

Developer Documentation
Developer DocumentaƟon

The PlanSwiŌ API provides developers the documentaƟon (much of which is "coming soon") on PlanSwiŌ that will provide them the tools needed to develop and link
applicaƟons to PlanSwiŌ.
Before working with the API, a good understanding of the internal structure is vital and will require an Under-The-Hood (U-T-H) tab to be enabled.

 CAUTION
By modifying or changing anything in the back end, you may adversely affect the operaƟon of PlanSwiŌ. ModificaƟons should be done in a read-only mode. If any
modificaƟons are done to the back end, those modificaƟons will be lost when the applicaƟon is re-installed.

Should you choose to proceed anyway, you will need a password to go "under the hood" that can be obtained from your PlanSwiŌ representaƟve or by sending an email to
takeoff@constructconnect.com.

2

API DocumentaƟon

API DocumentaƟon

This API documentaƟon provides the development informaƟon needed to connect PlanSwiŌ to other applicaƟons. It includes a descripƟon of the internal structure of the API,
the object structure of the API, and how to access PlanSwiŌ's Under-The-Hood secƟon; it describes the root properƟes and seƫngs hierarchy of the applicaƟon commands
(including code examples in C#, Delphi, VB/VBA / OLE, Pascal ScripƟng, and Pascal ScripƟng OLE), seƫngs hierarchy, secƟons on connecƟng with OLE and COM, the developer
documents secƟon, and the API Reference secƟon, including coding examples for COM Object Models and ScripƟng.

SecƟon Contents

Related arƟcles

3

PlanSwiŌ Structure

PlanSwiŌ Structure

Going "Under-The-Hood" allows the programmer to link to PlanSwiŌ soŌware to develop applicaƟons that work with PlanSwiŌ. Under-The-Hood provides a programmer the
capability to link to PlanSwiŌ soŌware to develop applicaƟons that work with PlanSwiŌ.

Overview of Under-The-Hood
Any development environment that supports COM,such as:C#, Visual Basic, Delphi, Java, etc., can uƟlize the PlanSwiŌ API. Developers can use whatever Integrated
Development Environment (IDE) they would like to. With managed code, you you don't have to worry about freeing up PlanSwiŌ (removing it from memory). When
programming in unmanaged code, such as Delphi, you will have to free up PlanSwiŌ.
There are two ways to connect to PlanSwiŌ: one is Early Binding, and the other is Late Binding. Early Binding allows you access to Types: everything is pre-loaded into the
proper structure. Late Binding means that everything has already been executed within code; you just want to hook into that via Object Linking and Embedding (OLE) and
listen for those events, so you do not get the same funcƟonality as in COM with its pre-loaded Types and Items. Early Binding is preferable because it is a lot easier to use Early
Binding with Types versus Late Binding and having to do a lot of guesswork.

Obtaining the Under-The-Hood password
To obtain the Under-The-Hood password, please contact your PlanSwiŌ representaƟve or send an email to takeoff@constructconnect.com. SecƟon

Contents

Related arƟcles

Accessing Under-The-Hood (U-T-H)

4

Accessing Under-The-Hood (U-T-H)

Before working with the API, a good understanding of the internal structure is recommended. To review the structure, the Under-The-Hood (U-T-H) tab needs to be enabled.
This secƟon describes how to enable the U-T-H tab in order to access the internal structure of PlanSwiŌ.

 By modifying or changing anything in the back end, you may adversely affect the operaƟon of the applicaƟon. ModificaƟons should be done in a read-only mode. If any
modificaƟons are done to the back end, those modificaƟons will be lost when the applicaƟon is re-installed.

Follow these steps to enable the Under-The-Hood U-T-H tab.
1. Open PlanSwiŌ.
2. Click on Seƫngs along the top ribbon bar (see #1 on Figure 1 below).
3. Select Interface from the opƟons on the leŌ (see #2 on Figure 1 below).

5. For the password, please contact your PlanSwiŌ representaƟve or send an email to takeoff@constructconnect.com. Enter the password (see number #4 of Figure 1) and
click on Ok.

6. An U-T-H (for "Under-the-Hood") tab now appears on the top ribbon bar (see the red arrow in Figure 2). Click on U-T-H.

5

 Figure 2

7. Clicking on U-T-H tab displays the Under-The-Hood (U-T-H) hierarchy (Figure 3). PlanSwiŌ is the root, or the parent object. Each of the folders beneath PlanSwiŌ is a
child of PlanSwiŌ.

6

 Figure 3

7

Root ProperƟes

Root ProperƟes

This secƟon describes how to access the advanced Root Object ProperƟes window.

Double-click on PlanSwiŌ (see red arrow of Figure 1) to open the Advanced ProperƟes window for the root object. Simple

DescripƟon
API Call: planswiŌ

planswiŌ.root
Use "\" (without the quotes) to access the root object.

 Figure 1

Seƫngs Hierarchy

Seƫngs Hierarchy

Seƫngs are the root seƫng for PlanSwiŌ. They are the default configuraƟon seƫngs for PlanSwiŌ and can be wriƩen, read, and modified. Custom seƫngs can also be added.
This secƟon provides a list of these seƫngs and coding examples in C#, Delph, VB / VBA OLE, and ScripƟng of how to access the seƫngs.
To obtain the Advanced ProperƟes of Seƫngs, double click on Seƫngs (red arrow in Figure 1).

8

 Figure 1

See Figure 2 for the Seƫngs Advanced ProperƟes window. Note that you may or may not have some of these property values in your version of the soŌware. API calls for each
of these are covered in alphabeƟcal order.

9

10

API Calls
Delphi

C#
VB/VBA (OLE)

ScripƟng

Delphi

C#

VB/VBA (OLE)

ScripƟng

 main;

 planswift: IPlanSwift;
 settings: IItem;

 planswift := coPlanSwift . Create();
 settings := planswift . '\Settings' ;

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

11

 settings := PlanSwift.getItem('\Settings' ;

12

AllowExtenderDPI

AllowExtenderDPI

Boolean value that enables or disables extended DPI Range for TIFFs. Checked is true and enables it; unchecked is false and disables it. Figure 1 shows where this seƫng is
controlled in the Seƫngs / Interface / Interface Seƫngs window.

 Figure 1

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng
Pascal ScripƟng (OLE)

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'AllowExtenderDPI' ;
 (. RResultAsBoolean())

 main;

 planswift: IPlanSwift;
 :

 planswift := coPlanSwift .

 . '\Settings' 'AllowExtenderDPI' ;

 (. ResultAsBoolean())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 "AllowExtenderDPI" ;
 console.WriteLn(property.ResultAsBoolean())

13

VB/VBA (OLE)

Pascal ScripƟng

Pascal ScripƟng (OLE)

AngleSnapHotKey

1
2
3
4
5
6
7

private
 void

 Main()
{

 PlanSwift();
 IPropertyObject property =
planswift.GetProperty(@"\Settings" , "AllowExtenderDPI"
 console.WriteLn(property.ResultAsBoolean)
}

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("AllowExtenderDPI"

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "AllowExtenderDPI"

 Console.WriteLn(property.ResultAsBoolean)

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('AllowExtenderDPI' ;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' 'AllowExtenderDPI' ;
 ShowMessage(property.ResultAsBoolean);

 '\Settings')
 'AllowExtenderDPI'))

 ShowMessage(GetResultAsBoolean('\Settings' 'AllowExtenderDPI'))

14

AngleSnapHotKey

Integer value that returns an ANSI key code (default code 72, key H). Figure 1 shows where the AngleSnapHotKey assignment is made. Ortho Snap (another name for
Angle Snap) is also controlled in the PlanSwiŌ window (Figure 2) and in the Seƫngs Window (Figure 3).

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng OLE
Pascal ScripƟng

Delphi

15

C#

VB/VBA (OLE)

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'AngleSnapHotKey' ;
 (. ResultAsInteger())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(@ "\Settings" ;
 IPropertyObject property = settings.GetProperty("AngleSnapHotKey" ;
 console.WriteLn(property.ResultAsInteger())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("AngleSnapHotKey"
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("AngleSnapHotKey"

 Console.WriteLn(property.ResultAsInteger());

 Main()

16

Pascal ScripƟng OLE

Pascal ScripƟng

AutoUpdate

AutoUpdate

Boolean value that toggles AutoUpdate on or off. Checked is true (on) and enables it. Unchecked is false (off) and disables it. If this box is checked, the Update
NoƟficaƟons seƫngs in Figure 1 will be set to NoƟfy me of all recommended updates. If the box is not checked, then the Update NoƟficaƟons screen will be set to Do
not noƟfy me of updates. If the Update NoƟficaƟons in the Seƫngs / NoƟficaƟons area is set to NoƟfy me of all recommended updates, then the U-T-H AutoUpdate
value will toggle to checked (true).

3
4
5

 Dim
 planswift = CreateObject(

 Dim
 nameProperty = planswift.GetProperty("\Settings"

 Console.WriteLn(property.ResultAsInteger)
End

 Sub

 '\Settings')
 'AngleSnapHotKey'))

 ShowMessage(GetResultAsInteger('\Settings' 'AngleSnapHotKey'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty(;
 ShowMessage(property.ResultAsInteger);

 property := PlanSwift.GetProperty('\Settings' 'AngleSnapHotKey' ;
 ShowMessage(property.ResultAsInteger);

17

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng OLE
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . ;
 (. RResultAsBoolean())

1
2
3
4
5
6
7
8
9

10

//or

var

 property IPropertyObject;
begin
 planswift := coPlanSwift Create();
 property

 := GetProperty('AutoUpdate' ;
 WriteLn (property . ResultAsBoolean())
end ;

18

C#

VB/VBA (OLE)

Pascal ScripƟng OLE

Pascal ScripƟng

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty(;
 console.WriteLn(property.ResultAsBoolean())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty(
 console.WriteLn(property.ResultAsBoolean)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty(

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings"

 Console.WriteLn(property.ResultAsBoolean)

 '\Settings')
))

 ShowMessage(GetResultAsBoolean('\Settings'))

end

19

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty(;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' ;
 ShowMessage(property.ResultAsBoolean);

20

AUTOCOUNTWIZARD

AUTOCOUNTWIZARD

Boolean value that enables or disables the display of Auto Count tool on the Main Menu. Checked (true) enables its display; unchecked (false) disables it. Figure

1 shows where this value is controlled in the Main Menu / Seƫngs / Interface Seƫngs window. Figure 2 shows where the Auto Count tool is displayed on the Main Menu
when enabled.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

21

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

6
7
8
9

10
11

 property
begin
 planswift := coPlanSwift Create();
 settings := planswift . getItem(
 property

 := GetProperty('AUTOCOUNTWIZARD'
 WriteLn (property . RResultAsBoolean())
end

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'AUTOCOUNTWIZARD' ;
 (. ResultAsBoolean())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("AUTOCOUNTWIZARD" ;
 console.WriteLn(property.ResultAsBoolean())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("AUTOCOUNTWIZARD"
 console.WriteLn(property.ResultAsBoolean)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("AUTOCOUNTWIZARD"

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings"

 Console.WriteLn(property.ResultAsBoolean)

22

Pascal ScripƟng

1
2
3
4

begin
)
 ShowMessage(GetResultAsBoolean(settings, ;
end

 ShowMessage(GetResultAsBoolean('\Settings' 'AUTOCOUNTWIZARD'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty(;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' 'AUTOCOUNTWIZARD' ;
 ShowMessage(property.ResultAsBoolean);

23

AutoDimenOnScale

AutoDimenOnScale

Boolean value that controls the display of the Disclaimer when Auto Scaling a page if box is checked. Checked (true) displays the disclaimer; unchecked (false) disables
display of the disclaimer. The PlanSwiŌ Home / Main Menu ribbon bar Scale Seƫngs control and the window it opens is shown in Figure 1. Click on Auto in the window
to control scale automaƟcally (Figure 2). AŌer selecƟng a scale (from the drop-down shown in Figure 3) and clicking OK, the Auto Scale Disclaimer window (Figure 4) is
visible (as long as the AutoDimenOnscale variable is set to true).

 Figure 3

24

 Figure 4

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng OLE Pascal
ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'AutoDimenOnScale' ;
 (. RResultAsBoolean())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'AutoDimenOnScale' ;
 (. ResultAsBoolean())

25

VB/VBA (OLE)

Pascal ScripƟng OLE

Pascal ScripƟng

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("AutoDimenOnScale" ;
 console.WriteLn(property.ResultAsBoolean())

 void

4
5
6

 PlanSwift planswift = new
 PlanSwift();

 IPropertyObject property = planswift.GetProperty(@"\Settings"
 console.WriteLn(property.ResultAsBoolean)
}

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("AutoDimenOnScale"

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "AutoDimenOnScale"

 Console.WriteLn(property.ResultAsBoolean)

 '\Settings')
 'AutoDimenOnScale'))

 ShowMessage(GetResultAsBoolean('\Settings' 'AutoDimenOnScale'))

26

AutoSelectFirstPage

AutoSelectFirstPage

Boolean value controlling whether the first page (in the Pages, Bookmarks window from the Home tab) is automaƟcally selected (Figure 1). Checked (true) selects the first
page automaƟcally (Figure 2). Unchecked (false) brings up a blank PlanSwiŌ screen (Figure 3).

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('AutoDimenOnScale' ;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' 'AutoDimenOnScale' ;
 ShowMessage(property.ResultAsBoolean);

27

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'AutoSelectFirstPage' ;
 (. RResultAsBoolean())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' ;
 (. ResultAsBoolean())

28

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty(;
 console.WriteLn(property.ResultAsBoolean())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty(
 console.WriteLn(property.ResultAsBoolean)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty(

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "AutoSelectFirstPage"

 Console.WriteLn(property.ResultAsBoolean)
End

 Sub

 '\Settings')
))

 ShowMessage(GetResultAsBoolean('\Settings'))

29

Color Scheme

Color Scheme

String value that controls the color scheme of PlanSwiŌ's top window area. Choices are Blue, Black, or Silver. The default is Blue. See Figure 1. SelecƟng Black is shown in
Figure 2.

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('AutoSelectFirstPage' ;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' ;
 ShowMessage(property.ResultAsBoolean);

30

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

VB/VBA (OLE)

1
2
3
4
5
6
7
8
9

10
11

var

 property
begin
 planswift := coPlanSwift Create();
 settings := planswift . getItem(
 property

 := GetProperty('Color Scheme' ;
 WriteLn (property .
end

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'Color Scheme' ;
 (. ResultAsString())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("Color Scheme" ;
 console.WriteLn(property.ResultAsString())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("Color Scheme"

31

Pascal ScripƟng (OLE)

Pascal ScripƟng

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("Color Scheme"

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "Color Scheme"

 '\Settings')
 'Color Scheme'))

 ShowMessage(GetResultAsString('\Settings' 'Color Scheme'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('Color Scheme' ;
 ShowMessage(property.ResultAsString);

 property := PlanSwift.GetProperty('\Settings' 'Color Scheme' ;
 ShowMessage(property.ResultAsString);

32

ConƟnueWithHotKey

ConƟnueWithHotKey

Integer value returns an ANSI key code (default is "None") for the ConƟnue With command. Figure 1 shows where the ConƟnue With hotkey is assigned. Figure 2 shows
the ConƟnue With window when opened. Figure 3 shows the right-click menu where ConƟnue With is normally acƟvated (click on the takeoff item that is to be conƟnued
to select it, then right-click on it to see the drop-down menu, and then click on ConƟnue With to open the ConƟnue With window).

 Figure 2

33

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' ;
 (. ResultAsInteger())

34

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty(;
 console.WriteLn(property.ResultAsInteger())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty(
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty(

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
))

 ShowMessage(GetResultAsInteger('\Settings'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty(;
 ShowMessage(property.ResultAsInteger);

35

 property := PlanSwift.GetProperty('\Settings' ;
 ShowMessage(property.ResultAsInteger);

36

CreateBookmarkHotKey

CreateBookmarkHotKey

Integer value returns an ANSI key code (default code 66, the leƩer B) for the Create Bookmark command. Figure 1 shows where the Create Bookmark hotkey is assigned.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'CreateBookmarkHotkey' ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'CreateBookmarkHotkey' ;
 (. ResultAsInteger())

37

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("CreateBookmarkHotKey" ;
 console.WriteLn(property.ResultAsInteger())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("CreateBookmarkHotKey"
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("CreateBookmarkHotKey"

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "CreateBookmarkHotKey"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
 'CreateBookmarkHotKey'))

 ShowMessage(GetResultAsInteger('\Settings' 'CreateBookmarkHotKey'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('CreateBookmarkHotKey' ;
 ShowMessage(property.ResultAsInteger);

38

 property := PlanSwift.GetProperty('\Settings' 'CreateBookmarkHotKey' ;
 ShowMessage(property.ResultAsInteger);

39

DefaultAreaTransparency

DefaultAreaTransparency

Integer value that sets the Area transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultAreaTransparency controls in both the Seƫngs screen and the U-T-H Seƫngs / Advanced ProperƟes.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'DefaultAreaTransparency' ;
 (. ResultAsInteger())

 main;

 planswift: IPlanSwift;
 :

 .

