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In enterprise environments, digital forensic analysis generates data volumes that tradi-
tional forensic methods are no longer prepared to handle. Triaging has been proposed as a
solution to systematically prioritize the acquisition and analysis of digital evidence. We
explore the application of automated triaging processes in such settings, where reliability
and customizability are crucial for a successful deployment.
We specifically examine the use of GRR Rapid Response (GRR) – an advanced open source
distributed enterprise forensics system – in the triaging stage of common incident
response investigations. We show how this system can be leveraged for automated pri-
oritization of evidence across the whole enterprise fleet and describe the implementation
details required to obtain sufficient robustness for large scale enterprise deployment. We
analyze the performance of the system by simulating several realistic incidents and discuss
some of the limitations of distributed agent based systems for enterprise triaging.

ª 2013 Elsevier Ltd. All rights reserved.
Triage is a process commonly applied in themedical field
in order to ration limited resources and to maximize their
overall effectiveness (Iserson and Moskop, 2007). In the
medical arena, responders follow a systemic approach to
assess the severity of injuries and the likelihood of suc-
cessful treatments for medical casualties. Triage is essen-
tially a prioritization process optimizing the usage of limited
resources toward achieving the best overall outcome.

Digital forensics is increasingly used in more diverse
contexts, such as criminal and civil cases as well as in
incident response. Increase in the utilization of digital
forensic capabilities has lead to larger case load and longer
backlogs of evidence which must be analyzed by a limited
number of highly trained investigators (Richard and
Roussev, 2006). The increased data volume places chal-
lenges on traditional forensic methods and has led to
several proposals for updating best practice techniques in
order to cope with the work load (Jones et al., 2012).
).

. All rights reserved.
1. Triage in digital forensics

Triaging has been proposed for managing long case
backlogs (Rogers et al., 2006). Drawing inspiration from
medical triage techniques (Hogan and Burstein, 2007), the
goal of digital forensic triaging is to prioritize evidence
for acquisition and analysis in order to maximize case
throughput.

Particularly, many digital forensic procedures are
designed to discover if evidence exists at all on a computer
which was potentially relevant to the case. Drawing an
analogy from medical triaging (Iserson and Moskop, 2007),
one can define triaging as a process which classifies digital
evidence into three groups:

� The system is likely to contain crucial evidence but this
evidence is unlikely to be destroyed in the near future.

� The system is likely to contain crucial evidence which
may be imminently destroyed.

� The system is not likely to contain relevant evidence and
therefore should not be acquired or processed.

mailto:scudette@gmail.com
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.diin.2013.03.003&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2013.03.003
http://dx.doi.org/10.1016/j.diin.2013.03.003


A. Moser, M.I. Cohen / Digital Investigation 10 (2013) 89–9890
Classifying potential systems into these categories al-
lows to prioritize evidence acquisition and analysis. Digital
evidence collection must follow the Order Of Volatility
(OOV) (Farmer and Venema, 2005; Brezinski and Killalea,
2002), in that some sources of evidence are more volatile
and likely to change, hence should be collected sooner.
For example, memory images are more volatile than disk
images, since system state is likely to change quickly
(Schuster, 2008), or be completely lost if the system is
powered down. Yet the contents of memory contain
extremely valuable evidence in many investigations
(Walters and Petroni, 2007). In this context, it is critical to
obtain the memory image as fast as possible.

It is important to contrast the aims of triaging analysis
with traditional digital forensic analysis. While traditional
digital forensic analysis aims to establish irrefutable find-
ings upon which a solid case may be built, triage analysis
has a much lower evidentiary burden of proof. The triaging
step is merely trying to establish whether the system is
likely to be involved with the case. This lower burden of
proof opens the possibility for wider automation in the
triaging process, with a higher acceptable false positive
rate. However, the danger with automated triaging is that
subtle evidence might be missed.

For example, consider a case where the investigation
requires analysis of the URLs the suspect accessed using a
browser. A full forensic analysis might require the cache
material to be examined, browsing history reconstructed
and time lines created. On the other hand, the triaging step
merely discovers whether the browser cache contains any
references to the user name, or web site in question. Thus,
the triaging step can be implemented as a simple keyword
search, where a significant number of hits result in classi-
fying the system as potentially containing evidence, leading
to acquisition and further analysis of the system.

