
GRR Rapid
Response

Mikhail Bushkov, Ben Galehouse,
Miłosz Łakomy, Andreas Moser

GRR Workshop @
 CERN 2018

Agenda

● Introduction to GRR
● Hands on work - exercises
● Roadmap and Discussion

Remote Forensics at Google Scale

● Joe saw something weird, check his machine
○ (p.s. Joe is on holiday in Cambodia and on 3G)

● Forensically acquire 25 machines for analysis
○ (p.s. they're in 5 continents and none are Windows)

● Tell me if this machine is compromised
○ (while you're at it, check 100,000 of them - i.e. "hunt" across the fleet)

What is GRR?
● “GRR Rapid Response”

● Agent based forensics investigation tool

● Open source (Apache License 2.0)

What is GRR?

● Features:
○ Machine information (hardware, users, ...)
○ Basic forensics (files, registry, process list, ...)
○ Sleuthkit integration (raw disk access)
○ Process memory acquisition / scanning (using Yara)
○ and many more...

https://www.sleuthkit.org/
https://virustotal.github.io/yara/

What is GRR?

● Built, maintained, used by Google… and others
○ 5.5 full time developers (in ZRH)
○ Lots of people helping out

● Built by engineers for engineers

FAQ: http://grr-doc.readthedocs.io/en/v3.2.1/faq.html

http://grr-doc.readthedocs.io/en/v3.2.1/faq.html

Architecture

● Client
● Frontend Server
● Datastore
● Admin UI
● Worker
● API

GRR UI

Datastore

● GRR runs on MySQL (and SQLite for demo
purposes)
○ Abstraction makes replacing possible

● Forensic data is stored by client id
○ GRR datastore schema is organized around AFF4

paths: generic but not user-friendly
○ Datastore changes in progress
○ GRR UI/API is used to export data

Datastore

● Forensic data is versioned
○ Usually nothing is deleted ever

■ Just new versions are added
■ -> The complete history is kept in the GRR DB

Clients

● Clients for Windows, Mac, Linux
○ Stable, robust, low-impact

■ Python + PyInstaller
■ Memory, CPU limited
■ Watchdog process

○ Contains very little logic
■ encoded in “Flows” on the server

○ We’re experimenting with making the client smarter

Communications

● Client polls the server for work
● Defaults to once every 10 minutes
● Messages are protobufs
● Signed and encrypted end to end
● Default connection via “HTTP”
● Fleetspeak subproject will modularize and

modernize comms
○ Separate process (only running GRR when needed)
○ TLS

https://github.com/google/fleetspeak

Flows

● Flows encapsulate logic
○ Clients are “dumb”

■ Client actions are basic building blocks
● “Get me this file”, “List this directory”

■ -> Clients don’t need to be updated frequently
○ Flows interpret the data received

■ Ex.: Get browser plugins
● Downloads file(s) with known paths
● Parses received data to find plugin directories
● Downloads those directories

Flow Processing

● Flows are processed on the Worker(s)
○ Flows can be suspended and stored in the datastore

■ If client goes away, flow just resumes at a later
time

○ In the end, results are produced
■ For analysis in the UI
■ Can be exported from the UI (SQLite, csv)
■ Automatic export plugins (BigQuery)

Hunts

● Hunting is running a flow on all the clients in the
fleet

● Fleet checks
○ I found this suspicious file on one machine,

which other boxes have it too?
● Baselining

○ Download the RunOnce Keys from all machines
○ Which ones stand out?
○ Which ones are new compared to last week?

Audit Controls

● GRR is remote root equivalent
● Audit controls

○ Multi-party authorization
○ Audit hooks
○ Audit log

● Approval-based system built in
○ User, reason, expiry
○ Disabled for the workshop for simplicity

GRR Quick Install

● Not necessary for the workshop today

● Setting up your own GRR server
○ Many moving parts but DEB package is available

■ Should be up and running in a few mins
○ DEBs releases are done periodically
○ HEAD DEB is built on every commit

https://github.com/google/grr/releases
https://console.cloud.google.com/storage/browser/autobuilds.grr-response.com/_latest_server_deb

GRR Quick Install

● Can also be installed via:
○ Docker
○ Pip from released packages or source (for development)

● Terraform for demo purposes
○ Instructions for GCE on Github

http://grr-doc.readthedocs.io/en/v3.2.1/installing-grr-server/via-docker.html
http://grr-doc.readthedocs.io/en/v3.2.1/installing-grr-server/from-released-pip.html
http://grr-doc.readthedocs.io/en/v3.2.1/installing-grr-server/from-source.html
http://terraform.io
https://github.com/google/grr/blob/master/terraform/demo/google/README.md

Workshop test environment

● GRR server at
○ https://35.189.221.117

● Clients connected:
○ 2 Windows Server machines
○ 2 Ubuntu Linux machines

● Don’t connect your machines

https://35.189.221.117

Demo

● Workshop server

https://35.189.221.117

Exercise 1 - Introduction to GRR

● Server: https://35.189.221.117
● User accounts: user<n>/password<n>
● Search the client database

○ “.” gives all clients
● Look at client info

○ Look at different OSs
● Check out /fs/os in the VFS

○ Also /fs/tsk, /registry for Win clients

https://35.189.221.117

Launching Flows

● Launching flows demo

FileFinder

● Flow to search for files by multiple criteria
○ path, name, contents (literal / regex), time

● When a file matches, an action is run
○ Download, hash, stat (report existence)

FileFinder

● Demo, this will be next exercise

Exercise 2 - File downloading

● Client C.0acaeff8f5d6ef64
● Get a list of all DLLs (*.dll) in

C:\Windows\System32
● Get the partition boot sector C:\$BOOT

○ Windows API will hide this! Use pathtype TSK
● There is a file (or two) containing the string

"malware" in <Desktop>\Browsercache. Try
to find it.