 . '\Settings' 'DefaultAreaTransparency' ;
 WriteLn . ResultAsInteger())

40

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1
2
3
4
5
6
7

private
 void

 Main()
{
 PlanSwift planswift = new

 PlanSwift();
 IItem settings = planswift.GetItem(@"\Settings" ;
 IPropertyObject property = settings.GetProperty(
 console.WriteLn(property.ResultAsInteger())
}

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("DefaultAreaTransparency"
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("DefaultAreaTransparency"

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "DefaultAreaTransparency"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
 'DefaultAreaTransparency'))

 ShowMessage(GetResultAsInteger('\Settings' 'DefaultAreaTransparency'))

41

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('DefaultAreaTransparency' ;
 ShowMessage(property.ResultAsInteger);

3
4 '\Settings'

 ShowMessage(property.ResultAsInteger);
end

42

DefaultCountTransparency

DefaultCountTransparency

Integer value that sets the Count transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultCountTransparency controls in both the Seƫngs screen and the U-T-H Seƫngs / Advanced ProperƟes.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'DefaultCountTransparency' ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'DefaultCountTransparency' ;
 (. ResultAsInteger())

43

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1
2
3
4
5
6
7

private
 void

 Main()
{
 PlanSwift planswift = new

 PlanSwift();
 IItem settings = planswift.GetItem(@"\Settings" ;
 IPropertyObject property = settings.GetProperty(;
 console.WriteLn(property.ResultAsInteger())
}

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("DefaultCountTransparency"
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("DefaultCountTransparency"

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "DefaultCountTransparency"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
 'DefaultCountTransparency'))

 ShowMessage(GetResultAsInteger('\Settings' 'DefaultCountTransparency'))

44

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('DefaultCountTransparency' ;
 ShowMessage(property.ResultAsInteger);

3
4 '\Settings' ;

 ShowMessage(property.ResultAsInteger);
end

45

DefaultCurrency

DefaultCurrency

String value that displays and controls the default currency (Figure 1). OpƟons are those on the Default Currency drop-down menu below (see Figure 1). In the U-T-H
Seƫngs (advanced properƟes) screen (Figure 2), click the Formula cell for Default Currency to open the DefaultCurrency Formula Editor window. The currency may be
edited here. Clicking on OK saves it, and it will be displayed in the Default Currency field in the Seƫngs / General window.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . ;
 (. ResultAsString())

46

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

1
2
3
4
5
6
7
8
9

10

//or

var

 property IPropertyObject;
begin
 planswift := coPlanSwift Create();
 property

 := GetProperty(
 WriteLn (property .
end ;

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("DefaultCurrency" ;
 console.WriteLn(property.ResultAsString())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("DefaultCurrency"

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("DefaultCurrency"

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings"

47

Pascal ScripƟng

 '\Settings')
 'DefaultCurrency'))

 ShowMessage(GetResultAsString('\Settings' 'DefaultCurrency'))

end

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty(;
 ShowMessage(property.ResultAsString);

 property := PlanSwift.GetProperty('\Settings' 'DefaultCurrency' ;
 ShowMessage(property.ResultAsString);

48

DefaultLinearTransparency

DefaultLinearTransparency

Integer value that sets the Linear transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultLinearTransparency controls in both the Seƫngs screen and the U-T-H Seƫngs / Advanced ProperƟes.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' ;
 (. ResultAsInteger())

49

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1
2
3
4
5
6
7

private
 void

 Main()
{
 PlanSwift planswift = new

 PlanSwift();
 IItem settings = planswift.GetItem(@"\Settings" ;
 IPropertyObject property = settings.GetProperty("DefaultLinearTransparency" ;
 console.WriteLn(property.ResultAsInteger())
}

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty(
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty(

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
))

 ShowMessage(GetResultAsInteger('\Settings'))

50

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty(;
 ShowMessage(property.ResultAsInteger);

3
4 '\Settings' 'DefaultLinearTransparency' ;

 ShowMessage(property.ResultAsInteger);
end

51

DefaultMeasurementType

DefaultMeasurementType

String value that selects between Metric and English (Imperial) measurement types (see Figure 1). The U-T-H window allows the default measurement type to be changed
there (Figure 2). Enter English or Metric and click on OK. Figure 3 shows where the Measurement Type is set for a New Job.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

52

C#

VB/VBA (OLE)

1
2
3
4
5
6
7
8
9

10

var

 property
begin

 planswift := coPlanSwift Create();
 settings := planswift . getItem(
 property

 := GetProperty('DefaultMeasurementType'
 WriteLn (property .
end

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'DefaultMeasurementType' ;
 (. ResultAsString())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("DefaultMeasurementType" ;
 console.WriteLn(property.ResultAsString())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("DefaultMeasurementType"

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("DefaultMeasurementType"

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings"

53

Pascal ScripƟng (OLE)

Pascal ScripƟng

 '\Settings')
 'DefaultMeasurementType'))

 ShowMessage(GetResultAsString('\Settings' 'DefaultMeasurementType'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty(;
 ShowMessage(property.ResultAsString);

 property := PlanSwift.GetProperty('\Settings' 'DefaultMeasurementType' ;
 ShowMessage(property.ResultAsString);

54

DefaultNoteTransparency

DefaultNoteTransparency

Integer value that sets the Note transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultNoteTransparency controls in both the Seƫngs screen and the U-T-H Seƫngs / Advanced ProperƟes.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'DefaultNoteTransparency' ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'DefaultNoteTransparency' ;
 WriteLn (. ResultAsInteger())

55

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1
2
3
4
5
6
7

private
 void

 Main()
{
 PlanSwift planswift = new

 PlanSwift();
 IItem settings = planswift.GetItem(@"\Settings" ;
 IPropertyObject property = settings.GetProperty(
 console.WriteLn(property.ResultAsInteger())
}

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("DefaultNoteTransparency"
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("DefaultNoteTransparency"

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "DefaultNoteTransparency"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
 'DefaultNoteTransparency'))

 ShowMessage(GetResultAsInteger('\Settings' 'DefaultNoteTransparency'))

56

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('DefaultNoteTransparency' ;
 ShowMessage(property.ResultAsInteger);

3
4 '\Settings'

 ShowMessage(property.ResultAsInteger);
end

57

DefaultSegmentTransparency

DefaultSegmentTransparency

Integer value that sets the Segment transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultSegmentTransparency controls in both the Seƫngs screen and the U-T-H Seƫngs / Advanced ProperƟes.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'DefaultSegmentTransparency' ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' ;
 (. ResultAsInteger())

58

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1
2
3
4
5
6
7

private
 void

 Main()
{
 PlanSwift planswift = new

 PlanSwift();
 IItem settings = planswift.GetItem(@"\Settings" ;
 IPropertyObject property = settings.GetProperty("DefaultSegmentTransparency"
 console.WriteLn(property.ResultAsInteger())
}

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty(
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty(

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "DefaultSegmentTransparency"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
))

 ShowMessage(GetResultAsInteger('\Settings'))

59

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('DefaultSegmentTransparency' ;
 ShowMessage(property.ResultAsInteger);

3
4 '\Settings' 'DefaultSegmentTransparency'

 ShowMessage(property.ResultAsInteger);
end

60

DigiƟzerSnap

DigiƟzerSnap

Boolean value that toggles digiƟzer Snap On and Off. Figures 1 and 2 show where Snap is controlled. When enabled (true), the Snap control is highlighted; when disabled
(false) it is not highlighted.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'DigitizerSnap' ;
 (. RResultAsBoolean())

61

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

1
2
3
4
5
6
7
8
9

10

//or

var

 property IPropertyObject;
begin
 planswift := coPlanSwift Create();
 property

 := GetProperty('DigitizerSnap' ;
 WriteLn (property . ResultAsBoolean())
end ;

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("DigitizerSnap" ;
 console.WriteLn(property.ResultAsBoolean())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("DigitizerSnap"
 console.WriteLn(property.ResultAsBoolean)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("DigitizerSnap"

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "DigitizerSnap"

 Console.WriteLn(property.ResultAsBoolean)

62

Pascal ScripƟng

 '\Settings')
 'DigitizerSnap'))

 ShowMessage(GetResultAsBoolean('\Settings' 'DigitizerSnap'))

end

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('DigitizerSnap' ;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' 'DigitizerSnap' ;
 ShowMessage(property.ResultAsBoolean);

63

DigiƟzerSnapHotKey

DigiƟzerSnapHotKey

Integer value that returns an ANSI key code (default code 114, key F3). Figure 1 shows where the DigiƟzerSnapHotKey assignment is made. Figures 2 and 3 show where
Snap is also controlled.

API Call
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

64

C#

VB/VBA (OLE)

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'DigitizerSnapHotKey' ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' ;
 (. ResultAsInteger())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty(;
 console.WriteLn(property.ResultAsInteger())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty(
 console.WriteLn(property.ResultAsInteger)

65

Pascal ScripƟng (OLE)

Pascal ScripƟng

EnhancedImage

EnhancedImage

Boolean value that controls whether an image is enhanced. Checked (true) enhances the image. Unchecked (false) doesn't enhance it.

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty(

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "DigitizerSnapHotKey"

 Console.WriteLn(property.ResultAsInteger)
End

 Sub

 '\Settings')
))

 ShowMessage(GetResultAsInteger('\Settings'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('DigitizerSnapHotKey' ;
 ShowMessage(property.ResultAsInteger);

 property := PlanSwift.GetProperty('\Settings' ;
 ShowMessage(property.ResultAsInteger);

66

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

VB/VBA (OLE)

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'EnhancedImage' ;
 (. RResultAsBoolean())

 main;

 planswift: IPlanSwift;
 :

 planswift := coPlanSwift .

 . '\Settings' 'EnhancedImage' ;

 WriteLn . ResultAsBoolean())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("EnhancedImage" ;
 console.WriteLn(property.ResultAsBoolean())

 void

3
4
5
6

 PlanSwift planswift = new
 PlanSwift();

 IPropertyObject property = planswift.GetProperty(@"\Settings" "EnhancedImage"
 console.WriteLn(property.ResultAsBoolean)
}

67

Pascal ScripƟng (OLE)

Pascal ScripƟng

FullScreenCursor

FullScreenCursor

Boolean value controlling whether the cursor crosshairs extend fully up and down and leŌ and right across the screen (see Figure 1). Checked (true) displays extended
crosshairs. Unchecked (false) displays shortened crosshairs.

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("EnhancedImage"

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "EnhancedImage"

 Console.WriteLn(property.ResultAsBoolean)

 '\Settings')
 'EnhancedImage'))

 ShowMessage(GetResultAsBoolean('\Settings' 'EnhancedImage'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('EnhancedImage' ;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' 'EnhancedImage' ;
 ShowMessage(property.ResultAsBoolean);

68

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'FullScreenCursor' ;
 (. RResultAsBoolean())

3
4
5
6
7
8
9

10

var

 property IPropertyObject;
begin
 planswift := coPlanSwift Create();
 property

 := GetProperty(
 WriteLn (property . ResultAsBoolean())
end ;

69

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("FullScreenCursor" ;
 console.WriteLn(property.ResultAsBoolean())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("FullScreenCursor"
 console.WriteLn(property.ResultAsBoolean)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("FullScreenCursor"

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "FullScreenCursor"

 Console.WriteLn(property.ResultAsBoolean)

 '\Settings')
 'FullScreenCursor'))

 ShowMessage(GetResultAsBoolean('\Settings' 'FullScreenCursor'))

70

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('FullScreenCursor' ;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' 'FullScreenCursor' ;
 ShowMessage(property.ResultAsBoolean);

71

HideTypesTab

HideTypesTab

Boolean value that toggles the Type Tab in the Templates screen to show or hide. Checked (true) displays the Types Tab (Figure 1); unchecked (false) does not display it.
Figure 2 shows the Types tab.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
 Pascal ScripƟng

72

Delphi

C#

VB/VBA (OLE)

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . ;
 (. RResultAsBoolean())

 planswift: IPlanSwift;
 :

 planswift := coPlanSwift . Create();

 . '\Settings' ;
 WriteLn . ResultAsBoolean())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("HideTypesTab" ;
 console.WriteLn(property.ResultAsBoolean())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("HideTypesTab"
 console.WriteLn(property.ResultAsBoolean)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("HideTypesTab"

 Console.WriteLn(property.ResultAsBoolean());

73

Pascal ScripƟng (OLE)

Pascal ScripƟng

1
2
3
4
5

Sub
 Main()

 Dim
 planswift = CreateObject(

 Dim
 nameProperty = planswift.GetProperty("\Settings"

 Console.WriteLn(property.ResultAsBoolean)
End

 Sub

 '\Settings')
 'HideTypesTab'))

 ShowMessage(GetResultAsBoolean('\Settings' 'HideTypesTab'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('HideTypesTab' ;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' 'HideTypesTab' ;
 ShowMessage(property.ResultAsBoolean);

74

Icon

Icon

String value for the PlanSwiŌ icon.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

VB/VBA (OLE)

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'Icon' ;
 (. ResultAsString())

 main;

 planswift: IPlanSwift;
 :

 .

 . '\Settings' 'Icon' ;
 WriteLn . ResultAsString())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("Icon" ;
 console.WriteLn(property.ResultAsString())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("Icon"

6
 console.WriteLn(property.ResultAsString)
}

75

Pascal ScripƟng (OLE)

Pascal ScripƟng

InstallGUID

InstallGUID

Read-only string value that is a unique idenƟfier for installaƟon.

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("Icon"

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "Icon"

 '\Settings')
 'Icon'))

 ShowMessage(GetResultAsString('\Settings' 'Icon'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('Icon' ;
 ShowMessage(property.ResultAsString);

 property := PlanSwift.GetProperty('\Settings' 'Icon' ;
 ShowMessage(property.ResultAsString);

76

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

VB/VBA (OLE)

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'InstallGUID' ;
 (. ResultAsString())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' ;
 (. ResultAsString())

4
5
6

 PlanSwift planswift = new
 PlanSwift();

 IPropertyObject property = planswift.GetProperty(@"\Settings"
 console.WriteLn(property.ResultAsString)
}

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty(;
 console.WriteLn(property.ResultAsString())

 void

77

Pascal ScripƟng (OLE)

Pascal ScripƟng

JumpLastView

JumpLastView

Boolean value controlling whether to jump to the last view of a page when reopening that page (Figure 1). For example, if a parƟcular area of a page has been zoomed
in on, and then a different page opened, then, if the AutomaƟc jump to the last view when opening a page box is checked, then the zoomed-in view will be visible
when reopening that page. If that box has not been checked, then the user will only see the default Fit-to-Page view when reopening that page. Checked (true) jumps to
the last view. Unchecked (false) jumps to the default view.

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty(

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "InstallGUID"

 '\Settings')
))

 ShowMessage(GetResultAsString('\Settings'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('InstallGUID' ;
 ShowMessage(property.ResultAsString);

 property := PlanSwift.GetProperty('\Settings' ;
 ShowMessage(property.ResultAsString);

78

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'JumpLastView' ;
 (. RResultAsBoolean())

procedure

 main;

79

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

4
5
6
7
8
9

10

var

 property IPropertyObject;
begin
 planswift := coPlanSwift Create();
 property

 := GetProperty('JumpLastView'
 WriteLn (property . ResultAsBoolean())
end ;

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("JumpLastView" ;
 console.WriteLn(property.ResultAsBoolean())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("JumpLastView"
 console.WriteLn(property.ResultAsBoolean)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("JumpLastView"

 Console.WriteLn(property.ResultAsBoolean());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "JumpLastView"

 Console.WriteLn(property.ResultAsBoolean)

 '\Settings')
 'JumpLastView'))

 ShowMessage(GetResultAsBoolean('\Settings' 'JumpLastView'))

80

Pascal ScripƟng

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('JumpLastView' ;
 ShowMessage(property.ResultAsBoolean);

 property := PlanSwift.GetProperty('\Settings' 'JumpLastView' ;
 ShowMessage(property.ResultAsBoolean);

81

Language

Language

String value that displays or changes the region language: Deutsch, English, Español, Italiano, Français. It is also controlled from the Seƫngs / General screen (see Figure
1). PlanSwiŌ must be restarted for the change to take effect.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'Language' ;
 (. ResultAsString())

 main;

82

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE) Pascal ScripƟng

4
5
6
7
8
9

 var

 property : IPropertyObject;
begin
 planswift := coPlanSwift .
 property

 := . GetProperty(
 WriteLn (property ResultAsString())
end ;

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("Language" ;
 console.WriteLn(property.ResultAsString())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("Language"

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("Language"

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "Language"

 '\Settings')
 'Language'))

 ShowMessage(GetResultAsString('\Settings' 'Language'))

83

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('Language' ;
 ShowMessage(property.ResultAsString);

 property := PlanSwift.GetProperty('\Settings' 'Language' ;
 ShowMessage(property.ResultAsString);

84

LastReportValidUnƟl

LastReportValidUnƟl

String value that the sets the number of days the last report is valid for.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

VB/VBA (OLE)

procedure
 main;

 planswift: IPlanSwift;

 property IPropertyObject :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'LastReportValidUntil' ;
 (. ResultAsString())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'LastReportValidUntil' ;
 (. ResultAsString())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("LastReportValidUntil" ;
 console.WriteLn(property.ResultAsString())

 void

 PlanSwift planswift = new

5
6 IPropertyObject property = planswift.GetProperty(@"\Settings" "LastReportValidUntil"

 console.WriteLn(property.ResultAsString)
}

85

Pascal ScripƟng (OLE)

Pascal ScripƟng

LeŌ

LeŌ

Read-only integer value that displays the leŌ posiƟon of the Main Window.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("LastReportValidUntil"

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "LastReportValidUntil"

 '\Settings')
 'LastReportValidUntil'))

 ShowMessage(GetResultAsString('\Settings' 'LastReportValidUntil'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('LastReportValidUntil' ;
 ShowMessage(property.ResultAsString);

 property := PlanSwift.GetProperty('\Settings' 'LastReportValidUntil' ;
 ShowMessage(property.ResultAsString);

86

Delphi

C#

VB/VBA (OLE)

procedure
 main;

 planswift: IPlanSwift;
 :

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'Left' ;
 (. ResultAsInteger())

procedure

 main;

 planswift: IPlanSwift;
 property :

 . Create();
 property

 . '\Settings' 'Left' ;
 (. ResultAsInteger())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("Left" ;
 console.WriteLn(property.ResultAsInteger())

 void

 PlanSwift planswift = new

5
6 IPropertyObject property = planswift.GetProperty(@"\Settings" "Left"

 console.WriteLn(property.ResultAsInteger)
}

87

Pascal ScripƟng (OLE)

Pascal ScripƟng

MagnifierHotKey

MagnifierHotKey

Integer value that returns an ANSI key code (default code 77). The (default hotkey) leƩer M invokes the Magnifier command in PlanSwiŌ (Figure 1).