While triaging analysis is less rigorous than a full digital
forensic examination, it must necessarily be applied to
many more systems. This can be achieved by recruiting less
trained investigators to perform the analysis using stan-
dard tools (e.g. recruiting police officers, provided with
minimal digital forensic training and using commercial
tools). Alternatively, specialized tools may be developed to
ensure that triaging analysis is as automated as possible, for
example the FBI’s image scan tool – a law enforcement only
tool used to triage for contraband images (Cantrell et al.,
2012). Ideally, the triaging strategy is tailored to the spe-
cifics of each case.

1.1. Privacy considerations

Another complication with applying the triaging pro-
cess is the effect it has on the privacy of the system’s owner.
In traditional digital forensic analysis, the systems acquired
and inspected have a very high probability of being relevant
to the case. In criminal matters, these systems must fall
under the terms of the relevant warrant before they can be
examined at all. Usually, the warrant lists all systems that
are to be examined in advance, in order to minimize the
chances of examining unrelated systems.

In contrast, triaging affects a wider selection of systems,
some of which may turn out to be irrelevant to the case, or
unrelated to the suspect. A triage step using too general
search criteria may therefore reveal private information
irrelevant to the case, as well as select unrelated systems
for further inspection with traditional forensic analysis
procedures, thus inadvertently violating the owners’ pri-
vacy. Carefully tailored search criteria lower the false pos-
itive rate, resulting in a more focused and effective triage,
while simultaneously protecting the privacy of system
owners. For example, consider again a search for the
presence of specific keywords in the user’s web history. A
specific and unique term such as an email address or
domain name is likely to produce a lower false positive rate
than a general term which is likely to occur in unrelated
web history.

1.2. Exculpatory evidence

In legal proceedings, exculpatory evidence is any evi-
dence which is favorable to the defendant and might prove
the defendant innocence. Legal due process requires that
exculpatory evidence be collected and disclosed to the
defendant before trial (Supreme Court of United States,
1963).

By its nature, triagingmight not collect all evidence, and
might systematically omit to collect exculpatory evidence.
The digital investigator must keep this requirement in
mind, and design triaging processes which include excul-
patory evidence collection.

2. Triaging and incident response

Aside from traditional forensic investigations accom-
panying criminal cases, digital forensics is increasingly
employed as part of enterprise incident response pro-
cedures. Forensic readiness is defined as the procedures
that an organization can take in advance of an intrusion in
order to expedite the incident response process (Endicott-
Popovsky et al., 2007; Mitropoulos et al., 2006; Tan, 2001).

Enterprise incident response is typically time con-
strained, requiring rapid collection and analysis of digital
evidence (Casey, 2006). For example, when responding to a
potential security compromise, the need for acquisition of
forensically sound evidence must be balanced with rapid
disruption and neutralization of the attacker threat
and minimizing the resulting economic loss (Endicott-
Popovsky et al., 2007).

In this enterprise context, applying a systemic triaging
process is crucial (Lim et al., 2009). Not only does triaging
reduce the number of systems which must be manually
examined to a manageable level, but triaging also ensures
that investigators have the opportunity to acquire forensi-
cally sound evidence of systems of value, whilemaintaining
the Order Of Volatility – thus ensuring the possibility for
post-incident legal proceedings.

For example, consider a typical network forensic
investigation (Casey, 2006). Often, there are several
compromised systems under the control of the attacker, all
using the same kind of Remote Access Tool (RAT). A triaging
procedure might require searching for unique evidence of
the RAT in memory, on disk or in the Windows Registry.
This might include specific registry keys used by the tool or



Fig. 1. GRR component overview. The client agent communicated over the
internet with the front end servers. These manage message queues medi-
ating communication between the agent and the workers and console. The
workers execute flows – which are predetermined modules of analysis.
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binary strings unique to the RAT’s executable whichmay be
found in memory.

If evidence of compromise is found in memory, the
machine is then chosen for immediate response and a copy
of memory is acquired immediately. However, if the RAT
has been uninstalled such that it exists only on disk but is
not currently running, the machine’s hard disk can be ac-
quired at a later time. This determination is performed
according to the Order Of Volatility – it is crucial to obtain
memory images as soon as possible in order to freeze the
state of RAM for further analysis.

In the initial parts of an incident response investigation,
it is not known how many systems are likely compromised
using the same RAT. Therefore triaging must be applied to
all systems rapidly in order to narrow down the list of
possibly compromized ones. In an enterprise, this requires
rapid triaging of many hundreds if not thousands of
machines.

