
Greg Castle
@mrgcastle

Who am I

GRR Developer, Google IR team
OS X Security
Former lives: pentesting, IR, security audits etc.

Skillz++

Understand how GRR works
Setup test server/client
Collect from single machine
Memory analysis
Hunt multiple machines
Fleetcheck using artifacts

Live forensics

GET /beacon HTTP/1.1
Host: evil.com

from Joe’s machine

Joe is on vacation with 3G internet

GET /beacon HTTP/1.1
Host: evil.com

New APT Report

New malware report
BEAR EAGLE SHARK

LASER is out: check all
the things

New malware report
BEAR EAGLE SHARK

LASER is out: check all
the things

50+ IOCs for Win/Mac and “all the things” is
the machines of a highly mobile global

organisation with 50k+ employees

GRR: GRR Rapid Response
Open source live forensics
Agent -> Internet -> Server
Disk Forensics = Sleuthkit
Memory Forensics = Rekall
Scalable
Stable, low-impact client
Full-time devs

Why build?

Customize for our threats/detection/defense
50 people analyzing 50 machines
Move as fast or faster than the attacker
Support Mac/Win/Linux

Demo - Server Installation

Install instructions

(pls don’t pull this image down now it will kill the WiFi...)

https://github.com/google/grr-doc/blob/master/docker.adoc
https://github.com/google/grr-doc/blob/master/docker.adoc

Clients

Stable, robust, low impact
Monitored
Limited
10min poll

Demo: Client searching

Search Box
Server Statistics

Exercise: Finding clients

Find all the windows clients
Find the client that has a user “gladstone”
- When was it installed?
Find client OS release breakdown stats

Solution: Finding clients

Top left search box:
- “windows”
- “gladstone” or “user:gladstone” (faster)
Install date: “First Seen” in client summary line
(note all times are UTC)

Show statistics -> Clients -> All -> OS Release
Breakdown

Smart Server, basic client

Time travel backwards
Faster build/fix/deploy
Less updating
Simpler backwards compatibility
Leak less intent

Server

Frontends pass messages
Workers do the real work
Everything is asynchronous
Queue work on the server
GRR ‘Cronjobs’ perform regular tasks

Datastore

Abstracted: easy to switch
MySQL Advanced | SQLite (sharded)
Versioned Data -> axis of time

Demo: Settings

Datastore.implementation
Client.control_urls

Note: lines highlighted in blue are modified from
defaults.

Demo: VFS browse and download

Refresh, recursive refresh
Multiple versions of /etc/lsb-release
Download new version
Text/Hex views

Exercise: VFS time travel

On client-ubuntu-trusty-m a malicious
modification has been made to /home/gcastle/.
bashrc

What was it?

Solution: VFS time travel

Browse Virtual Filesystem -> fs -> os -> home -
> gcastle -> .bashrc

Click Age window and download latest and
oldest. Diff.

Find LD_PRELOAD line.

GRR…
It’s a botnet essentially

Authorization, Auditing

2-party authorization for machine access
DB logging
Audit events
Approval emails with justifications

Demo: Flows/hunts run recently

Show Statistics -> Server -> Flows|Hunts

Fast, reliable, remote.

 Advanced live forensics
at scale.

Filesystem/Registry artifacts (Sleuthkit)
Memory artifacts (Rekall)
From difficult-to-specify locations

Be really really good at collecting

Demo: Running FileFinder

Search by:
path, name, contents (literal / regex), time

For matches:
download, hash, send to socket, just report
existence

Exercise: FileFinder

Pick a windows machine and:
- Get a list of all DLLs (*.dll) in C:

\Windows\System32
- Get the partition boot sector C:\$BOOT

 Windows API will hide this! Requires TSK

- There is a file containing the string
"malware" in C:\Temp. Try to find it.

Solution: FileFinder
Filesystem->File Finder:
- path: C:\Windows\System32*.dll
- pathtype: OS
- action: STAT

Filesystem->File Finder:
- path: C:\$BOOT
- pathtype: TSK
- action: DOWNLOAD

Solution: FileFinder cont.
Filesystem->File Finder:
- path: C:\Temp*
- pathtype: OS
- condition: contents literal match = malware, FIRST_HIT
- action: DOWNLOAD

Windows Registry

Keys = Directories, Values = Files
Same operations supported!
Globbing
Content match on values

Exercise: RegistryFinder

Get the values for these run keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Cu
rrentVersion\Run

(copy from http://pastebin.com/eijGRcFu)

Browse the registry VFS

http://pastebin.com/eijGRcFu

Solution: RegistryFinder

Registry->Registry Finder:
keys path:
HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Run

Memory Acquisition

Drivers for Win and OS X
Linux is trickier:
- /proc/kcore
- or driver per kernel

Demo: Memory Collector

Download a small chunk of memory

Exercise: Grep raw memory

On a windows client, use the Memory Collector
to find a short string (eg. “svchost”) in memory
and inspect the context.
Use action NONE
Also, just get the FIRST_HIT, not all of them

Solution: Grep memory

Memory->Memory Collector
Condition: Literal match, FIRST_HIT
Action: NONE (reports the literal match and
some context)