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("Left"

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "Left"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
 'Left'))

 ShowMessage(GetResultAsInteger('\Settings' 'Left'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('Left' ;
 ShowMessage(property.ResultAsInteger);

 property := PlanSwift.GetProperty('\Settings' 'Left' ;
 ShowMessage(property.ResultAsInteger);

88

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . ;
 (. ResultAsInteger())

 main;

 planswift: IPlanSwift;

 :

 planswift := coPlanSwift . Create();

 . '\Settings' 'MagnifierHotKey' ;
 WriteLn . ResultAsInteger())

89

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1
2
3
4
5
6
7

private
 void

 Main()
{
 PlanSwift planswift = new

 PlanSwift();
 IItem settings = planswift.GetItem(@"\Settings" ;
 IPropertyObject property = settings.GetProperty(
 console.WriteLn(property.ResultAsInteger())
}

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("MagnifierHotKey"
 console.WriteLn(property.ResultAsInteger)

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("MagnifierHotKey"

 Console.WriteLn(property.ResultAsInteger());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings"

 Console.WriteLn(property.ResultAsInteger)

 '\Settings')
 'MagnifierHotKey'))

 ShowMessage(GetResultAsInteger('\Settings' 'MagnifierHotKey'))

90

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty(;
 ShowMessage(property.ResultAsInteger);

91

3
4 '\Settings' ;

 ShowMessage(property.ResultAsInteger);
end

92

MeasurementEntry

MeasurementEntry

String value that sets the Measurement Entry to English or FIS (Feet/Inches/Sixteenths) (Figure 1). The default is English.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'MeasurementEntry' ;
 (. ResultAsString())

procedure

 main;

 planswift: IPlanSwift;
 property :

93

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

7
8
9

10

begin
 planswift := coPlanSwift Create();
 property

 := GetProperty(
 WriteLn (property .
end ;

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("MeasurementEntry" ;
 console.WriteLn(property.ResultAsString())

 void

 PlanSwift planswift = new

 IPropertyObject property = planswift.GetProperty("MeasurementEntry"

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("MeasurementEntry"

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "MeasurementEntry"

 '\Settings')
 'MeasurementEntry'))

 ShowMessage(GetResultAsString('\Settings' 'MeasurementEntry'))

94

1
2
3
4
5

begin

 'MeasurementEntry' ;

end

 property := PlanSwift.GetProperty('\Settings' 'MeasurementEntry' ;
 ShowMessage(property.ResultAsString);

95

Name

Name

String value containing the property name.

API Calls
Delphi
C#
VB/VBA (OLE)
Pascal ScripƟng (OLE)
Pascal ScripƟng

Delphi

C#

procedure
 main;

 planswift: IPlanSwift;

 property : IPropertyObject

 . Create();
 settings := planswift . '\Settings' ;
 property

 . 'Name' ;
 (. ResultAsString())

 main;

 planswift: IPlanSwift;
 :

 .

 . '\Settings' 'Name' ;
 WriteLn . ResultAsString())

 void

 PlanSwift planswift = new

 IItem settings = planswift.GetItem(;
 IPropertyObject property = settings.GetProperty("Name" ;
 console.WriteLn(property.ResultAsString())

 void

 PlanSwift planswift = new

96

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

NewAreaHotKey

NewAreaHotKey

Integer value returns an ANSI key code (default code 49, the number 1) for the New Area hotkey. Figure 1 shows where the New Area hotkey is assigned. Figure
2 shows where New Area is invoked on the Main Ribbon Bar.

 main()

 planswift = CreateObject(

 settings = planswift.GetItem("\Settings"

 property = settings.GetProperty("Name"

 Console.WriteLn(property.ResultAsString());

 Main()

 planswift = CreateObject(

 nameProperty = planswift.GetProperty("\Settings" "Name"

 '\Settings')
 'Name'))

 ShowMessage(GetResultAsString('\Settings' 'Name'))

 settings := PlanSwift.getItem('\Settings' ;
 property := settings.GetProperty('Name' ;
 ShowMessage(property.ResultAsString);

 property := PlanSwift.GetProperty('\Settings' 'Name' ;
 ShowMessage(property.ResultAsString);

5
6 IPropertyObject property = planswift.GetProperty(@"\Settings" "Name"

 console.WriteLn(property.ResultAsString)
}

97

 Figure 1

 Figure 2

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

98

NewCountHotKey

NewCountHotKey

Integer value returns an ANSI key code (default code 52, the number 4) for the New Count hotkey. Figure 1 shows where the New Count hotkey is assigned. Figure 2
shows where New Count is invoked on the Main Ribbon Bar.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
Using the PlanSwiŌ Object Model

99

Expand source

NewLinearHotKey

NewLinearHotKey

Integer value returns an ANSI key code (default code 50, the number 2) for a New Linear hotkey. Figure 1 shows where the New Linear hotkey is assigned. Figure 2
shows where New Linear is invoked on the Main Ribbon Bar.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
Using the PlanSwiŌ Object Model

100

NewNoteHotKey

NewNoteHotKey

Integer value returns an ANSI key code (default code 187, the character =) for the New Note hotkey. Figure 1 shows the Note tool on the Main Menu ribbon bar. Figure 2
shows how a Note is created: click on Note (or the hotkey for Note), then click and drag in the area of the plan where you want the note to be inserted.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Root Object Model

101

Expand source

Pascal ScripƟng

102

NewSecƟonHotKey

NewSecƟonHotKey

Integer value returns an ANSI key code (default code 78, the leƩer N) for the New SecƟon hotkey. Figure 1 shows where the New SecƟon hotkey assignment is made.
Figure 2 shows where the New SecƟon command is invoked on the PlanSwiŌ Main Menu ribbon bar. Figure 3 shows where New SecƟon may be invoked by right-clicking
on a selected selecƟon.

 Figure 3

API Calls
Delphi

C#

103

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

104

NewSegmentHotKey

NewSegmentHotKey

Integer value returns an ANSI key code (default code 51, the number 3) for the New Segment hotkey. Figure 1 shows where the New Segment hotkey is assigned. Figure 2
shows where New Segment is invoked on the Main Ribbon Bar.

API Calls

105

NoAskBreakInheritance

NoAskBreakInheritance

Boolean value that allows selecƟng whether a confirmaƟon box should be displayed asking the user to confirm an Inheritance Break. Checking the box (true) will cause
the confirmaƟon box not to appear. Unchecking the box (false) causes the confirmaƟon box to appear. This boolean value is also controlled when a template's advanced
properƟes are edited in the Seƫngs / NoƟficaƟons window (Figure 1).

To see a confirmaƟon box:

Click on the EsƟmaƟng tab on the Main Ribbon menu.
Double click on an EsƟmaƟng template (Figure 2) to show the Template's ProperƟes window
Click on Advanced.
In the Advanced window (Figure 3), click on the formula cell for the Linear Total takeoff and wait a second
Click on the same cell again. This opens the window asking EdiƟng this property will cause it to no longer be inherited. Do you want to conƟnue?
Click on the Do not ask again box in order not to be asked the quesƟon again: Clicking on the Do Not ask again box sets the
NoAskBreakInheritance boolean value to true.

 Figure 2

 Figure 3

106

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

NoAskCopyPoints

NoAskCopyPoints

Boolean value that allows selecƟng whether a confirmaƟon box should be displayed asking the user whether the digiƟzer points should be copied when copying a takeoff.
Checking the box (true) will cause the confirmaƟon box not to appear. Unchecking the box (false) causes the confirmaƟon box to appear. This is also controlled in the
Seƫngs / NoƟficaƟons window (Figure 1). The confirmaƟon box is shown in Figure 2. SelecƟng "Do Not Ask Again" from this confirmaƟon window to confirm that the
digiƟzer points should be copied when copying a Takeoff also sets the NoAskCopyPoints boolean variable to true.

107

 Figure 2

API Calls
Delphi

C#

VB/VBA (OLE)
Pascal ScripƟng (OLE)

Pascal ScripƟng

108

NoAskDeleteItemOnLastObject

NoAskDeleteItemOnLastObject

Boolean value that allows or disallows the display of a Delete Items confirmaƟon popup screen to ask whether to delete the last secƟon of a mulƟ-secƟon item.
When the box is checked (true) in the NoƟficaƟons area (Figure 1), the display of the Delete Items confirmaƟon window is enabled. When the box is unchecked (false), it
is disabled. Clicking the Do not ask again box in the Delete Items window disables the display of the Delete Items window. Leaving it unchecked, allows it to be displayed
(Figure 2).

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)
Pascal ScripƟng

109

110

NodeSize

NodeSize

Integer value that sets the Node Size. Values range from 0 to 20, with 10 being the default. Figure 1 shows the corresponding screen areas of the Seƫngs
screen and the U-T-H area.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

111

Ortho

Ortho

Boolean value that toggles Ortho on or off. Checked is true (on) and enables it (highlighƟng) the Ortho toggle control. Unchecked is false (off) and disables (unhighlights)
Ortho. Ortho is also controlled in the Main / Seƫngs window (Figure 1). If Ortho is disabled, then Smart Ortho (right below it) is also disabled, although in the U-T-H
Seƫngs Advanced ProperƟes, Smart Ortho will show as enabled even though Ortho is disabled. Ortho may also be toggled on (highlighted) and off (un-highlighted) at
the boƩom of the PlanSwiŌ main window (Figure 2).

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

112

PanHoverSpeed

PanHoverSpeed

Integer value that controls the Hover Pan Speed (Figure 1). Value ranges from 5 to 100. Figure 2 shows the light blue transparencies (and darker blue arrows) at the edges
of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse in any of those blue areas makes the plan scroll quickly
in the direcƟon of the arrow. Pressing the keyboard space bar reverses the scrolling direcƟon.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)
Pascal ScripƟng

113

PanSpeed

PanSpeed

Integer value that controls the mouse Pan Speed. Value ranges from 1 to 9 (see Figure 1).

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

PanSpeedKeyboard

PanSpeedKeyboard

Integer value that controls the keyboard Pan Speed. Value ranges from 1 to 250 (see Figure 1). Keyboard keys E, S, D, and F pan the image Up, LeŌ, Down, and Right,
respecƟvely.

114

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

PanZoomHover

PanZoomHover

Boolean value enabling or disabling Hover Pan/Zoom (see Figure 1). Checked (true) enables Hover Pan/Zoom. Unchecked (false) disables it. Figure 2 shows the light blue
transparencies (and darker blue arrows) at the edges of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse
in any of those blue areas makes the plan scroll quickly in the direcƟon of the arrow. Pressing the keyboard space bar reverses the scrolling direcƟon.

115

 Figure 2

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

116

Pascal ScripƟng

117

Expand source

PanZoomHoverDelay

PanZoomHoverDelay

Integer value that controls the Delay for the Hover Pan/Zoom. Value is in milliseconds (see figure 1). Figure 2 shows the light blue transparencies (and darker blue
arrows) at the edges of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse in any of those blue areas makes

the plan scroll quickly in the direcƟon of the arrow. Pressing the keyboard space bar reverses the scrolling direcƟon.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Item Object Model
Pascal ScripƟng

118

119

Expand source

PanZoomHoverTransparency

PanZoomHoverTransparency

Integer value that controls the Hover Zoom/Pan Transparency. Value ranges from 0 to 100 (see Figure 1). Figure 2 shows the light blue transparencies (and darker blue
arrows) at the edges of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse in any of those blue areas makes

the plan scroll quickly in the direcƟon of the arrow. Pressing the keyboard space bar reverses the scrolling direcƟon.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Item Object Model
Pascal ScripƟng

120

121
Expand source

PLUGINDEVTOOLS

PLUGINDEVTOOLS

Boolean value that toggles whether Plugin Developer Tools are displayed on the Plugin ribbon bar (Figure 1). This variable is also set in the Main / Seƫngs / Interface
window (Figure 2). Checked is true and displays the Plugin Developer Tools; unchecked (the default) is false and does not show them.

API Cals
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

Using the PlanSwiŌ Object Model
1192

PointSize

PointSize

Integer value that sets the Point Size. Values range from 0 to 20, with 10 being the default. Figure 1 shows the corresponding screen areas of the Seƫngs
screen and the U-T-H area.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

123

Property Groups

Property Groups

String value that controls the grouping order of properƟes in Property Groups (Figure 1 shows an example of properƟes indicated by red arrows). Figure 2 shows where
to click to select the cell (leŌ arrow). AŌer clicking in the cell, click on the Up and Down arrows in the cell to move the selected property in priority. Clicking on the Elipsis
to the right of the arrows opens the U-T-H Formula Editor - Property Groups window (Figure 3). The U-T-H Property Groups property is shown in Figure 2 (note that the
elipsis disappears when the Formula Editor window opens). The Property Group items may be added, deleted, reordered, or edited in this window. AŌer making any

changes, click on OK in the Formula Editor window, and then on OK in the ProperƟes window, and the changes will be reflected in the PlanSwiŌ Seƫngs tab / Property
Groups window (Figure 3) and in the PlanSwiŌ Property Groups window shown in Figure 1.

 Figure 1

124

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

125

Pascal ScripƟng

ProperƟesWindowHeight

ProperƟesWindowHeight

Read-only integer that displays the height of the ProperƟes window.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

126

ProperƟesWindowLeŌ

ProperƟesWindowLeŌ

Read-only integer value that displays the leŌ posiƟon of the ProperƟes window.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

127

Pascal ScripƟng

ProperƟesWindowTop

ProperƟesWindowTop

Read-only integer value that displays the top posiƟon of the ProperƟes window.

API Calls
Delphi

C#

VB/VBA (OLE)

128

Pascal ScripƟng (OLE)

Pascal ScripƟng

ProperƟesWindowWidth

ProperƟesWindowWidth

Read-only integer value that displays the width of the ProperƟes window.

API Calls
Delphi

C#

129

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

130

RecordHotKey

RecordHotKey

Integer value returns an ANSI key code (default code 82, the leƩer R) for the Stop/Start Point Recording hotkey. Figure 1 shows where Stop/Start Point Recording
hotkey is assigned. Figure 2 shows where Stop/Start Point Recording is invoked on the Main Ribbon Bar.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

131

ReportValidUnƟl

ReportValidUnƟl

String value that sets the number of days report is valid for. This value is changed in the Reports / Seƫngs / Company InformaƟon area, shown in Figure 1. Click on
Reports (red arrow #1), and then click on Seƫngs (red arrow #2): this opens the Company InformaƟon screen where the Valid UnƟl value may be set. Figure 2 shows
an example of where this value is implemented in a report.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)
Pascal ScripƟng

132

133

SalesTax1

SalesTax1

Integer value that allows for a sales tax rate to be entered. These rates are uƟlized in the properƟes windows for Parts and Assemblies Templates (Figure 1 is an
example).

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

134

SalesTax2

SalesTax2

Integer value that allows for a second sales tax rate to be entered. These rates are uƟlized in the properƟes windows for Parts and Assemblies Templates (Figure 1
is an example).

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

135

Pascal ScripƟng

ScrollDownHotkey

ScrollDownHotkey

Integer value returns an ANSI key code (default code 68, the leƩer D) for the Scroll Down command. Figure 1 shows where the Scroll Down hotkey is assigned.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

136

Pascal ScripƟng

ScrollLeŌHotKey

ScrollLeŌHotKey

Integer value returns an ANSI key code (default code 83, the leƩer S) for the Scroll LeŌ command. Figure 1 shows where the Scroll LeŌ hotkey is assigned.

API Calls
Delphi

C#

VB/VBA (OLE)

137

Pascal ScripƟng (OLE)

Pascal ScripƟng

ScrollRightHotKey

ScrollRightHotKey

Integer value returns an ANSI key code (default code 70, the leƩer F) for the Scroll Right command. Figure 1 shows where the Scroll Right hotkey is assigned.

API Calls
Delphi

C#

VB/VBA (OLE)

138

Pascal ScripƟng (OLE)

Pascal ScripƟng

ScrollUpHotKey

ScrollUpHotKey

Integer value returns an ANSI key code (default code 69, the leƩer E) for the Scroll Up command. Figure 1 shows where the Scroll Up hotkey is assigned.

API Call
Delphi

C#

139

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

SendErrorReport

SendErrorReport

Boolean value controlling whether error reports are sent to PlanSwiŌ. Checked is true and sends error reports. Unchecked is false and does not send them.

API Calls
Delphi

C#

VB/VBA (OLE)

140

Pascal ScripƟng (OLE)

Pascal ScripƟng

SendScreenShot

SendScreenShot

Boolean value controlling whether screenshots of errors are sent to PlanSwiŌ. Checked is true and sends screenshots. Unchecked is false and does not send them.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

141

Pascal ScripƟng

Show Overview

Show Overview

Boolean value that controls the Show Overview funcƟon. Checked is true and enables it; unchecked is false and disables it. Show overview is acƟvated in PlanSwiŌ
soŌware by clicking on the small arrow, which opens the overview box (shaded blue); see Figure 1.

API Calls
Delphi

C#

VB/VBA (OLE)

142

Pascal ScripƟng (OLE)

Pascal ScripƟng

Show Under The Hood Screen

Show Under The Hood Screen

Boolean value controlling whether the U-T-H (Under-The-Hood) Main Menu tab is visible. Figure 1 shows that it is not visible. To make it visible, click on Seƫngs, then on
Interface, and then on Show Under The Hood Screen. Figure 2 shows where the password is entered. Figure 3 shows the U-T-H tab aŌer the password is successfully
entered. Figure 3 also shows how clicking the U-T-H tab, then the Seƫngs advanced properƟes, displays the Show Under-The-Hood Screen. When enabled, the value in
the Formula field shows as True displaying the tab. If False is entered and the screen closed by clicking on OK, then the UT-C tab is no longer visible. To obtain the U-T-H
password, contact your PlanSwiŌ representaƟve or send an email to takeoff@constructconnect.com..