Once systems have been triaged, evidence must be ac-
quired. Forensic acquisition systems fall into two broad
categories. The first requires the investigator to have
physical access to the system and boot the system into a
mode which allows low level access to the physical disks
(e.g. a boot disk such as Encase Portable (Guidance
Software Inc., Oct 2012b)). This approach is more resilient
against potential malware on the target system. However, it
is more time consuming since it requires the system to be
taken off line, and the investigator to be physically present
to acquire the image. This mode of operation is generally
not usable for obtaining amemory imagewithout installing
specialized hardware in advance (Vömel and Freiling,
2011).

Another approach is to deploy an agent on the target
system and perform analysis remotely (e.g. Encase Enter-
prise (Guidance Software Inc., Oct 2012a), GRR (Cohen
et al., 2011)). This approach minimizes the time required
to respond (since physical access is not required). However,
it may be susceptible to interference from malware, since
the agent relies on the integrity of the operating system to
operate.

3. The GRR Rapid Response system

GRR Rapid Response (GRR) is an open source agent
based scalable enterprise forensic platform (Cohen et al.,
2011; Bilby et al., 2012). The goal of GRR is to lower the
total cost of triage analysis by distributing that analysis to
the system agents. This allows the system to triage a large
number of systems quickly, and allows investigators to
focus their efforts on those systemswhich best progress the
investigation.

GRR is one of several agent based remote forensic
platforms (Guidance Software Inc., Oct 2012a; Khurana
et al., 2009). The following discussion focuses on some
implementation challenges addressed within the GRR
system, but these challenges are also faced by other plat-
forms. It is the discussion and analysis of these issues that
the authors hope will advance the current state of the art in
enterprise forensic triaging.

Although we have not formally evaluated and compared
other products to GRR, there are a number of products
which appear to offer similar functionality. For example,
Encase Enterprise (Guidance Software Inc., Oct 2012a) of-
fers advanced forensic capabilities such as remote image
acquisition, NSRL hash comparison and the ability to parse
many types of file formats. Similarly F-Response (F-
Response, Feb 2013), is a tool which provides raw read
only access to the physical disk and memory of the system
under investigation.

Fig. 1 shows an overview of the GRR system. The GRR
Agent is deployed on enterprise assets and reports back to
the central server. Message queues on the front end are able
to queue messages to the agent – termed requests – and
process messages from the agent – termed responses.

A sequence of requests and responses to the agent
which achieve a single analysis goal are termed Flows.
Flows can be suspended indefinitely by being serialized to
the data store. This technique allows the GRR Framework to
achieve the scalability required to simultaneously interact
with many thousands of agents. The details of how flows
are implemented in the GRR framework are described
elsewhere (Cohen et al., 2011), however for the purpose of
this discussion, a flow can be thought of as a single analysis
operation performed on the agent, for example fetching a
file, performing a keyword search on a directory or running
a memory analysis module.

The following sections describe some of the innovative
features of GRR and how these features work to implement
the Triaging process described in Section 1.

3.1. AFF4 and data modeling

The Advanced Forensic Format v4 (AFF4) was conceived
as ameans of modeling and interchanging forensic data in a
consistent way between different systems (Cohen et al.,
2009). In order to facilitate an extensible and scalable
interchangemechanism, an object oriented datamodel was
proposed based on the RDF relational model.
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GRR uses the AFF4 data modeling system to model the
information returned from the agents in a persistent data
store. The system maintains a persistent view of the entire
enterprise fleet within the AFF4 space and all agent in-
teractions can simply be viewed as updates to the AFF4 data
model to reflect samples of system states on the agents.

While the detailed AFF4 data model description can be
foundelsewhere (Cohenet al., 2009;ChowandShenoi, 2010),
the following description highlights some of the important
concepts as they are implemented in the GRR system.

At its heart, the AFF4 data model defines abstract AFF4
Objects, each having a specific Type. These are merely col-
lections of Attributes and type specific methods. An AFF4
object is known by its Uniform Resource Name (URN),
allowing the object to uniquely exist in the AFF4 name-
space. For example, an AFF4 Object which has a type of
AFF4Stream provides the read(), seek() and tell() methods.
GRR implements a number of specific AFF4 Object types, as
well as a number of Attribute types to represent remote
files on the GRR agent system.

