
SDK Documentation

Revision History

Date Version Description Author

07.07.2023 1.0 Initial version Ivan Yanakiev (Product Manager, SONECT)

03.08.2023 1.1 Expanded
initialisation flow

Ivan Yanakiev (Product Manager, SONECT)

16.10.2023 1.2 Elaborated
the API calls

Surya Vedula (Head of Engineering, SONECT)

17.10.2023 1.3 Beautification Ivan Yanakiev (Product Manager, SONECT)

16.05.2024 1.4 Contacts Update Ivan Yanakiev (Product Manager, SONECT)

Table of Content
Table of Content 1
Introduction 2

Definitions, Acronyms, and Abbreviations 3
Contacts 3

Integration - WEB SDK 4
SDK Initiation Overview 4
APIs Breakdown 4

Exists 4
Endpoint destination URL 5
Header parameters 5
Request parameters 5



Response parameters 5
Create user 5

Endpoint destination URL 6
Header parameters 6
Request parameters 6
Response parameters 7

Partner check-in 7
Endpoint destination URL 7
Header parameters 7
Request parameters 7
Response parameters 8

Themes 8
Integration - Server 9

Endpoints 9
Request Body/Parameters 9
Response Body/Parameters 9
Authentication Flow 10
Payment Processing 10

SDK Screens 12
Dashboard 12
Cash withdrawal 13
Profile and transaction history 14
Map 15

Introduction
The scope of this document is to understand how to integrate the SONECT SDK into another
app. This document includes instructions for the following:

● Android
● iOS
● Hybrid applications
● Backend (Server-to-server / Webhooks)



Definitions, Acronyms, and Abbreviations
● API - Application Programming Interface
● HMAC - Hash-based message authentication code
● HTTPS - HyperText Transfer Protocol Secure
● JWT - JSON Web Token
● SDK - Software Development Kit

Contacts

Product Manager Ivan Yanakiev i.yanakiev@sonect.net

Senior Backend Developer Damian Anchidin d.anchidin@sonect.net

Integration - WEB SDK

SDK Initiation Overview

Figure 1:WebSDK initialisation flow



Diagram in Figure 1 shows the flow of communication between partner application and Sonect
to create user if needed and then to receive checkinUrl for opening Sonect’s WebSDK. Flow
starts by partner initiation /exists call to understand if the current user is already registered in
Sonect’s system. If a user does not exist, the partner needs to call /user/create endpoint with
sufficient data, in order to create a corresponding user in Sonect’s system. After the user
exists /partnerCheckin endpoint is called to perform authentication and provide a url to open,
which includes JWT token for further session requests.

APIs Breakdown

Exists

POST /exists

Checks if the user already exists and returns existence status and partner configuration.

Endpoint destination URL

TEST https://api-test.sonect.io/v7/exists

PROD https://api.sonect.io/v7/exists

Header parameters

Authorization: string
Authorization token derived from Sonect provided credentials. Example token creation:
const basicToken = 'Basic ' + btoa(clientId:clientSecret);

Request parameters

id: string
User identifier in Sonect’s system, to be checked for existence.

idType: string
Type of id to be checked, one of three values “id”, “phone” or “vat”.

userType: string
Type of user to be checked, one of three values “user”, “atm” or “worker”.



Response parameters

HTTP Responses
200 - Success
Check for user existence has been successful. JSON response will contain payload field
including following:
result: 0
exists: Bool

400 - Bad Request
Check for request parameters. Response will contain empty payload field including following:
result: -1

403 - Forbidden
Action not allowed. Response will contain empty payload field including following:
result: -6

500 - Internal Server Error
Server Error. Response will contain empty payload field including following:
result: -1

Create user

POST /user

Creates user in Sonect’s system with provided details.

Endpoint destination URL

TEST https://api-test.sonect.io/v7/user

PROD https://api.sonect.io/v7/user

Header parameters

Authorization: string
Authorization token derived from Sonect provided credentials. Example token creation:
const basicToken = 'Basic ' + btoa(clientId:clientSecret);

Request parameters



referenceId: string (required)
User identifier to be created in Sonect’s system.

firstName: string (required)
Natural person’s first name.

middleName: string
Natural person's middle name.

lastName: string (required)
Natural person's last name.

address: object
JSON object with following structure:
{ line1: string,
line2: string,
houseNumber: string,
zip: string,
city: string,
country: string, (required)
countryCode: string, (required)
formatted: string }

email: string (required)
Email of the user.

phone: string (required)
Phone of the user.

dateOfBirth: string
Date of birth of the user.

Response parameters

HTTP Responses
200 - Success
User creation has been successful.

400 - Bad Request
Check for request parameters. Response will contain empty payload field including following:
result: -1

403 - Forbidden
Action not allowed. Response will contain empty payload field including following:



Message: “Error”(or) “Email already exists”
result: -177 (or) -1

500: Internal Server Error
Server Error. Response will contain empty payload field including following:
result: -1

Partner check-in

POST /partnerCheckin

Perform oauth2 authentication and return user status and destination url.

Endpoint destination URL

TEST https://api-test.sonect.io/v7/partnerCheckin

PROD https://api.sonect.io/v7/partnerCheckin

Header parameters

Authorization: string
Authorization token derived from Sonect provided credentials. Example token creation:
const basicToken = 'Basic ' + btoa(clientId:clientSecret);

Request parameters

referenceId: string (required)
User identifier in Sonect’s system, for which authorization is performed.

additionalData: object
JSON object that includes any partner specific data that should be sent to Sonect’s system.
I.e. it could contain user balance, specific ids for further communication and others.