143

 Figure 3

API Calls
Delphi

144

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

145

ShowWelcome

ShowWelcome

Boolean value determining whether the Welcome to PlanSwiŌ screen (Figure 1) is displayed. The Welcome screen requires the user to enter a Customer # and a PIN
in order to log in to the PlanSwiŌ Professional mode (Figure 2) and not be in Viewer-only mode (Figure 3).
When checked (true), the Welcome screen will be displayed when the soŌware starts up, whether the soŌware has been acƟvated or not.
If it is not checked and the user has acƟvated PlanSwiŌ, then the Welcome screen will not appear at startup.
If it is not checked and PlanSwiŌ has not been acƟvated, then PlanSwiŌ will load in the Viewer mode (Figure 3). Any aƩempts to command the soŌware will cause the
AcƟvate PlanSwiŌ Professional window (Figure 4) to appear, requiring the entry of the Customer # and Pin # before PlanSwiŌ can be put into its Professional mode.

 Figure 2

 Figure 3

API Calls
Delphi

C#

146

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

147

SmartOrtho

SmartOrtho

Boolean value that toggles Smart Ortho on or off. When enabled (True), Smart Ortho operates automaƟcally when close to angles. When disabled (False) it does not
operate. Figure 1 shows where Smart Ortho is controlled in the Main Menu Seƫngs / Snapping window. Smart Ortho cannot be enabled if Ortho is disabled.

API Call
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

148

SuppressAutoScaleDisclaimer

SuppressAutoScaleDisclaimer

Boolean value that suppresses or allows the "Do not show this again" Auto Scale Disclaimer. This is controlled in the Seƫngs/NoƟficaƟon screen (Figure 1) and can also
be turned off on the Auto Scale Disclaimer window (Figure 2). A check in the Seƫngs/NoƟficaƟon screen enables the Auto Scale Disclaimer; a check in the Auto Scale
Disclaimer window disables the disclaimer.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

149

150

ToggleImageEsƟmaƟngHotKey

ToggleImageEsƟmaƟngHotKey

Integer value returns an ANSI key code (default code 123, the character F12) for the Toggle Image EsƟmaƟng hotkey (which selects the EsƟmaƟng tab). Figure 1 shows
the Main Menu / Seƫngs / Keyboard Hotkeys window, which allows for the hotkey to be selected. Figure 2 shows the EsƟmaƟng tab.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

151

Pascal ScripƟng

152

ToggleOrthoHotKey

ToggleOrthoHotKey

Integer value returns an ANSI key code (default code 115, the key F4 in hotkey window) for the Toggle Angle Snap (Ortho), shown in Figure 1). This is controlled in the
Main Menu / Seƫngs / Snapping window (Ortho Snap to Angles, Figure 2) and at the boƩom of the PlanSwiŌ window (Figure 3).

API Calls
Delphi

C#

VB/VBA (OLE)

153

Pascal ScripƟng (OLE)

Pascal ScripƟng

154

Top

Top

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

Verify

Verify

Boolean value that toggles Verify Points On and Off. Figure 1 shows where Verify is controlled in the PlanSwiŌ Main Menu / Takeoff Tools screen. Figures 2 and 3 show
Verify Points in its highlighted and un-highlighted state in the PlanSwiŌ window. When highlighted, Verify Points is True (on). When un-highlighted, Verify Points is False
(off). When it is on, the Verify Entry popup window (Figure 4) is displayed aŌer each takeoff is entered.

155

API Calls
Delphi

C#

VB/VBA (OLE)

156

Pascal ScripƟng (OLE)

Pascal ScripƟng

157

Width

Width

Read-only integer value that displays the width of the Main Window.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

WindowState

WindowState

Read-only integer value that shows whether PlanSwiŌ program window is minimized or maximized. A value of 0 is minimized and 1 is maximized.

API Calls
Delphi

C#

VB/VBA (OLE)

158

Pascal ScripƟng (OLE)

Pascal ScripƟng

ZoomHotKey

ZoomHotKey

Integer value that returns an ANSI key code (default code 121, FuncƟon key F10). Figure 1 shows where the Zoom hotkey assignment is made. Figure 2 shows where the
Zoom command is invoked.

API Calls
Delphi

C#

VB/VBA (OLE)

159

Pascal ScripƟng (OLE)

Pascal ScripƟng

160

ZoomHoverSpeed

ZoomHoverSpeed

Integer value that controls the Hover Zoom Speed (Figure 1). Value ranges from 5 to 100. Figure 2 shows the light blue transparencies (and darker blue arrows) at the
edges of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse in any of those blue areas makes the plan scroll
quickly in the direcƟon of the arrow. Pressing the keyboard space bar reverses the scrolling direcƟon.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

161

ZoomInHotKey

ZoomInHotKey

Integer value returns an ANSI key code (default code 107, the number pad "+" sign). Figure 1 shows where the Smooth Zoom In hotkey is assigned. Figure 2 shows where
the Zoom In command is located along the PlanSwiŌ Main Menu bar.

API Call
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

162

ZoomOutHotKey

ZoomOutHotKey

Integer value returns an ANSI key code (default code 109, the number pad "-" sign). Figure 1 shows where the Smooth Zoom Out hotkey is assigned. Figure 2 shows
where the Zoom Out command is located along the PlanSwiŌ Main Menu bar.

API Call
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

163

ZoomSpeed

ZoomSpeed

Integer value that controls the mouse Zoom Speed. Value ranges from 0 to 10. The Main Menu / Seƫngs / Zoom/Pan window (Figure 1) also controls Zoom Speed. Zoom
is controlled by the mouse's wheel.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

164

ZoomSpeedKeyboard

ZoomSpeedKeyboard

Integer value that controls the keyboard Zoom Speed. Value ranges from 5 to 100. Figure 1 shows where is value is controlled in the Main Menu / Zoom/Pan window.
Controlled by +/- on keyboard's ten-key keypad.

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

ZoomToFitHotKey

ZoomToFitHotKey

Integer value that returns an ANSI key code (default code 118 or funcƟon key F7). Figure 1 shows where the Zoom To Fit hotkey assignment is made. Figure 2 shows
where Zoom To Fit is invoked on the Main Menu Ribbon bar.

165

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

166

Item Structure Overview

Item Structure Overview

This secƟon describes the internal structure of the API and how to enable the Under-The-Hood tab.

Before working with the API, a good understanding of the internal structure is recommended. To review the structure, the under-the-hood (U-T-H) tab needs to be enabled.

 CAUTION
By modifying or changing anything in the back end, you may adversely affect the operaƟon of the applicaƟon. ModificaƟons should be done in a read-only mode. If any
modificaƟons are done to the back end, those modificaƟons will be lost when the applicaƟon is re-installed.

Follow these steps to enable the Under-The-Hood tab.
1. Open PlanSwiŌ.

2. Click on Seƫngs along the top ribbon bar (see #1 on Figure 1 below).

3. Select Interface from the opƟons on the leŌ (see #2 on Figure 1 below).

 Figure 1

5. For the password, please contact your PlanSwiŌ representaƟve. Enter the password (see number #4 of Figure 1) and click on Ok.

6. An U-T-H (for "Under the Hood") now appears on the top ribbon bar (see number #1 of Figure 2). Click on U-T-H to display the screen resembling Figure 2.

 Figure 2

7. This window shows the complete back end of the PlanSwiŌ structure, which shows everything from your jobs, your storages, your plug-ins, and your types. These are
the most commonly uƟlized items when you're developing against anything within PlanSwiŌ. The structure always starts at PlanSwiŌ, which is the parent, or the root
object, for everything that you want to access (see 1 of Figure 3). Each of the folders beneath PlanSwiŌ is a child of PlanSwiŌ. Click on the + to the leŌ of Job folder
(number #2 of Figure 3) to open the Job folder, which will display the Pages, Takeoff, and Bookmarks (see number #3 of Figure 3). This Job folder contains the current
acƟve Job that is loaded into PlanSwiŌ. When programming, in order to access job informaƟon in the Job folder, use the relaƟve path of \Job to access the Job folder.
Under the \Job folder, you will see Pages, Takeoff, and Bookmarks. If no job is loaded, then the job's value will be Null. Pages items reside in the \Job\Pages;
Bookmarks items reside in the U-T-H \Job\Bookmarks folder. The PlanSwiŌ Pages informaƟon resides in the U-T-H \Job\Pages folder. The PlanSwiŌ EsƟmaƟng tab
informaƟon resides in the U-T-H\Job\Takeoff folder.

167

8. Figure 4 shows an example of the EsƟmaƟng screen.

 Figure 4

9. Note the similariƟes in the red rectangular areas in Figure 5 (U-T-H screen) and Figure 1.1-6 (EsƟmaƟng screen). When you are developing, you will not be wriƟng to
an esƟmaƟng screen; you will be wriƟng into the U-T-H \Job\Takeoff folder, which is the back-end structure. As you update this back-end structure, it updates the rest
of the screens.

 Figure 5

 Figure 6

10. The Pages tab works similarly (see figure 7). If a page is added on the back end, then it will reflect in the screens.

 Figure 7

11. If you need to access templates, they can be accessed via the Storages (\Job\Storages). The example in Figure 8 shows only a Local storage being set up. If you have a
LAN, that would show up as well. Templates can live anywhere on your network. Right-click on the Local to open the ProperƟes box for Local.

12. Figure 9 shows the properƟes box for Local: Click on Advanced.

 Figure 9

13. Clicking on Advanced opens the Advanced ProperƟes window (Figure 10), which will tell you exactly where your storage is physically located on the computer. If you
have a network set up, then a property will be set up called network.path. Use the item.fullpathproperty within the API. Use the full path if you need to copy files to
that network locaƟon.

 Figure 10

169

14. This completes the overview coverage of the COM and ScripƟng capabiliƟes and how data is stored.
1244

Property Object Structure Overview

Property Object Structure Overview

This secƟon describes the object structure of Items and Types and how a _Type can be modified into a new Type.

Understanding the structure of Items and Types is important to developers. Type is a very specific word that PlanSwiŌ uses. A folder (in the Under-The-Hood window) is a
physical Item of the Type "Folder." Everything in a Folder is considered to be an Item. Items are the "building blocks" of PlanSwiŌ.
There are two types of Items in a Folder: one is "Types" and the other is "_Types." These are the two idenƟfiers for what that Item is. The "_Types" is the base class (a
master template containing the default properƟes) of all Items in PlanSwiŌ. The Type allows the user to inherit a "_Type" and customize it into a new custom Type.
For example, the Area Item Type in PlanSwiŌ can be modified to produce new measurement types, such as Roof Area, Joist Tool, Grid Tool, and more. Each of these new
measurement types are built upon the base type for an Area Item. Figure 1 shows these custom area item types added to the Area drop-down menu on the takeoff ribbon
group on the home tab ribbon-bar. The drop-down menu contains only some of possible modified Area Items that can be created. Users can create their own custom types
and even add them to the drop-down menu if desired. Some modified types, like the Roof Area, have only simple modificaƟons to their properƟes. Other modified types, like
the Joist Tool and Grid Tool, have more complex modificaƟons to their properƟes, such as scripted properƟes and custom sub-item secƟon types. Regardless of the complexity,
each of these custom types is built on the foundaƟon of the original area item type. The Area item type along with the other takeoff types (Linear, Segment, and Count) are
some of the essenƟal "building blocks" of PlanSwiŌ.

 Figure 1

170

_Types (Property Object)

_Types

This secƟon describes the object structure of _Types, how to access and view the properƟes of _Types, and how to configure the default setup configuraƟon of Items
within PlanSwiŌ.

1. If you do not have PlanSwiŌ open, follow steps 1-6 in the previous secƟon (Item Structure Overview) to open PlanSwiŌ and display the U-T-H tab; then click on the U-T-
H tab to open the U-T-H window (see Figure 1 below). The two red arrows point at _Types and Types. Any new Types that you create will be visible here. Click on the
Seƫngs tab on the top ribbon menu.

2. Right-click on the Open Job Dialog folder in Figure 2.

3. Select ProperƟes (Advanced) from the drop-down menu in Figure 3.

171

4. Click on Advanced in Figure 4.

 Figure 4

5. This opens the Advanced ProperƟes screen in Figure 5. Note that the Type of the Open Job Dialog is "Folder" (see #1 in Figure 1.2-5). Note that the "Inheritance path is
shown by arrow #2. Click in the Folder field to display a down arrow, then click on the down arrow.

 Figure 5

6. This displays a drop-down menu that allows you to select the Type (see Figure 6). Select Item from the drop-down menu.

 Figure 6

172

7. This opens the screen shown in Figure 7. SelecƟng Item changed the Folder Item type to a generic PlanSwiŌ Item type. Note that the properƟes of a generic Item are
significantly different than the properƟes of a Folder Type. Note also that the Inheritance path at the boƩom of the screen now displays as

"_All_Item". The Type controls the funcƟonality of an Item and what that Item does. Click on Cancel at the boƩom of the screen, and select No from the warning window
that asks if you want to save any changes.

 Figure 7

8. If you aren't at the U-T-H window, click on the U-T-H tab on the top ribbon menu. Now click on the + box next to _Types, then open the _All box the same way, and then
click on _Item. You should see the same informaƟon as displayed in Figure 8. Types, then, are the general types of Items that we have. When we specify a Type with an
underscore (_), we are specifying a base class of an Item or Item _Type. At the arrow 1 in Figure 8 you will see that _Item is broken down into three different _Items:
_Takeoff Item, _Part, and _Assembly. Each one of these has a different configuraƟon. A _Takeoff Item is a specific digiƟzer Item, meaning you're going to have an area,
a line object (linear or segment), or a count object. Their primary funcƟon is to perform very specific acƟons to record data onto images. They are completely separate
from any other Item type in PlanSwiŌ and are the only items that can be used to record digiƟzing informaƟon. Click on the + next to _Takeoff Item.

 Figure 8

9. Now click on the +'s next to _Line and _Part so that your screen resembles Figure 9. Here you can see the _Linear and _Segment configuraƟons for the _Line takeoff
item. The _Linear and _Segment items are inheriƟng the parent's Item properƟes. The same applies to the
_Material, _Labor, _Equipment, _Subcontract, and _Other configuraƟons for the _Part item. Right-click on the _Line type in Figure 9.

10. Click on ProperƟes (Advanced) in Figure 10.

173

11. Click on Advanced in Figure 11.

 Figure 11

12. The ProperƟes for the _Line are shown in Figure 12. The properƟes' rows may be shaded in blue, green, white, orange, yellow, and gray (not all shading colors are shown
in this parƟcular figure).
Blue Fill: The blue fill on the row indicates that the property on that row was inherited from the system (somewhere along the inheritance path)–as both a result and a
formula (every value is available).
Green Fill: The green fill on the row indicates that the property on that row was inherited--as a result only--from the system.
White Fill: The white fill on the row indicates that the property on that row was created by the user or was green (no longer inherited) and was modified and turned
white.
Orange Fill: The orange fill on the row indicates that you modified an inherited property but that you want to maintain the inheritance.
Yellow Fill: The yellow fill that you have locked the property.
Gray Fill: Gray fill indicates that the property is hidden.
To display any rows that are grayed (hidden), click on the Show:Normal selecƟon indicated by the red arrow in Figure 12.

 Figure 12

13. Note that the Show mode you are currently in is "Normal." Click on the All selecƟon from the Show: drop-down menu (Figure 13).

174

 Figure 13

14. Scroll down to the boƩom of the window. A grayed row is now visible (see the red arrow in Figure 14); this row is gray because the item is hidden.
Padlocks: The column of padlock icons on the right allows you to lock or unlock whether the property Name, Formula, Input Units, Adjust,
Result, and Output Units values (listed in the column headers) can be edited. Click on the padlock to toggle between locked and unlocked.
Lightbulbs: The row of lightbulbs to the right of the padlocks allows you to select whether the property for each row is visible in the Show: Normal mode.
Clicking on a yellow bulb when in Show: Normal view causes the property on that row to disappear and be hidden. Clicking on a yellow bulb when in Show: All turns the
bulb blue; a property row with a blue bulb will not be visible in the Show: Normal mode. Clicking on a blue bulb when in Show: All mode, turns the bulb yellow and
allows the property to be shown again when in Show: Normal mode.

 Figure 14

15. Click on Show: All and select Show: Normal for the mode (see step 13, but select Normal from the drop-down menu) (Figure 15).

 Figure 15

16. Click on Cancel to cancel out of the ProperƟes - [_Line] window so that you do not save any changes. Now double-click _Area under _Item in Figure 16.

 Figure 16

175

17. This opens the ProperƟes - [_Area] window. The _Area item is derived from the _Takeoff Item and has had addiƟonal properƟes added for that Item. All of the blue
shaded rows of properƟes have been inherited from _Takeoff Item. Click on Cancel (Figure 17).

18. Double-click on the _Part Item, then click on Advanced (Figure 18).

 Figure 18

19. The _Part Item is the base class of _Material, _Labor, _Equipment, _Subcontract, and _Other. All of these inherit from _Part. Now double-click on the _Assembly Item
(Figure 19).

 Figure 19

20. The _Assembly Item (see Figure 20) doesn't have any child items, because _Assembly is basically a container of parts. It only inherits from _Item in the same way as
_Part inherits from _Item.

 Figure 20

176

21. In summary, PlanSwiŌ uses the _Types Items to configure the default setup configuraƟon of Items within PlanSwiŌ.

Types (Non-Underscore "Custom" Types)

Types (Non-Underscore "Custom" Types)

This secƟon describes the object structure of Types, how to access the advanced properƟes, and how those advanced properƟes may be changed.