AFF4 objects are abstract objects, responsible for their
own serialization to a data store. The data store simply
provides persistent storage for AFF4 objects, and the spe-
cific implementation of the data store is not important. For
example, for persistent interchange format, a data store
may be implemented using ZIP files (Cohen et al., 2009).
The GRR framework utilizes an interchangeable no-sql
persistent data store (Various, 2012a; Chang et al., 2008).

The original AFF4 scheme did not allow for versioned
attributes. This is however required in a live remote
forensic system such as GRR to represent constantly
changing forensic artifacts. For example, if we retrieve a file
from the agent, we know the file contents at that instant.
However, at a later time, the file may have changed, so
repeating the file downloadwill require a new version to be
stored in the AFF4 model.

This creates a time smear of data collected from the
client. Every piece of data has a timestamp associated with
it and is referred to as the Age of the data.

Fig. 2 illustrates a file examined using the GRR GUI. The
file is known by its URN (e.g. aff4:/C.cf4bcabf002d38e8/fs/os/
bin/bash) as a unique reference within the global AFF4
namespace. The URN itself can be broken down into a client
component, followed by a Virtual Filesystem component,
followed by the path of the file on the agent’s system. Note
that the GUI refers to the version of the file at a specific time
and the attributes are also listedwith their own timestamps.
By clicking the selectors in the “Age” column, the user can
easily switch between viewing different versions of this file.

Froma triaging point of view, the systemmust be capable
of handlingmultiple versions for each piece of data since the
samemachinemay be examinedmultiple times for different
investigations at different times. The triage process must
therefore be able to account for older versions of the same
file – for example, a specific cache history artifact was found
at one time instance but not at a later time instance.

3.2. Agent reliability and stability

The GRR system depends on the agent being available
and trusted on all enterprise assets in order to schedule large
scale triage hunts. Like all enterprise software, there are
non-security considerations for wide deployment, such as
system stability, resource consumption and licensing costs.

It is therefore extremely important to ensure that agents
use as few resources and are as reliable as possible when
running on enterprise systems. While a significant level of
testing has gone into the agent, there are always situations
which could cause unexpected extreme resource con-
sumption. For example, a keyword term containing a reg-
ular expression may have exponential running time on the
agent (Cox, 2007), leading to uncontrolled resource usage.
It is therefore imperative to provide guaranteed bounds on
the agent’s resource consumption, before it can be safely
installed on all corporate computing assets.

GRR uses a Nanny process to control agent memory
footprint, and provides assurances about maximum agent
resource utilization. The Nanny is a very small process
(memory footprint around 200 kilobytes) which is regis-
tered as a Windows Service. The Nanny is responsible for
launching and monitoring the main GRR Agent. Once the
agent is spawned, the Nanny constantly monitors for a
heartbeat signal. If a heartbeat is not received during a
configured time span, the Nanny kills the agent and restarts
it after a small resurrection time.

The GRR Agent is specifically designed to expect every
action to cause a crash. Therefore, the agent maintains a
transaction log of actions it is currently performing. If the
crash occurs during the execution of an agent action, the
agent is restarted by the Nanny. On start-up, the agent
examines the transaction log, and notices that the last ac-
tion resulted in a crash. The agent then sends a failure
message to the server to inform it about the crash.

This arrangement drastically improves the stability of
the GRR system and its resilience to a number of error
conditions as described in the following sections.

3.2.1. Handling GRR agent crashes
Even though the GRR Agent is very thoroughly tested,

sometimes crashes may still occur in the agent or perhaps
in a third party library. A vivid example of this condition is
the case of loading amemory driver for memory analysis or
acquisition. Although the memory driver is well tested,
there are cases where memory imaging can lead to a blue
screen of death crash (BSOD). If the machine is rebooted,
the agent will have to detect that a crash occurred, fail the
memory analysis request, and inform the server (and ulti-
mately the investigator) about the crash.

As a remote forensics tool, GRR interacts heavily with
low level third party libraries. For example, consider a GRR
server request for parsing the registry. If the third party
registry parsing library contains a bug and crashes when
attempting to parse the registry file, the recovery process is
as follows:

1. The server issues a request for the Agent to parse the
registry file.

2. The agent writes a transaction log with the currently
running request.

3. The agent then calls the registry parsing library
attempting to parse the file, but the agent crashes as a
result.



Fig. 2. Navigating the GRR VFS using the GUI.

