Response

GRR Workshop @
ICDF2C Prague 2017

Agenda

e |[ntroduction to GRR
e Hands on work - exercises
e Discussion

Remote Forensics at Google Scale

e Joe saw something weird, check his machine
o (p.s. Joe is on holiday in Cambodia and on 3G)

e Forensically acquire 25 machines for analysis
o (p.s. they're in 5 continents and none are Windows)

e Tell me if this machine is compromised
o (while you're at it, check 100,000 of them - i.e. "hunt" across the fleet)

What is GRR?
e “GRR Rapid Response”

e Agent based forensics investigation tool

e Open source (Apache License 2.0)

What is GRR?

e Built, maintained, used by Google... and others
o 5.5 full time developers (in ZRH)
o Lots of people helping out

e Built by engineers for engineers

FAQ: https://github.com/google/grr-doc/blob/master/faq.adoc

https://github.com/google/grr-doc/blob/master/faq.adoc

Architecture

Client

Frontend Server
Datastore
Admin Ul
Worker

APl

requesls
/ Load Balancer \

GUI, AP,
Data Export

{ Analyst >

Frontend Frontend
Server Server
]' 1 Message
Queues

Admin Ul
\ Datastore

04

Worker

Worker

Datastore

e GRR runs on MySQL (and SQLite for demo
purposes)
o Abstraction makes replacing possible

e Forensic data is stored by client id

o GRR datastore schema is organized around AFF4
paths: it's generic but not user-friendly

o Datastore changes in progress

o GRR UI/API is used to export data

Datastore

e Forensic data is versioned
o Usually nothing is deleted ever
m Just new version are added
m -> The complete history is kept in the GRR DB

Clients

e Clients for Windows, Mac, Linux

o Stable, robust, low-impact
m Python + Pylnstaller
m Memory, CPU limited
m \Watchdog process
o Contains very little logic
m encoded in “Flows” on the server
o We're experimenting with making the client smarter

Communications

Client polls the server for work

Defaults to once every 10 minutes
Messages are protobufs

Signed and encrypted end to end

Default connection via “HTTP”
Fleetspeak subproject will modularize and
modernize comms

o Separate process (only running GRR when needed)
o TLS

Audit Controls

e GRR is remote root equivalent

e Audit controls
o Multi-party authorization
o Audit hooks
o Audit log
o Approval-based system built in
o User, reason, expiry
o Disabled for the workshop for simplicity

GRR Quick Install

e Setting up your own GRR server
o Many moving parts but DEB package is available
m Should be up and running in a few mins
o DEBs releases are done periodically
o HEAD DEB is built on every commit

e Can also be installed via:
o Docker
o Pip (easiest for development)

https://github.com/google/grr/releases
https://console.cloud.google.com/storage/browser/autobuilds.grr-response.com/_latest_server_deb
https://github.com/google/grr-doc/blob/master/docker.adoc
https://github.com/google/grr-doc/blob/master/installfrompip.adoc

Workshop test environment

e GRR server at
o http://35.203.141.126:8000/

e Clients connected:
o 1 Windows Server 2008 machine
o 1 Windows Server 2016 machine
o 1 Debian Linux machine
o 1 Ubuntu Linux machine

http://35.203.141.126:8000/

Demo

e \Norkshop server

http://35.203.141.126:8000/

Exercise 1 - Introduction to GRR

e Server: hittp://35.203.141.126:83000/
e User accounts: user<n>/password<n>

e Search the client database
o “." gives all clients

e Look at client info
o Look at different OSs

e Check out /fs/os in the VFS
o Also /fs/tsk, /registry for Win clients

http://35.203.141.126:8000/

Flows

e Flows encapsulate logic

o Clients are “dumb”

m Client actions are basic building blocks
e “Get me this file”, “List this directory”
m -> Clients don’t need to be updated frequently
o Flows interpret the data received

m EXx.. Get browser plugins
e Downloads file(s) with known paths
e Parses received data to find plugin directories
e Downloads those directories

Flow Processing

e Flows are processed on the Worker(s)

o Flows are then suspended and stored in the
datastore
m If client goes away, flow just resumes at a later

time

o In the end, results are produced
m Shown in the Ul
m Can be exported from the Ul

Launching Flows

e |Launching flows demo

FileFinder

e Flow to search for files by multiple criteria
o path, name, contents (literal / regex), time

e \When a file matches, an action is run
o Download, hash, stat (report existence)

FileFinder

e Demo, this will be next exercise

Exercise 2 - File downloading

e Client C.510b34¢c59daf8393
e Getalistof all DLLs (*.dll) in
C:\Windows\System32

e Get the partition boot sector C:\$BOOT
o Windows API will hide this! Use pathtype TSK

e There is a file (or two) containing the string
"malware" in <Desktop>\Browsercache. Try
to find it.