1. The next steps will cover the Types (without the underscore) Items. These Types are custom types that are added by customers or developers who needs to add

addiƟonal funcƟonality to the default class Items without having the need to go in and change the default properƟes. When working with Types, developers would not
use the Under-the-Hood (U-T-H) tab, but would instead go to the Templates tab, then the Types tab. Types may not be visible from the Templates tab ribbon menu
(Figure 1); if it is not, then first click on Seƫngs on the Main Menu ribbon bar.

 Figure 1

2. AŌer clicking on Seƫngs (#1 arrow of Figure 2), click on Interface (#2 arrow), then click the checkbox for Show Types Tab in Templates Screen (#3 arrow).

 Figure 2

3. Now click on Templates tab (Figure 3) and you will see the yellow Types tab, which is orange in color and has a cog to the leŌ of it. Click on Types: yours will look similar
to Figure 3, except that the window shown below has most of the + boxes clicked on to display the sub-Items. PlanSwiŌ comes with several custom Items. These items
are categorized according to the base digiƟzer class type. Open Scripted Tools, then Items, then double-click Joist Tool to see its properƟes.

 Figure 3

4. The Joist Tool properƟes are shown in Figure 4. The Joist Tool template has been configured to completely handle a joist tool layout of various sizes. Click on Advanced
to see the advanced Joist Tool ProperƟes.

177

 Figure 4

5. Every Item has a Property Structure, which remains the same for all Items, because all Items inherit from their parent-class Item. Based on the Type you have selected,
various properƟes may be added. Each property for an Item has columns (see Figure 5) specifying the property's Name, Formula, Input Units, Adjust, Result, and
Output Units.

 Figure 5

Name: The Name column idenƟfies the name of the property. When coding, a developer will access this property either via the name or via an index.
Formula: The next column, Formula, allows the developer to input a formula and/or a numerical value. Variables are placed in brackets; operators, such as +, -, /, and *
(and others, such as sin, cos, tan, etc.) may be used to operate on any variables or numerical values. The operators that are available for use in formulas are the same
ones that would be available in a calculator or in the scripƟng language being used.
Input Units: The Input Units column allows the developer to select the input units. This can be inches (IN), feet (FT), yards (YD), miles (MI), millimeters (MM),
cenƟmeters (CM), meters (M), and kilometers (KM), each (EA), square inches (SQ IN), square feet (SQ FT), square yards (SQ YD), square miles (SQ MI), square
millimeters (SQ MM), square cenƟmeters (SQ CM), square meters (SQ M), square kilometers (SQ KM), cubic inches (CU IN) through cubic miles (CU MI), cubic
millimeters (CU MM) through cubic kilometers (CU KM), and dollars represented with the dollar sign ($). The Input Units calculaƟon operates on the value developed by
the Formula column.
Adjust: The Adjust column allows the developer to enter an adjustment, such as a waste percentage or a numerical value, to the number developed in the Formula
column. Percentage numbers are followed by a % sign.
Result: The Result column takes the adjusted value and displays it as the Result in the units that are specified in the Output Units column.
Output Units: The Output Units specifies the units that the Results column displays in the same units listed in the Input Units column. Changing this to a different unit,
such as inches, will convert the result to the selected unit. Of course, if you aƩempt to convert yards into cubic yards, you will get a conversion error since it is not an
"apples to apples" conversion.

6. To see this in acƟon, enter 10 in as the value of the New Length in the Formula column (red arrow #1 in Figure 6.

7. Enter [New Length]/2 in as the value of Min Length in the Formula column (red arrow #2 in Figure 6).

8. Click on the down arrow next to the parentheses pointed to by arrow #3 in Figure 6), and select RoundUp() (arrow #4).

 Figure 6

178

9. The equaƟon Min Length/Formula equaƟon will now be displayed as RoundUp([New Length]/2). The result will appear as 5.00 in the Result column. Click on the Min
Length value in the Input Units column and select FT for feet (Figure 7). Note that the OutPut Units columns in the Min Length row changes to FT as well. If you want
Output Units displayed in yards, click in the field where Min Length and Output Units meet, and select YD. For this exercise, however, keep the output set to FT.

 Figure 7

10. Now enter 10% in the field intersecƟng the Min Length row and the Adjust column to add a waste factor of 10% (Figure 8). Note that the Result now reads 5.50 since
the 10% waste factor has been added. If you want a non-percentage value added, simply enter the numerical value without the percent sign.

11. SelecƟng the padlock allows you to either lock or unlock the property.

12. Clicking on the light bulb either hides (blue) or unhides (yellow) the property.

13. SelecƟng the box (a check in it) will cause the property to be shown on the Form when the applicaƟon is started. Note that Name, Min Length, and New Length have
check marks in the check boxes. Click on Form at the boƩom of the Joist Tool window (Figure 9).

 Figure 9

14. Now note that the Name, Min Length, and New Length fields, along with their values, are displayed in this form, because the boxes for the same fields in the Advanced
properƟes window are checked.

15. All of these properƟes are also available in the COM object.

Object Property Model

Object Property Model

This secƟon describes how to create new items and how to set up and modify aƩributes to properƟes of Items.

179

1. If you are not sƟll on the Advanced Joist Tool ProperƟes window, then click Templates tab, click Types tab, open Scripted Tools folder, open Items folder, double-click
Joist Tool, then click on Advanced. This window is divided into ten different groups: Item, EsƟmaƟng, Fill, Takeoff Data, Work Breakdown Structure, Other, Audit Trail,
Joist ProperƟes, Videos, and Events (Figure 1).

 Figure 1

2. Double-click on the Cost Total field under EsƟmaƟng. This opens the Edit Property window (Figure 2) for the Joist Tool's Cost Total property, which is grouped under
EsƟmaƟng. Developers can use this window to modify the physical property seƫngs (or aƩributes) of the property model. Everything that is in the Edit Property
window is available through API. This is where a developer will spend a lot of Ɵme seƫng up aƩributes to properƟes of Items, so it's very important to understand
what the funcƟons of these properƟes do. Note that the descripƟons that follow are modeled for COM rather than for scripƟng. Click on Cancel to close the Edit
Property window, then click on any item in the first column of the EsƟmaƟng group.

3. Now click on the Add Property icon as shown in Figure 3.

 Figure 3

4. This opens a new Edit Property window (Figure 4). NoƟce that the Name: field is blank in this window, allowing you to give it a name of your choosing. The Type:
field's down-arrow opens a drop-down menu that allows you to specify the type of value assigned to the

field: Number, Color, Text, Memo, CheckBox, Path, Image, Large Image, Type, Script, File, Large File, File Name, Folder, Font Name, ConnecƟon String, Slider, and
Dimension. The Type: field's default is Number. The aƩributes a developer would most commonly use are Text, Memo, or Number. A few others, including CheckBox
and Slider could also be useful. SelecƟng CheckBox would display a checkbox, which represents a boolean value (true or false):
if it is checked, it is true; if not checked, then it is false. Enter the name Test Property in the Name: field; click on the Type: field's down-arrow and select
CheckBox from the menu, and then click on OK.

180

 Figure 4

5. You will now see "Test Property" at the boƩom of the first column in the EsƟmaƟng group (Figure 5). The next column to the right is the checkbox. Since the checkbox
is not checked, its value is False, as seen in the 5th column (Result) to the right. Once checked, its value shows as True.

 Figure 5

6. Double-click on Test Property to open its Edit Property window again (Figure 6). This Ɵme select the Slider tool from the Type: drop-down menu. This opens the Slider
OpƟons (see red arrow). The Slider funcƟon is very useful and has its own properƟes, which is the minimum value and the maximum value. Enter "1" in as the
minimum value and "100" in as the maximum value; set the Tick Frequency: field to 10 so that the Ɵcks will show up every tenth Ɵme; and check the box Show Ticks.
Now click on OK.

 Figure 6

7. The Test Property property will now show a slider bar with eleven Ɵck marks. Click and hold on the slider on the bar, and drag it to anywhere on the bar; as you drag it,
the value will be displayed in the 5th column (Result). The Slider funcƟon can be valuable in cases where you might have an image transparency funcƟon, or you need
a finite number based off a value, or you need any type of minimal adjustment. Click on Type: again and select Number.

8. The other Type: field values may be useful but will not be covered at this Ɵme.

9. The Group: field shows that Test Property is assigned to the EsƟmaƟng group. Clicking on the down-arrow allows you to assign it to one of the ten available groups in
the Joist Tools ProperƟes window: Item, EsƟmaƟng, Fill, Takeoff Data, Work Breakdown Structure, Other, Audit Trail, Joist ProperƟes, Videos, or Events.

10. The Tool Hint: field allows you to enter a short descripƟon of the tool, which will be visible in the Form window when the cursor is hovered over the property. Such a
hint can be helpful to explain the funcƟonality of a property to a user. To see this in acƟon, type "Joist Tool Hint" in the Hint: field; then click on OK to close the Edit
Property window.

11. At the Joist Tool ProperƟes window, click on the box for the Test Property property you created (see arrow in Figure 7) so that it can be displayed in the Input and Form
windows.

181

 Figure 7

12. Scroll to the boƩom of the Joist Tool ProperƟes window and click on Form, then hover over the Test Property text unƟl the "Joist Tool Hint" appears with a yellow
background as shown in Figure 8.

 Figure 8

13. Click on Advanced again to return to the Joist Tools ProperƟes window, double-click on the Test Property property you created previously, and delete the Tool Hint:
text. The Edit Property window for the Joist Tool should look similar to Figure 9.

14. The Remember Value: checkbox has no funcƟonality at this Ɵme.

15. The Parse Formula: checkbox, when checked, causes anything within brackets to be read as a variable. If this box is not checked, then the text inside the brackets is
read as a text string, not as a variable. By default in COM, this box is checked automaƟcally.

16. In the Input OpƟons area of the Edit ProperƟes window, there is an Input checkbox and a CondiƟon: field. When the Input checkbox is checked and the condiƟon in
the CondiƟon: field is saƟsfied, then the property will be displayed in the Form window. If the CondiƟon: field is not saƟsfied, then the property will not be displayed in
the Form window. If the Input box is checked but the CondiƟon: field is blank, then the property will show up in the Form window. If the Input box is not checked, then
the property will not be displayed in the Form window. As an example, enter [New Length] = 10 into the CondiƟon: field.

Also, make sure the Input box is checked. Click on OK to close the Edit Property window. Click on Form at the boƩom of the Joist Tools ProperƟes window. You'll see in
Figure 10 that there is no Test Property field. You will also noƟce that the New Length field is blank. Now put the value of 10 into the New Length field and press the
Tab key to invoke the changed value.

182

 Figure 10

17. The Test Property field now appears (Figure 11). If you change and invoke the value to anything but 10, then the Test Property field will disappear.

 Figure 11

18. Click on Advanced to return to the Joist Tool ProperƟes window (Figure 11), and double-click on Test Property. The Compiled OpƟons are shown in Figure 12 and will
not be discussed at this Ɵme.

 Figure 12

19. The Input Units and Units (Output Units) area allow you to specify the Input Units and Output Units columns in the Joist Tool ProperƟes window (see Figure 13). You
may specify whether they are to be hidden or locked by clicking the check boxes for Hidden or Locked. You may also specify the decimal places by entering a decimal
value in the Decimal Places: field.

 Figure 13

183

20. The When creaƟng new items of this type: area can be set to Normal, Inherit, or Ignore (Figure 14). The Normal seƫng allows for inherited properƟes to be editable.
The Inherit seƫng allows properƟes to be modifiable but only by permission. The Ignore means that "anyƟme I inherit a property, I specifically do not

want this property to be on that inheritance of that derived item.

 Figure 14

21. Checking the Formula checkbox allows the formula and the result to be inherited. Checking the Result checkbox allows only the result to be inherited. The Pull From:
field is not commonly used. It allows you to inherit the actual result from a completely different item from either the same esƟmate or somewhere else by providing
the relaƟve path of that item and the property. The List Type: field allows the developer to provide a list that acts as a drop-down list to the property (see Figure 15) but
will not be discussed at this Ɵme.

 Figure 15

22. This completes the coverage of what you need to know to get started using the API.

Job

Job

Accessing the AcƟve Job

Job is the current acƟve job in PlanSwiŌ. If there is no acƟve job open, then Job will be null (empty). Once a job has been opened, this job property will update to the current
job's pages, links, takeoffs, remembered values, autolist, bookmarks, and notes.
\Job is the relaƟve path to access the Job folder. Under the \Job folder are folders for Pages, Takeoff, and Bookmarks. Pages items reside in
\Job\Pages, Takeoff items in \Job\Takeoffs, and Bookmarks items in \Job\Bookmarks.

184

API Calls
Delphi

C#

VB/VBA (OLE)

185

Storages

Storages

Accessing storage locaƟons

Storages are the job storage locaƟons. Storages are PlanSwiŌ's job storage locaƟons. They are unloaded by default and only accessed when opening a job.
Through the API, the parent's folder of each hierarchy must be loaded before accessing the children. Templates are accessed via the Storages (\Job\Storages).

API Calls
Delphi

C#

VB/VBA (OLE)

1262

Plugins (2)

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

Plugins

Accessing Plugins

This directory houses all installed plugins. Plugins can be created, modified, updated, and deleted.

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

187

1

188

_Units

_Units

Accessing _Units

_Units are conversion units. _Units should not be modified.

API Call:

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

189

Coming soon

Coming soon

190

_Types

_Types

Accessing _Types

_Types are the default types of all PlanSwiŌ items. _Types should not be modified. Modifying any _Type will have an adverse effect on PlanSwiŌ. Any modificaƟons will be
overwriƩen when PlanSwiŌ is reinstalled or updated.

API Calls
Delphi

C#

Coming soon

Coming soon

Coming soon

1

191

VB/VBA (OLE)

Coming soon

Coming soon

192

Types

Types

Accessing Types

Types are derived from _Types. Special cauƟon needs to be taken when modifying Types because modifying Types can cause an adverse effect on PlanSwiŌ's operaƟon. The
Types are listed below.

Types
Area Dropdown

Roof Area
Area Cubic Yards
Price Per SQ FT

Count Dropdown
Labeled Count
Scaled Count
Circle
Square
Diamond
Plus
Triangle

Scripted Tools
SecƟons

Beam SecƟon
Grid SecƟon
Joist SecƟon
Joist Line

Scripted Tools
Items Beam

Tool
Grid Tool
Joist Segment
Joist Tool
Joist Material
Beam Material

Linear Dropdown
Wall Area
Linear Cubic Yards

Segment Dropdown
Segment Cubic Yards
Hip-Valley Tool
Wall Area

Rubber Stamps
Approved
As-Builts
Bid Set
Canceled
City Approved
ConfidenƟal
ConstrucƟon Set

193

DraŌ
Field Set
Final
Not Approved
Not for ConstrucƟon
Pending
Preliminary
Received
Revised

Priority
Update
Mine

Revision Clouds
Revision Cloud

SƟcky Tabs
URGENT
URGENT
URGENT
URGENT
URGENT

API Calls

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

194

Lists

Lists

Accessing Lists

195

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

1

196

Reports

Reports

Accessing Reports

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

1

197

Coming soon

Coming soon

198

Developers

Developers

API Calls
Delphi

Coming soon

Coming soon

199

C#

VB/VBA (OLE)

1

Coming soon

Coming soon

Coming soon

200

Hatches

Hatches

API Calls

Coming soon

Coming soon

201

Coming soon

Coming soon

202

Coming soon

Coming soon

203

EsƟmaƟng

EsƟmaƟng

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

1

204

Coming soon

Coming soon

205

Textures

Textures

API Calls
Delphi

C#

Coming soon

Coming soon

206

VB/VBA (OLE)

1

Coming soon

Coming soon

Coming soon

207

ConnecƟng to PlanSwiŌ

ConnecƟng to PlanSwiŌ

ConnecƟng to PlanSwiŌ may be done with OLE and COM. This secƟon describes methods of connecƟng to PlanSwiŌ and how to hook into acƟve running processes.

208

ConnecƟng with OLE

ConnecƟng with OLE

Code examples in VB / VBA OLE and Pascal ScripƟng OLE below show examples of OLE access to the API.

209

API Calls

VB/VBA (OLE)

Pascal ScripƟng (OLE)

210

ConnecƟng with COM

ConnecƟng with COM

C# and Delphi code examples below show how API is accessed via COM.

API Calls
Delphi

211

C#

212

Developer Documents

Developer Documents

This secƟon describes Page, SecƟon, and Item creaƟon, and adding a new Property.

213

214

Page CreaƟon

Page CreaƟon

This allows the ability to create Page objects, such as notes, annotaƟons, etc., through the API.

215

AnnotaƟons

AnnotaƟons

This allows the creaƟon of annotaƟon objects.

Syntax:
Procedure: Coming soon

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

216

Pascal ScripƟng (OLE)
Pascal ScripƟng

Coming soon

Coming soon

1

217

SecƟon CreaƟon

SecƟon CreaƟon

This allows the creaƟon of new secƟons on a parent item. SecƟons are children of a parent item. Each Ɵme an item is digiƟzed, a new secƟon is created as a child of
the item.

Syntax:
Procedure: Coming soon

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

218

Adding New ProperƟes

Adding New ProperƟes

This allows a new IPropertyObject to be added to an item. Items are composed of properƟes. ProperƟes are details that describe an item or a manipulaƟon of that
item.

Syntax:
Procedure: Coming soon

API Calls

Delphi

C#

Coming soon

Coming soon

Coming soon

Coming soon

219

VB/VBA (OLE)
Item CreaƟon

Item CreaƟon

The Item CreaƟon opƟons allow the creaƟon of new IItems, which includes Jobs, EsƟmaƟng items (Parts, Assemblies, or Takeoffs), Types, Reports, and EsƟmaƟng Layouts.

Coming soon

Coming soon

220

Jobs Jobs

This creates a job object.

Syntax:
Procedure: Coming soon

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

221

Coming soon

Coming soon

222

EsƟmaƟng Item

EsƟmaƟng Item

An EsƟmaƟng item is a part, assembly, or takeoff.

223

Assembly

Assembly

An assembly is an item that is composed of mulƟple parts; parts may also have sub-assemblies.