A. Moser, M.I. Cohen / Digital Investigation 10 (2013) 89–98 93
4. The Nanny notices the child agent exited and restarts it
after a short time.

5. On startup, the agent examines the transaction log and
discovers that it exited during a request. It then sends a
failure message to the server for that request.

6. The server simply records the error message in the
relevant flow and informs the user that parsing this file
failed. However, the agent remains available for further
analysis.
3.2.2. Agent memory footprint
The GRR Agent is a long running process which uses

many third party libraries. It is possible that some of these
libraries leak memory. However, as mentioned previously,
it is crucial to ensure that the agent memory footprint on
the system is small.

The Agent maintains queues of incoming requests and
outgoing responses. As requests are queued up, the agent’s
memory usage increases, however, when its memory usage
rises above the soft limit, the agent refuses to accept new
requests. While processing the remainder of the incoming
queue might increase client memory for a short while,
eventually client memory will begin to drop as its queues
empty.

Once the agent’s memory falls below the soft memory
limit, it can begin accepting new requests. This causes the
client to essentially track the soft memory limit level –

going above it for a time, and falling below it for a while. If
there is a persistent memory leak however, the agent will
consume more and more memory and the memory usage
will eventually, even when queues are all empty, remain
above the soft limit. In this case, the agent will simply
voluntarily exit. The Nanny will then restart the agent. Note
that in this case, no requests are lost and the agent simply
continues where it left off. Since the agent maintains no
local state, the agent restart does not affect any current
analysis.

To demonstrate this in practice, we havemodified one of
the GRR agents to leak memory at a constant rate and have
monitored its resource consumption during a large file
transfer. Fig. 3 illustrates how this modified agent manages
its own memory footprint.

On the left side of the graph, the agent uses memory as
it processes requests. The memory consumption spikes up
as new requests are processed but stops shortly below the
60 MB soft limit we have set for this experiment. However,
as more and more memory is leaked, the soft limit is
exceeded more frequently (around label (a)). As the agent
sends more data to the server, some of this memory is
returned to the operating system and the agent falls below
the soft limit.

At some point, the memory usage does not drop below
the soft limit, even when there is nothing to send in the
output queue. At this point, the agent simply exits. After a
resurrection period (b), the nanny process restarts the
agent, which immediately starts transferring the file again.

In addition to the soft memory limit, there is also a hard
memory limit configured. If an agent uses more than this
amount of memory, the Nanny process can forcibly
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Fig. 3. A footprint of an agent modified to leak memory.
Fig. 4. A Find flow has terminated due to CPU quota exhaustion. The spec-
ified CPU quota was 30 s, and the flow has run out of available CPU quota. It
is killed with the error message “CPU Quota Exceeded”.

Fig. 5. Scheduling hunts.
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terminate the agent. Those two limits together effectively
guarantee bounds on total memory consumption of the
agent.

3.2.3. Excessive CPU utilization and hangs
Sometimes, unavoidably, the agent becomes unre-

sponsive while processing some actions. For example,
attempting to access an NFS share which is unavailable
might block the agent in an IO call indefinitely. The GRR
system is also capable of recovering from this condition as
the hung agent stops sending the Nanny the heartbeat
signals. After a while, the nanny process will kill and restart
the agent, which will then send a failure response to the
GRR server’s request upon checking its transaction log.

Another problem is the total amount of system re-
sources utilized during the execution of an analysis flow.
For example, a keyword search might result in an unex-
pected level of CPU usage if the files we intend to examine
end up being large. So despite the search proceeding as
normal (i.e. the agent is continuing to send heartbeat sig-
nals to the Nanny), the total resource utilization is still
unexpectedly large.

To control agent system resource usage, GRR imple-
ments per flow resource quotas. As a flow progresses by
sending requests to the agent, the agent reports the
amount of resources utilized for each request (e.g. CPU
utilization, bytes transmitted). The flow then tallies these
resources and shows the total amount of system resources
used. When total resources utilized exceeds the allotted
quota, the flow is forcibly terminated.

Fig. 4 shows an example of a flow that has been termi-
nated because it has exhausted its CPU quotawhile running
on an agent.