http://35.203.141.126:8000/#/clients/C.510b34c59daf8393/host-info

Registry Analysis

e Registry analysis works like file analysis

o Keys / Directories, Values / Files
o Same operations supported!

m Globbing

m Content match on values

Exercise 3 - Registry

e Client C.510b34c59daf8393

e Poke around using the Registry finder

o Should be straightforward - similar to FileFinder
o Please don’t schedule huge recursive listings.

e One of the values in
HKEY LOCAL MACHINE\SOFTWARE\
Microsoft\Internet Explorer
contains the string "malware". Which one?

YARA process memory scanning

e YARA process memory scanning built in for
all platforms

e Process memory collection is in the works
e GRR has Rekall built in but:

o It's deprecated/unsupported
o Turned off by default

YARA process memory scanning

e Demo

Exercise 4 - YARA memory scanning

e Use the “Yara Process Scan” flow to run

YARA scanning directly on a client.

o Enable “Advanced” mode to be able to use the flow
o Set per-process timeout to 60
o Use sample YARA signature:

rule Example

{

strings:

$text_string = "grr"
condition:
$text_string

http://yara.readthedocs.io/en/v3.4.0/writingrules.html#text-strings

Hunts

e Hunting is running a flow on all the clients in the fleet

e Fleet checks
o | found this suspicious file on one machine,
which other boxes have it too?

e Baselining
o Download the RunOnce Keys from all machines
o Which ones stand out?
o Which ones are new compared to last week?

Hunts

e Demo time - Collect Notepads and Export

Hunt Performance

e Longish lead time
o Foreman delay
o Client poll delay

e Once started, checks the whole fleet in hours
o Mostly depending on client availability

Hunt Performance

Agent Coverage

2
c i i
et T M A —— . ——
= i
— Agents issued.
. . — Agents completed.
I I I I I I I I
0 5 10 15 20 25 30 35 40 45

Time (h)

Exercise 5 - Fleetwide Process List

e Get a list of all processes running on

Windows machines in the test setup
o Bonus task, do it also for Linux

e Look at hunt stats
o Cpu used, network used, worst performers

e Export hunt results in CSV, YAML or SQLite
format and find all processes with the
process name containing “net’

Embedded Flash Malware

e Inspired by Hacking Team attack

o Flash based attack inside Office document
e How would we go around finding this using

GRR?

Exercise 6 - Hunt Embedded Flash

e There are .doc files in C:\Windows\Temp on
the Windows machines
e Run a hunt to find the documents that

contain embedded Flash

o That is, they contain the literal
“ShockwaveFlash.ShockwaveFlash”

e Download ZIP archive with found files

Artifacts

e Flows are too tricky for simple things

e \We wish we could share information better

e Too much duplicated code
o -> Let's generalize to Artifacts

Artifacts

Define what to collect

Define how to parse it

Define the result they produce
Data only, no code

Yaml based format

https.//qithub.com/ForensicArtifacts/artifacts

https://github.com/ForensicArtifacts/artifacts

Artifacts

e Example Artifact:

name: WindowsEventLogSecurity

doc: Security Windows Event Log.

sources:

- type: FILE

attributes:
paths: ['%%environ_systemroot%%\System32\winevt\Logs\SecEvent.evt']
separator: "\’

conditions: [os_major_version < 6]

labels: [Logs]

supported os: [Windows]

urls: ['http://www.forensicswiki.org/wiki/Windows Event Log (EVT)']

Artifacts

Knowledge Base Interpolation

%%environ_allusersprofile%% — c:\Documents and Settings\All Users
%%systemroot%% — c:\Windows\System32

%%users.appdata%%
— c:\Documents and Settings\foo\AppData\Roaming
— c:\Documents and Settings\bar\AppData\Roaming
— c:\Documents and Settings\baz\AppData\Roaming

https://qithub.com/gooqgle/grr/blob/master/proto/knowledge base.proto

https://github.com/google/grr/blob/master/proto/knowledge_base.proto

Artifacts

e Demo - Artifact Collector flow

Exercise 7 - Artifacts

e Check out the Artifact Collector flow

o Collect an artifact
m EventlLog?...
e You suspect that the machine C.510b34¢c59daf8393

was owned by a drive by download. Can you show
one of the users went to pho8.com using Chrome??

The End (for this part)...

grr-users@googlegroups.com

https.//qithub.com/gooqgle/grr

mailto:grr-users@googlegroups.com
https://github.com/google/grr