Syntax:
Procedure: Coming soon

API Calls

Delphi

C#

Coming soon

Coming soon

Coming soon

Coming soon

224

VB/VBA (OLE)

Part

Part

A part is an item with the part as the type.

Syntax:
Procedure: Coming soon

API Calls

Delphi

Coming soon

Coming soon

Coming soon

Coming soon

225

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

226

Takeoff Item

Takeoff Item

A takeoff item is an item of the types: area, linear, segment, or count.

Syntax:
Procedure: Coming soon

API Calls

Delphi

C#

Coming soon

Coming soon

Coming soon

Coming soon

227

VB/VBA (OLE)
Type

Type

The type is a property of an item.

Syntax:
Procedure: Coming soon

API Calls

Delphi

C#

Coming soon

Coming soon

Coming soon

Coming soon

228

VB/VBA (OLE)

Reports (1) Reports

Adds an item of the report type.

Syntax:
Procedure: Coming soon

API Calls

Delphi

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

229

C#

VB/VBA (OLE)

EsƟmaƟng Layouts

EsƟmaƟng Layouts

An esƟmaƟng layout is a view that allows modificaƟon of columns in a view.

Syntax:
Procedure: Coming soon

API Calls

Delphi

Coming soon

Coming soon

Coming soon

Coming soon

230

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

231

API COM Reference

NewItemEx
NewPoint
NewProperty

232

NewSecƟon
ParentItem
PointCount
PropertyCount
PropertyItem
SetPoint
SetPropertyFormula

233

IPropertyObject Adjust

234

CalculateBeforeInherit
CompileDenyOLE
CompileDenyRead
CompileDenyWrite
DecimalPlaces
EditScript
ExecuteScript
Expression
Formula
Group
ImageTransparent
InheritAcƟon
InheritPullFrom
InputCondiƟon
InputType
InputUnits
IsInherited
IsInput
List
ListColumnAutoWidth
ListFromProperty
ListProperƟesToSet
ListResultColumn
ListReturnFullPath
ListShow1Level
ListShowOnlyTypes
ListShowSearch
ListType
ListVisibleColumnsInDropdown
MeetsInputCondiƟon
Name (3)
PlugInToExecute
PlugInToExecuteBuƩonCapƟon
PropertyType
ResultAsString
ResultAsInteger
ResultAsFloat
ResultAsVariant ScriptType
ScriptLanguage
ScriptParameters
SimpleList
SliderMax
SliderMin
SliderShowTicks
SliderTickFrequency
SystemHidden
SystemLocked
TreeList
ExecuteScript (2)
Units
UserHidden
UserLocked

IsBeta
IsJobOpen
IsUnlocked
NewBlankPage
NewChangeGroup
NewItem (2)

235

IPlanSwiŌ

IPlanSwiŌ

This represents the root object of the Document Object Model.
This interface can be accessed from most development IDEs. It can also be used in the PlanSwiŌ script IDE by using the always available "PlanSwiŌ" object. You should
never aƩempt to create or free the PlanSwiŌ object from script.
While most IDE packages will include the PlanSwiŌ DOM for early binding use, the following shows a late binding example.

API Call
Delphi

C#

VB/VBA (OLE)

236

237

About

About

Shows the About PlanSwiŌ Dialog.

Syntax:
Procedure: IPlanswiŌ.About; Code

Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

BeginUpdate

238

BeginUpdate

Signals the beginning of a formula change operaƟon.

Syntax:
Procedure: BeginUpdate; Code

Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

BeginFormulaUpdate

BeginFormulaUpdate

Signals the beginning of a formula change operaƟon.

239

Syntax:
Procedure: BeginFormulaUpdate; Code

Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls
Delphi

C#

VB/VBA (OLE)

CancelTool

Coming soon

Coming soon

Coming soon

240

CancelTool

Cancels the currently acƟve tool in PlanSwiŌ.

Syntax:
Procedure: CancelTool; Code

Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Open PlanSwiŌ and select a digiƟzer object
6. Compile and run

API Calls
Delphi

C#

Coming soon

Coming soon

Coming soon

241

VB/VBA (OLE)

CloseJob

CloseJob

Closes the currently opened job.

Syntax:
Procedure: CloseJob;

Code Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls
Delphi

C#

Coming soon

242

VB/VBA (OLE)

CompareVersion

CompareVersion

Compares two different versions of PlanSwiŌ.

Syntax:
Procedure: CompareVersion; Code

Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

Coming soon

Coming soon

243

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

244

CopyItem

CopyItem

Creates a copy of Item under Parent and returns the ID of the new item.
If IncludeChildren is true, child items will be copied also.
If SkipSecƟons is true, digiƟzed secƟons will be duplicated also.

Syntax:
Procedure: CopyItem(Item: String; Parent: String; IncludeChildren: boolean; SkipSecƟons: boolean): String;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

CurrentVersion

Coming soon

Coming soon

Coming soon

245

CurrentVersion

Returns the current version of the acƟve PlanSwiŌ applicaƟon.

Syntax:
Procedure: CurrentVersion; Code

Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

 sVersion: ;

 sVersion := PlanSwift . CurrentVersion;

procedure

 . psCurrentVersion(sender: TObject);

 ps: IPlanSwift;

ps := coPlanswift . Create;

 .

 ;

public

 private
 PlanSwift Planswift { get ; }

 PlanswiftApi()

 new

Coming soon

246

VB/VBA (OLE)

Coming soon

Coming soon

247

CurrentViewport

CurrentViewport

Gets the Upper right and lower leŌ points of the viewport.

Syntax:
Procedure: CurrentViewport; Code

Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

248

DeleteItem (1)

DeleteItem

Deletes the item specified by ItemPath from the system.

Syntax:
Procedure: DeleteItem(ItemPath: String): Boolean;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

DeleteProperty (1)

DeleteProperty

Deletes PropertyName from ItemPath.

Syntax:

Coming soon

Coming soon

Coming soon

249

Procedure: DeleteProperty(ItemPath, PropertyName: String): Boolean; Code

Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

DrawOneWayLayout

DrawOneWayLayout

Syntax:
Procedure: DrawOneWayLayout(const AItem: WideString; const SpanLine: ILine; const RunLine: ILine; bIncludeFirst:
Arguments:
AItem: WideString
Specifies the area secƟon to assign the layout segments to.

SpanLine: ILine
DirecƟon span start and endpoint.

Coming soon

Coming soon

Coming soon

250

RunLine: ILine
Horizontal (side to side) run direcƟon of area to populate. Requires a start and endpoint;

bIncludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bIncludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID (globally unique idenƟfier) to the area secƟon.
Or, empty double-quotes for no trim/extending required.

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

251

252

DrawTwoWayLayout

DrawTwoWayLayout

FuncƟon used to perform segment layouts (in 2 direcƟons) at a specified span, horizontal run, as well as spacing.

Syntax:
Procedure: DrawTwoWayLayout(const AItem: WideString; const SpanLine: ILine; const RunLine: ILine; bIncludeFirst:
Arguments:
AItem: WideString
Specifies the area secƟon to assign the layout segments to.
SpanLine: ILine
DirecƟon span start and endpoint.
RunLine: ILine
Horizontal (side to side) run direcƟon of area to populate. Requires a start and endpoint;
bIncludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
bIncludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.
AArea: WideString (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID (globally unique idenƟfier) to the area secƟon. Or, empty
double-quotes for no trim/extending required.

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

public

 private
 PlanSwift Planswift { get ; }

 PlanSwiftApi()

 new

Coming soon

253

VB/VBA (OLE)

Coming soon

Coming soon

254

EdiƟon

EdiƟon

Returns the current PlanSwiŌ EdiƟon.

Syntax:
Procedure: EdiƟon;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

Coming soon

255

VB/VBA (OLE)

EndFormulaUpdate

EndFormulaUpdate

Signals an end to the formula update operaƟon.

Syntax:
Procedure: EndFormulaUpdate; Code

Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

Coming soon

Coming soon

Coming soon

Coming soon

256

API Calls
Delphi

C#

VB/VBA (OLE)

EndUpdate

EndUpdate

Signals the end of update operaƟons.

Syntax: Procedure:

EndUpdate; Code Reference:
1. Create a New Project

2. Add PlanSwiŌ Reference Usage

API Calls
Delphi

Coming soon

257

C#

VB/VBA (OLE)

GetItem (1)

GetItem

Returns the item given by FullPath. Returns Nil if the object is not found.

Syntax:
Procedure: GetItem(FullPath: String): IItem;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

Coming soon

Coming soon

Coming soon

258

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

259

GetLine

GetLine

Prompts the user to click 2 points on the acƟve plan to define a line then returns the coordinates in p1 and p2.
Returns 1 if the funcƟon is successful or 0 if the user cancels.

Syntax:
Procedure: GetLine(const ToolHint: WideString): ILine;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

GetOneWayLayout (2)

GetOneWayLayout

FuncƟon used to perform segment layouts at a specified span, horizontal run, as well as spacing.

Coming soon

Coming soon

Coming soon

260

Syntax:
Procedure: GetOneWayLayout(const AItem: WideString; const sSpanHint: WideString; const sRunHint: WideString; bIncludeFirst: WordBool; bIncludeLast: WordBool;
nSpacing: Double; const AArea: WideString): WordBool;
Arguments:
AItem: WideString
Specifies the area secƟon to assign the layout segments to.
sSpanHint: WideString
Hint to user on mouse cursor specifying to select the span line.
sRunHint: WideString
Hint to user on mouse cursor specifying to select the run line.
bIncludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
bIncludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.
AArea: WideString (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area secƟon. Or, empty double-quotes for no
trim/extending required.

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

1

261

GetProperty (1)

GetProperty

Returns the IPropertyObjectspecified by ItemPath and PropertyName. Returns Nil
if the Item or Property is not found.

Syntax:
Procedure: GetProperty(ItemPath, PropertyName: String): IPropertyObject; Code

Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyFormula (1)

GetPropertyFormula

Returns the formula string for the property specified by ItemPath and PropertyName. Returns an
empty string ('') if the item or property is not found.

Coming soon

Coming soon

Coming soon

262

Syntax:
Procedure: GetPropertyFormula(ItemPath, PropertyName: String): String; Code

Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

// PlanSwift code:
Result := PlanSwift . 'Name' ;

procedure

 psgetPropertyFormula;

 ps: IPlanSwift;
 itm: IItem;
 ;

 //Create the Planswift Interfacev
 ps := coplanswift . Create;
 //Get the selected Item
 . SelectedItem;
 //Set the property value
 propvalue := ps . GetPropertyFormula(itm 'Name' ;
 //Chece if Property value is empty

 propvalue <>

 ShowMessage(propvalue);

 nil ;

public

 private
 PlanSwift Planswift { get ; }

 PlanSwiftApi()

 new

263

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

264

GetPropertyResult (1)

GetPropertyResult

Returns the calculated result from the given property.

Syntax:
Procedure: GetPropertyResult(ItemPath, PropertyName: String): Variant; Code

Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call
Delphi

C#

VB/VBA (OLE)

GetPropertyResultAsBoolean (1)

GetPropertyResultAsBoolean

AƩempt to return the result of the given property as a boolean value. If the calculated result cannot be converted to a boolean value, the default value is returned.

Coming soon

Coming soon

Coming soon

265

Syntax:
Procedure: GetPropertyResultAsBoolean(ItemPath, PropertyName: String; Default: Boolean = False): Boolean;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyResultAsFloat (1)

GetPropertyResultAsFloat

AƩempts to return the given property value as a floaƟng point value. If the calculated property value cannot be converted, the value supplied by Default is returned.

public

 private
 PlanSwift Planswift { get ; }

 PlanSwiftApi()

 new

Coming soon

Coming soon

Coming soon

266

Syntax:
Procedure: GetPropertyResultAsFloat(ItemPath, PropertyName: String; Default: Double = 0): Double;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin

2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyResultAsInteger (1)

GetPropertyResultAsInteger

AƩempts to return the property value as an Integer. If the calculated value cannot be converted to an integer, the value given in Default is returned.

Syntax:
Procedure: GetPropertyResultAsInteger(ItemPath, PropertyName: String; Default: Integer = 0): Integer;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

Coming soon

Coming soon

Coming soon

267

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyResultAsString (1)

GetPropertyResultAsString

Returns the result value of the given property. Returns Default if the property is not found.

Syntax:
Procedure: GetPropertyResultAsString(ItemPath, PropertyName: String; Default String = ''): String;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

Coming soon

Coming soon

Coming soon

268

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

269

GetRect

GetRect

Prompts the user to click 2 points on the acƟve plan to define a rectangle and returns the coordinates in p1 and p2.
Returns 1 if the funcƟon is successful or 0 if the user cancels.

Syntax:
Procedure: GetRect(Var p1x: double; Var p1y: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

Coming soon

270

VB/VBA (OLE)

GetTwoWayLayout

GetTwoWayLayout

FuncƟon used to perform segment layouts (in 2 direcƟons) at a specified span, horizontal run, as well as spacing.

Syntax:
Procedure: GetTwoWayLayout(const AItem: WideString; const sSpanHint: WideString; const sRunHint: WideString; bIncludeFirst: WordBool; bIncludeLast: WordBool;
nSpacing: Double; const AArea: WideString): WordBool;
Arguments:
AItem: WideString
Specifies the area secƟon to assign the layout segments to.
sSpanHint: WideString
Hint to user on mouse cursor specifying to select the span line.
sRunHint: WideString
Hint to user on mouse cursor specifying to select the run line.
bIncludeFirst: WordBool

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

271

Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
bIncludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.
AArea: WideString (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area secƟon. Or, empty double-quotes for no
trim/extending required.

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

GetJobTotal
GetJobTotal

Retrieves the total number of items of a certain type in the enƟre opened job.

Syntax:
Procedure: GetJobTotal(const Propertyname: WideString; const ItemType: WideString = ''): Double;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

272

API Call
Delphi

C#

VB/VBA (OLE)

GetZoom

GetZoom

Returns the current "zoom" scale factor for the acƟve page.

Syntax:
Procedure: Get_Zoom: Double; Code

Reference:

Coming soon

Coming soon

Coming soon

273

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Call
Delphi

C#

VB/VBA (OLE)

Handle

Handle

Gets the handle of the current PlanSwiŌ applicaƟon.

Coming soon

Coming soon

Coming soon

274

Syntax:
Procedure: Handle: HResult; Code

Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

IItem

IItem

Coming soon

Coming soon

Coming soon

275

This is the interface object for a PlanSwiŌ Item.
In PlanSwiŌ script, since each script is the property of an item, you can use the default Item and Property objects to access the IItem andIPropertyObject that the script
belongs to.

Syntax:
Procedure: Coming soon

API Calls
Delphi

C#

Coming soon

Coming soon

276

VB/VBA (OLE)

CanRecord

CanRecord

Returns true if the item is a recordable item.

Syntax:
Procedure: CanRecord: Boolean;

API Calls
Delphi

C#

Coming soon

Coming soon

Coming soon

277

VB/VBA (OLE)

Coming soon

Coming soon

278

ChildCount

ChildCount

Returns the number of child items for the item.

Syntax:
Procedure: ChildCount: Integer;

API Calls
Delphi

C#

Coming soon

279

VB/VBA (OLE)

ChildItem

ChildItem

Returns the child item at the given index posiƟon.

Syntax:
Procedure: ChildItem(Index: Integer): IItem;

API Calls
Delphi

Coming soon

Coming soon

280

C#

VB/VBA (OLE)

Delete

Delete

Deletes the Item and its children from the system.

Syntax:
Procedure: Delete;

Coming soon

Coming soon

Coming soon

281

API Calls

Delphi

C#

VB/VBA (OLE)

DeleteItem (2)

DeleteItem

Deletes the given item if it exists.

Coming soon

Coming soon

Coming soon

282

Syntax:
Procedure: PlanSwiŌ.DeleteItem(const ItemPath: WideString): WordBool;

API Calls

DeleteProperty (2)

DeleteProperty

Deletes the given property if it exists.

Coming soon

Coming soon

283

Syntax:
Procedure: DeleteProperty(PropertyName: String);

API Calls

Delphi

C#

VB/VBA (OLE)

DoRecord

DoRecord

Coming soon

Coming soon

Coming soon

284

Begins recording digiƟzer points for the Item. Returns False if no points are recorded.

Syntax:
Procedure: DoRecord: Boolean;

API Calls

Delphi

C#

Coming soon

Coming soon

Coming soon

285

VB/VBA (OLE)

Edit

Edit

Displays the Item in the Editor Dialog.

Syntax:
Procedure: Edit(ShowAdvanced: Boolean = True): Boolean;

API Calls

Delphi

Coming soon

Coming soon

286

C#

VB/VBA (OLE)

Coming soon

287

FullPath

FullPath

Returns the full path to the Item.

Syntax:
Procedure: FullPath: String;

API Calls
Delphi

C#

VB/VBA (OLE)

GetItem

GetItem

288

Returns the given child item of the item.

Syntax:
Procedure: GetItem(ItemPath: String): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

GetItemByGUID

GetItemByGUID

Returns the child item specified by aGUID.

Coming soon

Coming soon

Coming soon

289

Syntax:
Procedure: GetItemByGUID(aGUID: String): IItem;

API Calls

Delphi

C#

VB/VBA (OLE)

GetPoint

GetPointD

Returns the IPoint object from the given index posiƟon.

Syntax:
Procedure: GetPoint(PointIndex: Integer): IPoint

Coming soon

Coming soon

Coming soon

290

API Calls
Delphi

C#

VB/VBA (OLE)

GetProperty (2)

GetProperty

Returns the given IPropertyObjector Nil if the property does not exist.

Syntax:
Procedure: GetProperty(PropertyName: String): IPropertyObject;

Coming soon

Coming soon

Coming soon

291

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyFormula (2)

GetPropertyFormula

Returns the formula from the given property.