3.3. Hunts

A GRR hunt is a mechanism for controlling the launch-
ing, monitoring and aggregating of results from running a
specific flow on a large subset of agents registered in the
GRR system. A hunt is the primary method for performing
enterprise wide triaging.
The launching of a hunt is illustrated in Fig. 5. Deployed
agents periodically check in with the GRR system, where
they are examined by the Foreman component. The Fore-
man has a set of rules which are compared against the
agent’s known profile. For example, a rule can specify a
required operating system, usernames or hostname for the
agent.

If a rule is found to have matched, the agent ID is passed
to a Hunt flow for processing. The hunt then launches the
required analysis flow and tracks its progress. When the
child flow completes, its results are collected and recorded
in a central location.

Investigators follow the following three phase process
when issuing new hunts:

1. The planning phase: In this phase, the user designs the
type of analysis required to triage the system according to
the Triage process described in Section 1. An example for
this phase would be finding suitable keywords or searching
for specific files. The analysis is then designed to single out
those systems which might contain important evidence or
be relevant to the investigation.

An important consideration here is to decide if imme-
diate action is required in the event the system is found to
contain relevant evidence. Immediate actions might
include the collection and preservation of volatile evidence
such as certain files or memory images, or the automatic
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notification to responders for urgent attention (e.g. to
perform manual forensic disk acquisition).

The user must also decide if the hunt should run on all
systems or only on systems matching a particular profile.
For example, the investigation may only be relevant to
certain operating systems or even operating system ver-
sions. The user can then design a suitable Foreman rule to
only trigger hunt collection on the systems of interest.

2. The collection phase: In this phase, the hunt and its
relevant Foreman rules are active. As clients check into the
server, the Foreman compares their profile against the rule
set and those agents which match the criteria are directed
to the hunt. The hunt then launches flows on these agents
and maintains statistics on each client, as well as calculates
the total resource usage of the entire hunt.

3. The analysis phase: In this phase, the user gathers data
from the hunt flow and examines the results from the
collection phase. The user is then able to escalate further
analysis of triaged systems.

This general triaging procedure may be applied to a
wide range of typical investigation scenarios. The following
sections present some typical examples of applying this
general methodology in practice.

4. Experiments

The following experiments were designed to show the
capabilities of GRR as well as understand the limitations of
enterprise wide triaging. Although we use the current
implementation of GRR for these experiments, we expect
similar general observations to be applicable to other en-
terprise triaging tools. Indeed, as the GRR framework ma-
tures and improves, we expect the absolute performance
numbers to improve somewhat, but we feel the following
discussion to remain relevant.

In order to emulate a typical GRR installation in a
corporate environment we have installed the GRR agent on
a large number of corporate workstations and laptops used
by enterprise employees (The experimental group). Spe-
cifically, we show the usefulness of GRR for targeted tri-
aging, anomaly detection through aggregate statistics,
post-incident artifact detection, as well as the easy exten-
sibility of triaging flows. We also measure server and agent
resource consumption and show the effect of agent avail-
ability on triaging hunts.
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Fig. 6. Fraction of agents in the experimental group running the triage flow
with time. Initially the rate at which active agents process the triage hunt
depends on system capacity, but after a while, the number of new agents
participating in the hunt depends on the rate at which these become
available and online.
4.1. Drive by download

Consider a hunt designed to find potential downloaders
of a malicious exploit from the Internet (This type of attack
is often known as drive by download). For this example, we
assume that analysis of the initial exploit indicates the
exploit is only effective against Internet Explorer. We wish
to find which corporate assets have been compromised,
disrupt the attack and assess the overall damage.

Following the triaging procedure in Section 1, we can
design a hunt:

� Targets only Windows systems running Internet Ex-
plorer – this is specified in the foreman rule set.
� Search for the malware URL in the browser history
caches. We decide to collect the browser cache and
history files for triaged systems immediately, as there is
a risk that the URL is flushed from the browser cache by
the time a responder is able to forensically image the
system.

� We expect the search not to take longer than 1 CPU
minute on the agent and transfer less than 100 Mb from
each agent.

For this experiment, we launched the hunt on all Win-
dows systems in the experimental group and recorded the
number of systems completing the triage process. The re-
sults are shown in Fig. 6.

As can be seen in the figure, the majority of the agents
pick up the hunt in the first few minutes after it has been
started and after a run time of around 150 min the pro-
gression of the hunt slows down considerably. The reason
for this is that all the agents that were online at the time the
hunt was started have all completed the hunt by that time.
After this point, only clients that were offline before (they
might just be in a different time zone and therefore just
starting up as users start the workday) and just come back
online pick up the hunt.