Memory Forensics

Memory analysis framework
Built into GRR client
Live memory analysis

Demo: lsmod on ubuntu

Exercise: Rekall lsof

Get a list of file handles from raw memory on a
ubuntu machine
Use lsof plugin

Solution: Rekall lsof

Memory -> AnalyzeClientMemory
Plugins: lsof

Hunting: flows on many machines

Hunting: Outlier analysis

Hunting: fleetcheck and pivot

Demo: Hunt to collect notepad.exe

Download with FileFinder
Export results as .zip
Smart download: only unique files

Exporting data for analysis

Heavy data analysis outside GRR
HTTP RPC APIs
Export plugin system:
 CSV
 <elasticsearch or your plugin of choice here>

Hunts: Optional rate limiting

Hunts: No limit, go fast

Exercise: ListProcesses hunt

Get a list of Processes from all machines using
ListProcesses flow
Look at hunt stats:
- Cpu used
- Network used
- Worst performers

Solution: ListProcesses hunt

Hunt Manager -> + -> Processes ->
ListProcesses
Remove windows rule to run on all OSes
Press play on the paused hunt

Hunting: Malware inside .doc

Flash exploits embedded in office docs
How could we find these?

Exercise: Hunt for flash inside docs

Find doc with embedded flash in ~\Downloads\

Use %%users.homedir%% for user’s homedir
Contains “ShockwaveFlash.ShockwaveFlash”

Solution: Hunt for flash inside docs

Hunt Manager -> + -> Filesystem -> FileFinder
Paths: %%users.homedir%%\Downloads*.doc
Condition: literal match “ShockwaveFlash.
ShockwaveFlash” FIRST_HIT
Action: Download

Collection Problems

We mostly want to collect the same things, but:
- Too many details to remember
- No good way to share
- Too much duplicate code

As seen in the wild
HardDrive\Documents and Settings\USERNAME\Local Settings\Application
Data\Google\Chrome\User Data\Default\History

HKU\S-1-5-21-xxxxxxxxx-xxxxxxxxx-xxxxxxxxx-
xxxx\Software\Microsoft\Windows\CurrentVersion\Uninstall\Dropbox\InstallLoca
tion

/Users/<user>/Library/Mail Downloads/

/home/user/.local/share/Trash/

What do I do with these?
HardDrive\Documents and Settings\USERNAME\Local
Settings\Application Data\Google\Chrome\User Data\Default\History

HKU\S-1-5-21-xxxxxxxxx-xxxxxxxxx-xxxxxxxxx-
xxxx\Software\Microsoft\Windows\CurrentVersion\Uninstall\Dropbox\InstallLoc
ation

/Users/<user>/Library/Mail Downloads/

/home/user/.local/share/Trash/

Common language for interpolation
%%users.localappdata%%\Google\Chrome\User Data*\History

HKEY_USERS\%%users.sid%%
\Software\Microsoft\Windows\CurrentVersion\Uninstall\Dropbox\InstallLocation

%%users.homedir%%/Library/Mail Downloads/

%%users.homedir%%/.local/share/Trash/

Artifact
name: ApplicationEventLog
doc: Windows Application Event log.
collectors:
- collector_type: FILE
 args: {path_list: ['%%environ_systemroot%%\System32\winevt\Logs\AppEvent.evt']}
conditions: [os_major_version >= 6]
labels: [Logs]
supported_os: [Windows]
urls: ['http://www.forensicswiki.org/wiki/Windows_Event_Log_(EVT)']

Artifact repository: get it here

~200 artifacts:
 github.com/ForensicArtifacts/artifacts
Independent and reusable by any tool
Used and maintained by us
Review, bug reports, patches very welcome

Demo: Collect Run Keys

Exercise: Artifact Collector

Linux machines are beaconing to sysupdate81.
appspot.com
Suspect malicious cronjob
Use AllLinuxScheduleFiles artifact to download
cron files
Download results, find malicious one
Which machines was it on?

Solution: Artifact Collector

Hunt Manager -> + -> Collectors ->
ArtifaceCollectorFlow
AllLinuxScheduleFiles
GenerateZip
Download, unzip:
grep -r “sysupdate” *
find -type l -ls | grep [hash match from grep]

What’s coming

Event triggered collection, powerful API
Usability improvements
Simple cloud server deployment
More data export options

Great, how do I try it?

Run the server docker image
Open a browser
Download and install the client on a machine

GRR (and friends) links

github.com/google/grr
github.com/ForensicArtifacts/artifacts
rekall-forensic.com
plaso.kiddaland.net/
github.com/google/timesketch
github.com/libyal/libyal/wiki/Overview

These slides

These slides and everything you need to run
your own workshop will be published here:

https://github.com/google/grr-
doc/blob/master/publications.adoc

Short link: https://goo.gl/GzsleU

https://github.com/google/grr-doc/blob/master/publications.adoc
https://github.com/google/grr-doc/blob/master/publications.adoc
https://github.com/google/grr-doc/blob/master/publications.adoc
https://goo.gl/GzsleU