Registry Analysis

● Registry analysis works like file analysis
○ Keys / Directories, Values / Files
○ Same operations supported!

■ Globbing
■ Content match on values

Exercise 3 - Registry

● Client C.0acaeff8f5d6ef64
● Poke around using the Registry finder

○ Should be straightforward - similar to FileFinder
○ Please don’t schedule huge recursive listings.

● One of the values in
HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Internet Explorer
contains the string "malware". Which one?

YARA process memory scanning

● YARA process memory scanning built in for
all platforms

● Process memory collection is in the works
● GRR has Rekall built in but:

○ It’s deprecated/unsupported
○ Turned off by default

YARA process memory scanning

● Demo

Exercise 4 - YARA memory scanning

● Use the “Yara Process Scan” flow to run YARA
scanning directly on a client.
○ Enable “Advanced” (click the gear icon on top-right) mode to be

able to use the flow
○ Set per-process timeout to 60
○ Use sample YARA signature:

rule Example

{

 strings:

 $text_string = "grr"

 condition:

 $text_string

}

http://yara.readthedocs.io/en/v3.4.0/writingrules.html#text-strings

Hunts
● Demo time - Collect Notepads and Export

Hunt Performance

● Longish lead time
○ Foreman delay
○ Client poll delay

● Once started, checks the whole fleet in hours
○ Mostly depending on client availability

Hunt Performance

Exercise 5 - Fleetwide Process List

● Get a list of all processes running on
Windows machines in the test setup
○ Bonus task, do it also for Linux

● Look at hunt stats
○ Cpu used, network used, worst performers

● Export hunt results in CSV, YAML or SQLite
format and find all processes with the
process name containing “net”

Embedded Flash Malware

● Inspired by Hacking Team attack
○ Flash based attack inside Office document

● How would we go about finding this using
GRR?

Exercise 6 - Hunt Embedded Flash

● There are .doc files in C:\Windows\Temp on
the Windows machines

● Run a hunt to find the documents that
contain embedded Flash
○ That is, they contain the literal

“ShockwaveFlash.ShockwaveFlash”
● Download ZIP archive with found files

Artifacts

● Flows are too tricky for simple things
● We wish we could share information better
● Too much duplicated code

○ -> Let's generalize to Artifacts

Artifacts

● Define what to collect
● Define how to parse it
● Define the result they produce
● Data only, no code
● Yaml based format
https://github.com/ForensicArtifacts/artifacts

https://github.com/ForensicArtifacts/artifacts

Artifacts
● Example Artifact:

name: WindowsEventLogSecurity

doc: Security Windows Event Log.

sources:

- type: FILE

 attributes:

 paths: ['%%environ_systemroot%%\System32\winevt\Logs\SecEvent.evt']

 separator: '\'

conditions: [os_major_version < 6]

labels: [Logs]

supported_os: [Windows]

urls: ['http://www.forensicswiki.org/wiki/Windows_Event_Log_(EVT)']

Artifacts

Knowledge Base Interpolation
%%environ_allusersprofile%% → c:\Documents and Settings\All Users
%%systemroot%% → c:\Windows\System32
%%users.appdata%%
 → c:\Documents and Settings\foo\AppData\Roaming
 → c:\Documents and Settings\bar\AppData\Roaming
 → c:\Documents and Settings\baz\AppData\Roaming

https://github.com/google/grr/blob/master/grr/proto/grr_response_proto/knowledge_base.proto

https://github.com/google/grr/blob/master/grr/proto/grr_response_proto/knowledge_base.proto

Artifacts

● Demo - Artifact Collector flow

Exercise 7 - Artifacts

● Check out the Artifact Collector flow
○ Collect an artifact

■ Event Log? …
● You suspect that the machine C.0acaeff8f5d6ef64

was owned by a drive by download. Can you show
one of the users went to www.bugtrack.net using
Chrome?

Roadmap - Discussion Points

● Scaling GRR
● Memory forensics
● Tool integration

Scaling GRR

● Goal:
○ 100k connected clients work out of the box

● Backend migration Bigtable to relational DB.
○ Currently WIP

Memory Forensics in GRR

● Rekall integration deprecated
○ Future of memory forensics unclear in general

● Process memory analysis as a stop-gap

Tool Integration

● Always looking for more tools to integrate
○ Have TSK, Yara, cloud services (Terraform,

BigQuery, …)
○ osquery is a good candidate?!

● GRR API makes it easy to integrate your own!
○ Python GRR API library included
○ PowerGRR - PowerShell based GRR

automation done by Swisscom

http://grr-doc.readthedocs.io/en/v3.2.1/investigating-with-grr/automation-with-api.html
https://github.com/google/grr/tree/master/api_client/python
https://github.com/swisscom/PowerGRR

Fleetspeak

● New comms layer
○ Golang!
○ Easy integration of new client side services

Discussion

Questions?? Comments?? Suggestions??

grr-users@googlegroups.com
https://github.com/google/grr

mailto:grr-users@googlegroups.com
https://github.com/google/grr