Syntax:
Procedure: GetPropertyFormula(PropertyName: String): String;

Coming soon

Coming soon

Coming soon

292

API Calls

GetPropertyResult (2)

GetPropertyResult

Returns the property result as a variant;

Syntax:
Procedure: GetPropertyResult(PropertyName: String): Variant;

Coming soon

Coming soon

Coming soon

293

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyResultAsBoolean (2)

GetPropertyResultAsBoolean

Returns the given property result as a boolean value.

Syntax:
Procedure: GetPropertyResultAsBoolean(PropertyName: String; Default: Boolean = False): Boolean;

Coming soon

Coming soon

Coming soon

294

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyResultAsFloat (2)

GetPropertyResultAsFloat

Returns the given property result as type double.

Syntax:
Procedure: GetPropertyResultAsFloat(PropertyName: String; Default: Double = 0): Double;

Coming soon

Coming soon

Coming soon

295

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyResultAsInteger (2)

GetPropertyResultAsInteger

Returns the given property result value as an integer.

Syntax:
Procedure: GetPropertyResultAsInteger(PropertyName: String; Default: Integer = 0): Integer;

Coming soon

Coming soon

Coming soon

296

API Calls
Delphi

C#

VB/VBA (OLE)

GetPropertyResultAsString (2)

GetPropertyResultAsString

Returns the given property result value as a string.

Syntax:
Procedure: GetPropertyResultAsString(PropertyName: String; Default: String = ''): String;

Coming soon

Coming soon

Coming soon

297

API Calls
Delphi

C#

VB/VBA (OLE)

GUID

GUID

Returns the GUID (globally unique idenƟfier) for the Item.

Syntax:
Procedure: GUID: String;

Coming soon

Coming soon

Coming soon

298

API Calls
Delphi

C#

VB/VBA (OLE)

ItemType

ItemType

Gets or Sets the Type property for the Item.

Syntax:
Procedure: ItemType: String;

Coming soon

Coming soon

Coming soon

299

API Calls
Delphi

C#

VB/VBA (OLE)

IPoint

IPoint

The IPoint Interface

Syntax:

Coming soon

Coming soon

Coming soon

Coming soon

300

Procedure: Coming soon.

API Calls
Delphi

C#

VB/VBA (OLE)

X

X

Gets or Sets the X coordinate for the IPoint.

Syntax:

Coming soon

Coming soon

Coming soon

Coming soon

301

Procedure: X: Double;

API Calls
Delphi

C#

VB/VBA (OLE)

Y

Y

Gets or Sets the Y coordinate for the IPoint.

Syntax:
Procedure: Y: Double;

Coming soon

Coming soon

Coming soon

302

API Calls
Delphi

C#

VB/VBA (OLE)

Name (2)

Name

Gets or Sets the Name property for the item.

Syntax:
Procedure: Name: String;

Coming soon

Coming soon

Coming soon

303

API Calls
Delphi

C#

VB/VBA (OLE)

NewItem

NewItem

Creates a new child item and returns the new item.

Syntax:

Coming soon

Coming soon

Coming soon

Coming soon

304

Procedure: NewItem(ItemType: String; AName: String = ''): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

305

NewItemEx

NewItemEx

Creates a new child item and returns the new item. If EditProperƟes is true then the property editor will be displayed when the item is created.

Syntax:
Procedure: NewItemEx(ItemType, AName: String; EditProperƟes: Boolean): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

NewPoint

NewPoint

Coming soon

Coming soon

Coming soon

306

Creates a new digiƟzer point at the X, Y coordinates.

Syntax:
Procedure: NewPoint(X, Y: Double);

API Calls
Delphi

C#

VB/VBA (OLE)

NewProperty

NewProperty

Creates a new property as specified and returns the new IPropertyObject.

Syntax:
Procedure: NewProperty(PropertyName: String; AFormula: String = ''; PropertyType: PropertyTypes = ptNumber): IPropertyObject;

Coming soon

Coming soon

Coming soon

307

ptNumber = 0 ptColor =
1 ptText = 2 ptMemo = 3
ptCheckBox = 4 ptPath =
5 ptImage = 6
ptLargeImage = 7
ptType = 8 ptScript = 9
ptFile = 10 ptLargeFile =
11 ptFileName = 12
ptConnecƟonString = 13
ptSlider = 14
ptDimension = 15

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

308

NewSecƟon

NewSecƟon

Createsa new secƟon for the Item.
If the Item is not a draw object, this funcƟon returns Nil.

Syntax:
Procedure: NewSecƟon(AName: String = ''): IItem;

API Calls
Delphi

C#

Coming soon

309

VB/VBA (OLE)

ParentItem

ParentItem

Returns the parent to the Item.

Syntax:
Procedure: ParentItem: IItem;

API Calls
Delphi

Coming soon

Coming soon

310

C#

VB/VBA (OLE)

PointCount

PointCount

Returns the number of digiƟzer points for the item.

Syntax:
Procedure: PointCount: Integer;

Coming soon

Coming soon

Coming soon

311

API Calls
Delphi

C#

VB/VBA (OLE)

PropertyCount

PropertyCount

Returns the number of properƟes for this item.

Syntax:

Coming soon

Coming soon

Coming soon

312

Procedure: PropertyCount: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

PropertyItem

PropertyItem

Returns theIPropertyObject at the given index.

Coming soon

Coming soon

Coming soon

313

Syntax:
Procedure: PropertyItem(Index: Integer);

API Calls
Delphi

C#

VB/VBA (OLE)

SetPoint

Coming soon

Coming soon

Coming soon

Coming soon

314

SetPoint

Sets the digiƟzer point specified by PointIndex to the given X, Y coordinates.

Syntax:
Procedure: SetPoint(PointIndex: Integer; X, Y: Double);

API Calls
Delphi

C#

Coming soon

315

VB/VBA (OLE)

SetPropertyFormula

SetPropertyFormula

Sets the given property formula to value.

Syntax:
Procedure: SetPropertyFormula(PropertyName, value: String);

API Calls
Delphi

Coming soon

Coming soon

316

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

317

IPropertyObject

IPropertyObject

This is the interface object for each property on a PlanSwiŌ IItem. In PlanSwiŌ script, since each script is the property of an item, you can use the default Item and
Property objects to access the IItem andIPropertyObject that the script belongs to.

Syntax:
Procedure: Handle: HResult;

API Calls
Delphi

Coming soon

Coming soon

Coming soon

318

C#

VB/VBA (OLE)

Adjust

Adjust

Gets or Sets the Adjust aƩribute for the property.

Syntax:
Procedure: Adjust: String;

API Calls
Delphi

C#

Coming soon

Coming soon

319

VB/VBA (OLE)

CalculateBeforeInherit

CalculateBeforeInherit

Gets or Sets the CalculateBeforeInherit aƩribute for the property.

Syntax:
Procedure: CalculateBeforeInherit: Boolean;

API Calls
Delphi

C#

Coming soon

Coming soon

Coming soon

320

VB/VBA (OLE)

CompileDenyOLE

CompileDenyOLE

Gets or Sets the CompileDenyOLE aƩribute for this property.

Syntax:
Procedure: CompileDenyOLE: Boolean;

API Calls
Delphi

C#

Coming soon

Coming soon

Coming soon

321

VB/VBA (OLE)

CompileDenyRead

CompileDenyRead

Gets or Sets the CompileDenyRead aƩribute for this property.

Syntax:
Procedure: CompileDenyRead: Boolean;

API Calls
Delphi

Coming soon

Coming soon

322

C#

VB/VBA (OLE)

CompileDenyWrite

CompileDenyWrite

Gets or Sets the CompileDenyWrite aƩribute for this property.

Syntax:
Procedure: CompileDenyWrite: Boolean;

Coming soon

Coming soon

Coming soon

323

API Calls
Delphi

C#

VB/VBA (OLE)

DecimalPlaces

DecimalPlaces

Gets or Sets the DecimalPlaces aƩribute for the property.

Coming soon

Coming soon

Coming soon

Coming soon

324

Syntax:
Procedure: DecimalPlaces: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

325

EditScript

EditScript

Opens the script property in the script editor. If the property is not of type ptScript, this method is ignored.

Syntax:
Procedure: EditScript;

API Calls
Delphi

Coming soon

Coming soon

326

C#

VB/VBA (OLE)

Coming soon

327

ExecuteScript

ExecuteScript

Executes the script property, passing a CRLF delimited list of parameters. Returns the value assigned to Result in the script.

Syntax:
Procedure: ExecuteScript(ParamList: String = ''): Variant;

API Calls
Delphi

Coming soon

Coming soon

328

C#

VB/VBA (OLE)

Coming soon

329

Expression

Expression

Gets or Sets the Expression aƩribute for the property.

Syntax:
Procedure: Expression: Boolean;

API Calls
Delphi

Coming soon

Coming soon

330

C#

VB/VBA (OLE)

Coming soon

331

Formula

Formula

Gets or Sets the Formula aƩribute for the property.

Syntax:
Procedure: Formula: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

332

Group

Group

Gets or Sets the Group aƩribute for the property.

Syntax:
Procedure: Group: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

333

ImageTransparent

ImageTransparent

Gets or Sets the ImageTransparent aƩribute for this property.

Syntax:
Procedure: ImageTransparent: Boolean;

API Calls
Delphi

C#

Coming soon

Coming soon

Coming soon

334

VB/VBA (OLE)

InheritAcƟon

InheritAcƟon

Gets or Sets the InheritAcƟon aƩribute for this property.

Syntax:
Procedure: InheritAcƟon: InheritacƟons;

iaNormal = 0 iaIgnore = 1
iaInheritFormula = 2 iaInheritResult =
3 iaFlaƩen = 4

Coming soon

Coming soon

335

API Calls
Delphi

C#

VB/VBA (OLE)

InheritPullFrom

InheritPullFrom

Gets or Sets the InheritPullFrom aƩribute for this property.

Coming soon

Coming soon

Coming soon

Coming soon

336

Syntax:
Procedure: InheritPullFrom: String;

API Calls
Delphi

C#

VB/VBA (OLE)

InputCondiƟon

InputCondiƟon

Gets or Sets the InputCondiƟon aƩribute for the property.

Syntax:

Coming soon

Coming soon

Coming soon

337

Procedure: InputCondiƟon: String;

API Calls
Delphi

C#

VB/VBA (OLE)

InputType

InputType

Gets or Sets the InputType aƩribute for the property.

Syntax:

Coming soon

Coming soon

Coming soon

338

Procedure: InputType: InputTypes;

inpStoreLocal = 0 inpStoreParent

= 1

API Calls
Delphi

C#

VB/VBA (OLE)

InputUnits

InputUnits

Coming soon

Coming soon

Coming soon

Coming soon

339

Gets or Sets the InputUnits aƩribute for the property.

Syntax:
Procedure: InputUnits: String;

API Calls
Delphi

C#

VB/VBA (OLE)

IsInherited

IsInherited

Gets or Sets the IsInherited aƩribute for this property.

Coming soon

Coming soon

Coming soon

340

Syntax:
Procedure: IsInherited: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

IsInput

IsInput

Gets or Sets the IsInput aƩribute for the property.

Syntax:

Coming soon

Coming soon

Coming soon

341

Procedure: IsInput: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

342

List

List

Gets or Sets the List aƩribute for the property. If ListType = ltLisƩhen this string will be the full path to the PlanSwiŌ List Object as defined on the List tab on the main
ribbon bar.

Syntax:
Procedure: List: String;

API Calls
Delphi

Coming soon

Coming soon

343

C#

VB/VBA (OLE)

ListColumnAutoWidth

ListColumnAutoWidth

Gets or Sets the ListColumnAutoWidth aƩribute for the property.

Syntax:
Procedure: ListColumnAutoWidth: Boolean;

API Calls
Delphi

Coming soon

344

C#

VB/VBA (OLE)

ListFromProperty

ListFromProperty

Gets or Sets the ListFromProperty aƩribute for the property;

Syntax:
Procedure: ListFromProperty: Boolean;

Coming soon

Coming soon

Coming soon

345

API Calls

ListProperƟesToSet

ListProperƟesToSet

Gets or Sets the ListProperƟesToSet aƩribute for this property.

Syntax:

Coming soon

Coming soon

Coming soon

346

Procedure: ListProperƟesToSet: String;

API Calls
Delphi

C#

VB/VBA (OLE)

ListResultColumn

ListResultColumn

Coming soon

Coming soon

Coming soon

347

Gets or Sets the ListResultColumn aƩribute for the property. If the ListType =ltList, this aƩribute specifies which column to return for the result.

Syntax:
Procedure: ListResultColumn: String;

API Calls
Delphi

C#

Coming soon

348

VB/VBA (OLE)

ListReturnFullPath

ListReturnFullPath

Gets or Sets the ListReturnFullPath for this property.

Syntax:
Procedure: ListReturnFullPath: Boolean;

Coming soon

Coming soon

349

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

350

ListShow1Level
ListShow1Level

Gets or Sets the ListShow1Level aƩribute for this property.

Syntax:
Procedure: ListShow1Level: Boolean;

API Calls
Delphi

C#

Coming soon

351

VB/VBA (OLE)

ListShowOnlyTypes

ListShowOnlyTypes

Gets or Sets the ListShowOnlyTypes aƩribute for this property.

Syntax:
Procedure: ListShowOnlyTypes: String;

API Calls
Delphi

Coming soon

Coming soon

352

C#

VB/VBA (OLE)

ListShowSearch

ListShowSearch

Gets or Sets the ListShowSearch aƩribute for the property.

Syntax:
Procedure: ListShowSearch: Boolean;

Coming soon

Coming soon

Coming soon

353

API Calls
Delphi

C#

VB/VBA (OLE)

ListType

ListType

Gets or Sets the ListType aƩribute for the property.

Syntax:

Coming soon

Coming soon

Coming soon

354

Procedure: ListType: ListTypes;
ltSimpleList = 0 ltList = 1
ltTreeList = 2 ltExecutePlugin
= 3

API Calls
Delphi

C#

VB/VBA (OLE)

ListVisibleColumnsInDropdown

ListVisibleColumnsInDropdown

Coming soon

Coming soon

Coming soon

355

Gets or Sets the ListVisibleColumnsInDropdown aƩribute for this property.

Syntax:
Procedure: ListVisibleColumnsInDropdown: String;

API Calls
Delphi

C#

VB/VBA (OLE)

MeetsInputCondiƟon

Coming soon

Coming soon

Coming soon

356

MeetsInputCondiƟon

Returns true if theInputCondiƟon has been met.

Syntax:
Procedure: MeetsInputCondiƟon

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

357

Name (3)

Name

Gets or Sets the Name aƩribute for the Property.

Syntax:
Procedure: Name: String;

API Calls
Delphi

C#

Coming soon

358

VB/VBA (OLE)

PlugInToExecute

PlugInToExecute

Gets or Sets the PlugInToExecute aƩribute for this property.

Syntax:
Procedure: PlugInToExecute: String;

API Calls
Delphi

Coming soon

Coming soon

359

C#

VB/VBA (OLE)

PlugInToExecuteBuƩonCapƟon

PlugInToExecuteBuƩonCapƟon

Gets or Sets the PlugInToExecuteBuƩonCapƟon aƩribute for this property.

Syntax:
Procedure: PlugInToExecuteBuƩonCapƟon: String;

Coming soon

Coming soon

Coming soon

360

API Calls
Delphi

C#

VB/VBA (OLE)

PropertyType

PropertyType

Returns the Type aƩribute for the property.

Syntax:

Coming soon

Coming soon

Coming soon

361

Procedure: PropertyType: String;

API Calls
Delphi

C#

VB/VBA (OLE)

ResultAsString

ResultAsString

Returns the property result of the property.

Coming soon

Coming soon

Coming soon

362

Syntax:
Procedure: ResultAsString: String;

API Calls
Delphi

C#

VB/VBA (OLE)

ResultAsInteger

ResultAsInteger

Coming soon

Coming soon

Coming soon

363

Returns the property result as an integer if possible.

Syntax:
Procedure: ResultAsInteger: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

ResultAsFloat

ResultAsFloat

Coming soon

Coming soon

Coming soon

364

Returns the property resultasa Double.

Syntax:
Procedure: ResultAsFloat: Double;

API Calls
Delphi

C#

VB/VBA (OLE)

ResultAsVariant

Coming soon

Coming soon

Coming soon

365

ResultAsVariant

Returns the property result as a Variant;

Syntax:
Procedure: ResultAsVariant: Variant;

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

366

ScriptType

ScriptType

Gets or Sets the ScriptType aƩribute for this property.

Syntax:
Procedure: ScriptType: ScriptTypes;

stEvent = 0 stMethod = 1

API Calls
Delphi

C#

Coming soon

367

VB/VBA (OLE)

ScriptLanguage

ScriptLanguage

Gets or Sets the ScriptLanguage aƩribute for this property.

Syntax:
Procedure: ScriptLanguage: ScriptLanguages;

slPascal = 0 slBasic = 1 slExecute = 2

API Calls
Delphi

Coming soon

Coming soon

368

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

369

ScriptParameters

ScriptParameters

Gets or Sets the ScriptParameters aƩribute for this property. This string is a CRLF delimited list of Parameter names.

Syntax:
Procedure: ScriptParameters: String;

API Calls

Delphi

C#

Coming soon

370

VB/VBA (OLE)

SimpleList

SimpleList

Gets or Sets the SimpleList aƩribute for the property. If ListType = ltSimpleList, the SimpleList aƩribute will be the CRLF delimited string of list items.

Syntax:
Procedure: SimpleList: String;

Coming soon

Coming soon

371

API Calls

Delphi

C#

VB/VBA (OLE)

SliderMax

SliderMax

Gets or Sets the SliderMax aƩribute for the property.

Coming soon

Coming soon

Coming soon

Coming soon

372

Syntax:
Procedure: SliderMax: Integer;

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

373

SliderMin

SliderMin

Gets or Sets the SliderMin aƩribute for this property.