Note that we stopped the hunt after 24 h. In a real world
scenario it might take much longer to reach 100% coverage
since some machines might not be online for an extended
period of time (e.g. laptops with users on vacation).

Fig. 7 shows the GRR GUI view of the total CPU and
bandwidth transferred for each agent during this hunt. The
variation in resource requirement can be attributed to
variation in Internet Explorer cache sizes between agent
systems. During this experiment, the average amount of
CPU seconds used by the agents was 0.70. However, 1.8% of
the clients used more than 5 CPU seconds, and a few even
used more than 20 CPU seconds.



Fig. 7. Variation of CPU load in the drive by hunt.
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4.2. Autoruns

Wide scale triaging brings the possibility of cross
sectional analysis on enterprise systems. This type of
analysis aims to detect anomalies in some systems by
comparing them to the entire population of similar sys-
tems, and qualifying their variance from the norm (This
anomaly may be attributed to a potential compromise).

As an example of this use case, we collected the Run/
RunOnce registry keys from the entire Windows experi-
mental group. Although not a complete location of mal-
ware startup locations, this is a common mechanism for
malware to persist across reboots. Typically, when
inspecting a single system it is difficult to ascertain if a
specific Run key starts a malicious binary without further
analysis. However, by comparing the total number of oc-
currences across the entire fleet, we can isolate those keys
which are less commonly used. We postulate that anoma-
lous Run keys often result from malware infection.

Fig. 8 shows a histogram of all the different Run keys we
encountered during the experiment. Note, that to generate
this histogram we ignored system specific values such as
usernames and CIDs. As the figure illustrates, there are
many Run keys that launch legitimate binaries and are
present on a high percentage of the investigated systems.
One example for those common entries is the key “%pro-
gramfiles%\windows sidebar\sidebar.exe /autorun” which
was found on nearly every system we investigated. Other
examples are common system drivers for printers or pop-
ular software packages.

However, the figure also shows that there is a very long
tail of keys that are only present on very few systems or
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Fig. 8. A histogram of run keys present on the client systems.
entirely unique. Specifically, 60% of the collected Run keys
were only present on a single machine. In our experiment, a
quick manual investigation of just those keys identified
most of them as legitimate. Nevertheless, we also
encountered interesting keys like “[.]/local/temp/good-
luck (2).exe” that seem anomalous and warrant further
investigation.

4.3. Artifact detection

Commonly after an intrusion, a similar backdoor is
installed on a large number of systems to provide the
attacker with the means to re-compromise the system in
the event it was cleaned up. Typically, this backdoor can be
achieved by changing the system’s configuration or
installing a Remote Access Tool (RAT).

In this experiment, we simulated a security incident
that affected a small number of our experimental testbed
machines. Specifically, we changed a configuration file for
the cron service on a random sample of around 1% of the
systems in a way malicious programs would. We then used
the GRR system to check all the machines for the contents
of this specific file using a “Find” flow using a regular
expression to search for the modification.

The goal of this experiment was to assess how quickly
simulated malicious modifications can be detected in the
experimental setup and the total time it takes to find all
such instances.

Fig. 9 shows the results of this experiment. As in pre-
vious experiments, a large fraction of the artifacts are
discovered in the first hour after scheduling the hunt. After
that the detection rate slows and gradually approaches
100%. In a real world incident, somemachines might not be
online for prolonged periods so a 100% detection ratemight
not be achieved for a long time. The GRR hunt will, how-
ever, just continue running (given a high enough expiration
time) so if those missing machines come back online at a
much later time, the artifacts will still be detected and an
alert can be raised.

The resource usage statistics give a clear view of the
agent impact for this hunt. On average, each agent used less
0 2 4 6 8 10 12 14 16
Time (h)

0

20

40

60

80

100

D
et
ec
tio
n
%

Artifact Detection

Fig. 9. Percentage of artifacts detected over time.



A. Moser, M.I. Cohen / Digital Investigation 10 (2013) 89–98 97
than 0.01 CPU seconds to complete the action for this
experiment (with a standard deviation of only 0.008 CPU
seconds) and sent less than 100 bytes over the network.
This more uniform level of resource usage can be attributed
to smaller variance in the sizes of system configuration
files.