Response parameters

HTTP Responses
200 - Success



JSON response will contain payload field including following:
checkinUrl: string

400 - Bad Request
User not found. Response will contain empty payload field including following:
result: -21

500: Internal Server Error
Server Error. payload:
{ checkInUrl: null }

Open checkinUrl in an inline web browser(e.g. SFSafariViewController for
iOS) to finish the process of opening Sonect’s WebSDK.

Integration - Server
Every bank who integrates the SONECT SDK will have the following (unique) credentials
received from Sonect during the Integration Partner setup process :

● clientId
● clientSecret
● hmacKey



Payment Process Overview

Figure: Transaction withdrawal flow

User cash withdrawal flow consists of following steps, from user/merchant perspective:
1. Initiation of Withdrawal by User

User specifies the amount to withdraw and starts the process by tapping “Confirm”
on the withdrawal screen.

2. Barcode Generation
Upon confirming the withdrawal amount, the user is presented with a unique
barcode on their device's screen.

3. Barcode Scanning by Merchant
The user visits a participating merchant and presents the barcode to the merchant
for scanning.
The merchant scans the barcode using their Point-of-Sale (POS) system or a
dedicated app.

4. Merchant Confirmation
Once scanned, the merchant confirms the amount and transaction details on their
system.

5. Strong Customer Authentication (SCA)
After the merchant confirms the transaction, the user receives a prompt for SCA
verification.

6. User Completes SCA Verification
The user follows the in-app instructions to complete the SCA verification. This
involves entering a previously set passcode that is stored on Sonect’s system for
verification purposes..



7. Transaction Completion
After successful SCA verification, the transaction is marked as complete in the
system. Both user and merchant apps will have the updated transaction state.

8. Cash Handover by Merchant
The merchant receives confirmation of the transaction completion and hands over
the specified cash amount to the user.

9. Transaction Receipt
Both the merchant and the user receive digital receipts for the completed
transaction.

During this process there are 2 touch points between the Sonect’s system and integrating
partner, and both happen during transaction initiation:

1. StartOrder
Sonect’s backend will call startOrder API to ask the integrator to book payment and
verify the user has enough funds for the transaction.

2. SettleOrder
Before a transaction is created, settleOrder will be called to finalise payment from
the integrator to Sonect’s user account.

APIs Breakdown

Note: The exact API endpoints are provided by integrating partner, so following
documentation is just an example interface and should be synchronised between Sonect
and integrating partner.

startOrder

POST /api/sonect/startwithdrawal

Informs the integrating partner that a transaction is initiated for a given amount. If response
is positive funds are considered secured, but payment is not yet executed.

Header parameters

X-Auth-Token: string
Authorization token.

Request parameters

userId: integer (required)



User id in partner system.

amount: { value: Number } (required)
Amount of transaction.

dateOfTransaction: string (required)
Date of transaction initiation. 2023-10-05T05:31:04.278Z format.

expiryTimeOfTheOrder: string (required)
Date of transaction expiration. 2023-10-05T05:31:04.278Z format.

sonectTransactionReferenceId: string
Transaction reference id in Sonect’s system.

store: string

HTTP Responses
200 - Success
User creation has been successful. Response contains:

Message: string

ResultCode: integer
- 4: Cash limit exceeded
- 1: Generic error
- 21: Transaction is already in final state
1222: Insufficient balance

Skip: bool

TransactionId: integer
Transaction id in partner’s system to be used for future reference.

500 - Internal Server Error

settleOrder

POST /api/sonect/settlewithdrawal

Confirms transaction is finalised and payment should be made to given Sonect account. If
response is positive then transaction is created presented to user. If negative transaction is
not created.

Header parameters



X-Auth-Token: string
Authorization token.

Request parameters
TransactionId: integer (required)
Id of transaction in partner’s system.

UserId: integer (required)
User id in partner system.

DateOperation: string (required)
Date of transaction initiation. 2023-10-05T05:31:04.278Z format.

SonectTransactionReferenceId: string
Transaction reference id in Sonect’s system.

HTTP Responses
200 - Success
User creation has been successful. Response contains:

Message: string

ResultCode: integer
- 4: Cash limit exceeded
- 1: Generic error
- 21: Transaction is already in final state
1222: Insufficient balance

Skip: bool

500 - Internal Server Error

SDK Screens
The following SDK screen will give an overview of the logic flow and UI within the SDK.
All in all the SONECT SDK will have a dark and a light theme.

Dashboard

SONECT SDK v1 will come with one main feature for cash withdrawal and supporting
features map with SONECT Shops (Map) and profile button in the upper left corner. List of
nearby shops is present if user has enabled locations and there are shops within certain
distance.



In the active barcode button there will be the open withdrawal request stored. It is only
possible to generate one request at a time

Cash withdrawal

Main feature cash withdrawal contains to choose the amount, through quick selection
buttons or slider, and a tile with current limit and info disclaimer. By pressing Pay the user
initiates the withdrawal request with barcode.



By pressing on trash icon, users can cancel the withdrawal request. User can also browse
nearby shops if location permissions are granted.

Profile and transaction history

In this supporting feature users will be able to review profile informantion their
transactions.



Map
In this supporting feature users can look for a SONECT ATM. Users can scroll in the map,
search for a specific ATM or search for ATMs.. This view indicates open and closed shops
on the map.



Themes

Web SDK uses the White theme by default.
You can switch themes between White or Dark on the Profile page. (screen below)




