Linux passwd file."""
 SUPPORTED_OS = ["Linux"]
 LABELS = ["Authentication"]
 COLLECTORS = [
 Collector(action="GetFile",
 args={"path": "/etc/passwd"},
)
]

class PasswdParser(parsers.CommandParser):
 """Parser for passwd files. Yields User semantic values."""
 output_types = ["User"]
 supported_artifacts = ["LinuxPasswd"]
 def Parse(self, stat, file_object, knowledge_base):
 """Parse the passwd file."""
 …
 yield user

Schedule Collector:
GetFile

Stat, File Content

Parser:
PasswdParser

Artifact Rule Check

UserUserUser

Artifacts: Simple Artifact
class WindowsWMIProfileUsers(Artifact):
 """Get user information based on known user's SID.
 ….
 """
 URLS = ["http://msdn.microsoft.com/en-us/library/windows/desktop/aa394507(v=vs.85).aspx"]
 SUPPORTED_OS = ["Windows"]
 LABELS = ["Users", "KnowledgeBase"]
 COLLECTORS = [
 Collector(action="WMIQuery",
 args={"query": "SELECT * FROM Win32_UserAccount "
 "WHERE name='%%users.username%%'"}
)
]
 PROVIDES = ["users.username", "users.userdomain", "users.sid"]

class WMIUserAccountParser(parsers.WMIQueryParser):
 """Parser for WMI Win32_UserAccount output."""
 output_types = ["KnowledgeBaseUser"]
 supported_artifacts = ["WindowsWMIProfileUsers"]
 def Parse(self, query, result, knowledge_base):
 """Parse the wmi Win32_UserAccount output."""
 ...
 yield kb_user

Schedule Collector:
WMIQuery

Query, Results

Parser:
WMIUserAccountParser

Artifact Rule Check

UserUserUser

Exercise 5: Create an Artifact

● Make our own simple Artifact
● /usr/share/pyshared/grr/artifacts/
● Start with WinHostsFile

● Bonus time: Create a parser

The End...

grr-users@googlegroups.com
grr-dev@googlegroups.com

mailto:grr-users@googlegroups.com
mailto:grr-users@googlegroups.com
mailto:grr-dev@googlegroups.com
mailto:grr-dev@googlegroups.com