4.4. A simple GRR triaging flow

Memory analysis represents one of the most volatile
sources of evidence. In this example, we simulate a hunt to
search agent memory for a known unique string. If the
string is found, we take the memory image using Vola-
tility’s crash dump writing support (Various, 2012b), and
subsequently copy the image to the server for evidentiary
preservation.

To achieve this, we wrote a customized flow reusing
existing components. Fig. 10 shows a code snippet of this
flow. The flow consists of 3 distinct states. While the agent
is performing the work, the flow can be serialized on the
server, not consuming server resources.

The Start state (Line 2) is the initial state of the flow. It
issues a Grep subflow to detect the pattern in the physical
memory of the system. The results of this flow are then
examined in the ExamineResults state (Line 11). If the
pattern is found, the Volatility raw2dmp plugin is invoked
to quickly save a copy of the live memory to the local disk,
and then a GetFile flow is issued to download this file to the
server and preserve it, forming a chain of custody. Alter-
natively, the GetFile flow can be used to copy memory over
the network without locally storing it, but this might take
longer and thus result in a more “smeared” image.

5. Discussion

We have chosen the experimental conditions to be
representative of a typical enterprise hunt for a pro-active
incident response team. As illustrated in Fig. 6, the
Fig. 10. A GRR flow to search for memory s
response time of the system depends heavily on the usage
pattern of the systems. For agents running on laptops and
other roaming systems, usage patterns show clear times
where the system is not available. Beyond the scalability of
the server itself, this non-availabily is a factor delaying the
speed of response. A significant number of systems are not
available at any particular time (e.g., users in a different
time zone) and some systems remain unavailable for an
extended period (e.g., users on vacation).

The response curve in Fig. 6 can be divided into three
phases. Within approximately an hour from the start of the
hunt the response curve is very steep, as the active agents
are added to the flow. However, after that time, the
response curve becomes much flatter, as the only new
systems added to the hunt are those which were not
initially active. Finally the curve flattens off, as most sys-
tems in the fleet have participated in the hunt and new
systems become rarer.

Since systems are added to each hunt as they become
available, increasing system capacity only has the effect of
compressing the first phase (i.e. handling the initial load
presented by currently available agents). Once the initial
load is handled, we must wait for systems to become
available, and an increase of the GRR system capacity is not
expected to speed up the hunt progression.

When considering the amount of resource use the drive
by download hunt elicited in Fig. 7, we note that most
agents did not spend much time searching the Internet
Explorer cache. However a few agents spent a significant
amount of time performing this action, perhaps due to
unexpectedly large cache configurations. This variation
highlights the need for guaranteed bounds on resource
utilization as even simple actions that usually do not result
in excessive load utilization can cause unexpected load on
some systems.

Section 4.2 explores some new possibilities which
become available when employing a wide reaching enter-
prise triaging system, such as GRR. The ability to compare
ignatures and take memory images.
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the running configurations of similar systems concurrently
promises to reveal anomalous configurations. Indeed the
cross sectional correlation anomaly detection is effective in
isolating configuration changes which are not common, and
therefore potentially suspicious. However, the experiment
also highlights inherent difficulties with this approach –

namely that the variations form a very long tailed distribu-
tion. The manual examination of every system with a
potentially unique autorun key is still time consuming. Po-
tential variations of this approach might involve retrieving
the executable file with GRR and post processing it using an
up to date virus scanner or other binary analysis engine.

6. Conclusions

Triaging is essentially an optimization using scarce re-
sources more efficiently for the analysis of systems which
are more likely to be interesting for an investigation. The
goal of a triaging procedure is simply to ascertain whether
the system is likely to be of interest, and how urgently
traditional forensic acquisition techniques must be applied
in order to maximize the evidentiary value of the system.

Since the burden of proof is far lower for a triage anal-
ysis, it is possible to automate this analysis heavily. Auto-
mation allows us to apply triaging to many more systems,
resulting is a wider net. Automation also assists in pro-
tecting the privacy of individuals who are found to not be
relevant for the investigation.

GRR is an enterprise remote forensic platform which is
concentrated on forensic analysis and acquisition. By
lowering the cost of forensic analysis on each system,we can
use GRR to perform enterprise wide triaging procedures.

GRR is suited to runwidely on enterprise systems due to
safety mechanisms built into the agent, allowing analysis to
be run confidently on many systems, without the risk of
adversely affecting operational systems.
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