Syntax:
Procedure: SliderMin: Integer;

API Calls

Delphi

C#

VB/VBA (OLE)

SliderShowTicks

SliderShowTicks

Gets or Sets the SliderShowTicks aƩribute for this property.

Syntax:
Procedure: SliderShowTicks: Boolean;

Coming soon

Coming soon

Coming soon

374

API Calls

Delphi

C#

VB/VBA (OLE)

SliderTickFrequency

SliderTickFrequency

Gets or Sets the SliderTickFrequency aƩribute for this property.

Syntax:
Procedure: SliderTickFrequency: Integer;

API Calls

Delphi

C#

Coming soon

Coming soon

Coming soon

Coming soon

375

VB/VBA (OLE)

SystemHidden

SystemHidden

Returns True if the property is Hidden by the system.

Syntax:
Procedure: SystemHidden: Boolean;

API Calls

Delphi

C#

VB/VBA (OLE)

SystemLocked

SystemLocked

Returns True if the property is locked by the system.

Coming soon

Coming soon

Coming soon

Coming soon

Coming soon

376

Syntax:
Procedure: SystemLocked: Boolean;

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

377

TreeList

TreeList

Gets or Sets the TreeList aƩribute of the property. If ListType = ltTreeList this aƩribute will contain the full path to the treelist item to use for a root item in the list.

Syntax:
Procedure: TreeList: String;

API Calls

Delphi

C#

Coming soon

378

VB/VBA (OLE)

ExecuteScript (2)

ExecuteScript

Executes the script property, passing a CRLF delimited list of parameters. Returns the value assigned to Result in the script.

Syntax:
Procedure: ExecuteScript(ParamList: String = ''): Variant;

Coming soon

Coming soon

379

API Calls

Delphi

C#

VB/VBA (OLE)

Units

Units

Gets or Sets the Units aƩribute for the property.

Coming soon

Coming soon

Coming soon

380

Syntax:
Procedure: Units: String;

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

381

UserHidden

UserHidden

Gets or Sets the UserHidden aƩribute for the property.

Syntax:
Procedure: UserHidden: Boolean;

API Calls

Delphi

C#

Coming soon

382

VB/VBA (OLE)

UserLocked

UserLocked

Gets or Sets the UserLocked aƩribute of the property.

Syntax:
Procedure: UserLocked: Boolean;

API Calls

Delphi

Coming soon

Coming soon

383

C#

VB/VBA (OLE)

IsBeta

IsBeta

Returns True if Beta user, False if not.

Syntax:
Procedure: IsBeta: Boolean;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

Coming soon

Coming soon

Coming soon

384

3. Copy Code into the editor
4. Press run

API Calls

Delphi

C#

VB/VBA (OLE)

IsJobOpen

IsJobOpen

Tests whether the PlanSwiŌ applicaƟon actually has a "Job" opened in the editor.

Coming soon

Coming soon

Coming soon

385

Syntax:
Procedure: IsJobOpen: Wordbool;

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

386

IsUnlocked

IsUnlocked

Checks the product acƟvaƟon status of a plugin. If AllowUnlock is true, the user is prompted to AcƟvate if needed.

Syntax:
Procedure: IsUnlocked(AProduct: String; AMajorVer: Integer; AMinorVer: Integer; AllowUnlock: Boolean): Boolean;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

Delphi

C#

Coming soon

387

VB/VBA (OLE)

NewBlankPage

NewBlankPage

Creates a blank page in the current job and returns the Page Item that was created.

Syntax:
Procedure: NewBlankPage(const AName: WideString; AWidth, AHeight, ADPI: Integer; const AScale: WideString): IItem;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the for
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

Delphi

Coming soon

Coming soon

388

C#

VB/VBA (OLE)

NewChangeGroup

NewChangeGroup

Starts a new change group.

Syntax:
Procedure: NewChangeGroup(GroupName: String);

Code Reference
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon

Coming soon

Coming soon

Coming soon

389

5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

NewItem (2)

NewItem

Creates a new IItem as a child of ParentPath.

Syntax:

Coming soon

Coming soon

Coming soon

Coming soon

390

Procedure: NewItem(ParentPath, ItemType: String; AName: String = ''): IItem;

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

391

NewItemEx (2)

NewItemEx

Creates a new IItem as a child of ParentPath. If EditProperƟes is true, then the property editor will display when the item is created.

Syntax:
Procedure: NewItemEx(ParentPath, ItemType: String; AName: String = ''; EditProperƟes: Boolean): IItem;

API Calls

Delphi

C#

Coming soon

392

VB/VBA (OLE)

NewJobEx

NewJobEx

Starts a "new" job in the PlanSwiŌ applicaƟon.

Syntax:
Procedure: NewJobEx(const JobName: WideString = ''): Wordbool;

API Calls

Delphi

Coming soon

Coming soon

393

C#

VB/VBA (OLE)

NewPoint (2)

NewPoint

Adds a new point to ItemPath at the X, Y coordinates. If the Item is not found or is not a drawing object, this procedure will be ignored.

Syntax:
Procedure: NewPoint(ItemPath: String; X, Y: Double);

Code Reference:

Coming soon

Coming soon

Coming soon

394

1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

395

NewSecƟon (2)

NewSecƟon

Returns the newly created secƟon as an IItem, as a child item of ParentPath. If ParentPath is not found or is not a digiƟzer item, this funcƟon returns Nil.

Syntax:
Procedure: NewSecƟon(ParentPath: String; SecƟonName: String = ''): IItem;

API Calls

Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

396

OnClose

OnClose

Triggered when the PlanSwiŌ applicaƟon closes.

Syntax:
Procedure: OnClose;

API Calls

Delphi

C#

Coming soon

Coming soon

397

VB/VBA (OLE)

OnDoneRecordingDigiƟzer

OnDoneRecordingDigiƟzer

Triggered when an item secƟon finishes recording.

Syntax:
Procedure: OnDoneRecordingDigiƟzer(ItemPath: String);

API Calls

Delphi

Coming soon

Coming soon

Coming soon

398

C#

VB/VBA (OLE)

OnCopyItem

OnCopyItem

Triggered when the PlanSwiŌ applicaƟon copies an item.

Syntax:
Procedure: OnCopyItem;

Coming soon

Coming soon

Coming soon

399

API Calls

Delphi

C#

VB/VBA (OLE)

OnDigiƟzerSecƟonChanged

OnDigiƟzerSecƟonChanged

Triggered when the PlanSwiŌ applicaƟon focuses a new secƟon item.

Syntax:

Coming soon

Coming soon

Coming soon

Coming soon

400

Procedure: OnDigiƟzerSecƟonChanged;

API Calls

Delphi

C#

VB/VBA (OLE)

OnDoneRecording

OnDoneRecording

Triggered when an item has finished recording.

Coming soon

Coming soon

Coming soon

Coming soon

401

Syntax:
Procedure: OnDoneRecording(ItemPath: String);

API Calls
Delphi

C#

VB/VBA (OLE)

OnItemChange

OnItemChange

Triggered when an item, specified by ItemPath, has been changed.

402

Syntax:
Procedure: OnItemChange(ItemPath: String);

API Calls
Delphi

C#

VB/VBA (OLE)

OnItemDelete

OnItemDelete

Coming soon

Coming soon

Coming soon

Coming soon

403

Triggered when an item is deleted. ItemPath specifies which item is deleted.

Syntax:
Procedure: OnItemDelete(ItemPath: String);

API Calls
Delphi

C#

VB/VBA (OLE)

OnJobClose

Coming soon

Coming soon

Coming soon

Coming soon

404

OnJobClose

Triggered when the current job closes.

Syntax:
Procedure: OnJobClose;

API Calls
Delphi

C#

Coming soon

Coming soon

405

VB/VBA (OLE)

OnJobOpen

OnJobOpen

Triggered when a new job is opened.

Syntax:
Procedure: OnJobOpen;

Coming soon

Coming soon

406

API Calls
Delphi

C#

VB/VBA (OLE)

OnNewItem

OnNewItem

Triggered when a new item, specified by ItemPath, is created.

 and
 FreshDesk Code:

 // Process as needed.

 . OnJobOpen := OnJobOpen;

Coming soon

Coming soon

Coming soon

Coming soon

407

Syntax:
Procedure: OnNewItem(ItemPath: String);

API Calls
Delphi

C#

VB/VBA (OLE)

OnNewJob

OnNewJob

Coming soon

Coming soon

Coming soon

Coming soon

408

Triggered when the applicaƟon starts a "new" job.

Syntax:
Procedure: OnNewJob;

API Calls
Delphi

C#

VB/VBA (OLE)

OnSelectedPageChange

Coming soon

Coming soon

Coming soon

Coming soon

409

OnSelectedPageChange

Triggered when the applicaƟon changes to a "new" page in the job.

Syntax:
Procedure: OnSelectedPageChange;

API Calls
Delphi

C#

Coming soon

Coming soon

410

VB/VBA (OLE)

OnSelectedSelecƟonChanged

OnSelectedSelecƟonChanged

Triggered when the applicaƟon changes to a new selecƟon.

Syntax:
Procedure: OnSelectedSelecƟonChanged;

API Calls
Delphi

Coming soon

Coming soon

Coming soon

411

C#

VB/VBA (OLE)

OnSelecƟonChanged

OnSelecƟonChanged

Triggered when the applicaƟon changes focus to a new "selectable" item in the editor.

Syntax:
Procedure: OnSelecƟonChanged;

Coming soon

Coming soon

Coming soon

412

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

Coming soon

413

OpenJob

OpenJob

Opens the job specified by JobPath. Returns True if successful, false if the job could not be found or opened.

Syntax:
Procedure: OpenJob(JobPath: String): Boolean;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

Coming soon

414

VB/VBA (OLE)

OpenJobEx

OpenJobEx

Shows the PlanSwiŌ Open Job Dialog for the user to select a job to open.

Syntax:
Procedure: OpenJobEx;

Code Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

Coming soon

Coming soon

Coming soon

Coming soon

415

API Calls
Delphi

C#

VB/VBA (OLE)

PointCount (2)

PointCount

Returns the number of digiƟzer points on the item secƟon.

Syntax:
Procedure: PointCount(ItemPath: String): Integer;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

Coming soon

416

API Calls
Delphi

C#

VB/VBA (OLE)

PostChanges

PostChanges

Post changes made since call to NewChangeGroup.

Syntax:
Procedure: PostChanges; Code

Reference:
1. Create a New Forms ApplicaƟon

Coming soon

Coming soon

Coming soon

417

2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls
Delphi

C#

VB/VBA (OLE)

Root

Root

Returns the Root tree object.

Coming soon

Coming soon

Coming soon

418

Syntax:
Procedure: Root: IItem

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

SaveScreenShot

Coming soon

Coming soon

Coming soon

419

SaveScreenShot

Save a screenshot of the acƟve monitor to a specified filespec.

Syntax:
Procedure: SaveScreenShot(const FileName: WideString; Prompt: WordBool): WordBool;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

420

SelectedItem

SelectedItem

Returns the currently selected Item, or Nil if no item is selected.

Syntax:
Procedure: SelectedItem: IItem

Coming soon

Coming soon

Coming soon

421

API Calls
Delphi

C#

VB/VBA (OLE)

SelectedPage

SelectedPage

Returns the currently selected page item or Nil if no page is selected.

Coming soon

Coming soon

Coming soon

Coming soon

422

Syntax:
Procedure: SelectedPage: IItem;

API Calls

SelectItemDialog

SelectItemDialog

Displays the Select Item dialog to the user, then returns the selected item.

Syntax:
Procedure: SelectItemDialog(Header: String; Title: String; RootItemID: String): IItem;

Code Reference:

Coming soon

Coming soon

Coming soon

423

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

424

SelecƟonList SelecƟonList

Syntax:
Procedure: SelecƟonList: ISelecƟonList;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

425

VB/VBA (OLE)

SetPoint (2)

SetPoint

Sets the XY coordinates of the specified point.

Syntax:
Procedure: SetPoint(ItemPath: String; PointIndex: Integer; X, Y: Double);

Code Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanSwiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls
Delphi

426

C#

VB/VBA (OLE)

SetPropertyFormula (2)

SetPropertyFormula

Sets the Items Property Formula to the specified value. This will also create a new Property with the default Type as Text if the property does not exist.

Syntax:
Procedure: SetPropertyFormula(ItemPath, PropertyName, Value: String);

API Calls
Delphi

Coming soon

Coming soon

Coming soon

427

C#

VB/VBA (OLE)

SetSelected

SetSelected

Set the job "object" to either selected or not selected based on the specified itempath.

Syntax:
Procedure: SetSelected(const ItemPath: WideString; Value: WordBool);

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

Coming soon

428

API Calls
Delphi

C#

VB/VBA (OLE)

Coming soon

Coming soon

Coming soon

429

SetZoom

SetZoom

Defines the current "zoom" scale factor for the acƟve page.

Syntax:
Procedure: Set_Zoom(Value: Double); Code

Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

Coming soon

Coming soon

430

C#

VB/VBA (OLE)

ISelecƟonList

ISelecƟonList

A simple list that contains all of the items selected when the list is created.

Syntax:
Procedure: Coming soon

API Calls
Delphi

Coming soon

Coming soon

431

C#

VB/VBA (OLE)

Count

Count

Returns the number of objects in the list.

Syntax:
Procedure: Count: Integer;

Coming soon

Coming soon

Coming soon

432

API Calls
Delphi

C#

VB/VBA (OLE)

Items (1)

Items

Read-only collecƟon of items. As with all collecƟons, Index is a 0 based value.

Coming soon

Coming soon

Coming soon

Coming soon

433

Syntax:
Procedure: Items(Index: Integer): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

SetAcƟveTab (TabName: String)

SetAcƟveTab (TabName: String)

Coming soon

Coming soon

Coming soon

Coming soon

434

Passing the name of the tab to the method. will set the acƟve tab in PlanSwiŌ.

API Calls
C#

//Will Open the Home Tab in PlanSwift
IPlanSwift planSwift = new

 IPlanSwift();

 planSwift.IsLoaded

 Sleep(10);

planSwift.SetActiveTab()

435

IsLoaded

IsLoaded

Will Wait For PlanSwiŌ to finish loading.

API Calls
C#

IPlanSwift planSwift = new
 IPlanSwift();

 planSwift.IsLoaded

 Debug.Write(".")

436

ScripƟng DocumentaƟon

ScripƟng DocumentaƟon

PlanSwiŌ's internal scripƟng provides the means to access PlanSwiŌ's internal structure in a coding environment to help automate PlanSwiŌ funcƟonality. ScripƟng also
provides the developer the capability to write and automate drawing tasks as well as complex formula calculaƟons. PlanSwiŌ's internal scripƟng funcƟonality executes faster
than PlanSwiŌ's API funcƟonality. ScripƟng for PlanSwiŌ's root seƫngs are documented in the PlanSwiŌ Structure secƟon. Click here to see them.

437

Using API Methods in ScripƟng

Using API Methods in ScripƟng
PlanSwiŌ's ScripƟng Interface allows you to hook into PlanSwiŌ's API and use it, or you can use the default ScripƟng Reference. If you want to write something inside of
PlanSwiŌ, just for PlanSwiŌ, then you can use the ScripƟng Interface.
DocumentaƟon on the ScripƟng Interface and the ScripƟng Reference are in process.

438

ScripƟng Interface

ScripƟng Interface
To use the ScripƟng Interface, follow the steps below.

 Figure 2

3. In the Tools Manager window (Figure 3), click on the green plus (+). Note that the yellow folder icon allows a new folder to be created for storage of plugins. The blue
gear icon allows the viewing of properƟes for any plugin in the window below. The red "X" icon allows for a plugin to be deleted. The green triangular icon allows a
selected plugin to be executed.

 Figure 3

4. In the ProperƟes - [New Plugin] window, give the new plugin a name, such as "Stucco" or whatever name you choose for the new plugin (Figure 4).

439

 Figure 4

5. Select the Plugin Type by clicking on the Plugin Type selecƟon arrow and then selecƟng Script Code from the drop-down menu (Figure 5).

 Figure 5

6. The Plugin Type is now displayed as Script Code (arrow 1 in Figure 6). Doubleclicking on the Icon (arrow 1) or the LargeIcon (arrow 2) allows the selecƟon of a small
Icon or a LargeIcon. Double-click on the LargeIcon (arrow 3).

440

 Figure 6

7. This opens an Explorer window (Figure 7) allowing the selecƟon of an icon. From here, it is possible to navigate to a different directory and select an icon, then click on
Open to use that selected icon; but, for now, select Cancel to retain the default green puzzle-piece icon.

 Figure 7

8. The next step is to select where you want the new icon to appear: OnStartup, On Image Menu, or On Ribbon Bar. For this exercise, select On Ribbon Bar (arrow 1),
select Tools from the Ribbon Tab drop-down (arrow 2), select Takeoff Item from the Ribbon Group drop-down (arrow 3), and then click on Ok.

441

 Figure 8

9. Click on the Tools tab on the Main Ribbon-bar, and you will see the new "Stucco" plugin displayed in the Takeoff Item group (Figure 9).

 Figure 9

10. Double-click on the Stucco plugin in the Tools Manager window to re-open the ProperƟes - [Stucco] window (Figure 10). Click on Edit.

442

 Figure 10

11. This opens the Script Code - Script Editor window (Figure 11). The large Script Editor window on the right is where plugin code is wriƩen. The Code Explorer window
will list variables and procedures as they are coded into the Script Editor window. The Help window contains the COM Object Model and ScripƟng selecƟons available
to use in the Script Editor window. Clicking on the "+" symbol opens the folder and subfolders. Click on the "+" leŌ of COM Object Model, then click on the "+" leŌ of
the IPlanswiŌ folder.

443

 Figure 11
12. The COM Object Model selecƟons are now available in the Help window (Figure 12). Click on Current Version, then click on the circled quesƟon mark directly below

the Help label.

 Figure 12

13. Clicking on CurrentVersion (arrow 1 of Figure 13), then clicking on the quesƟon mark (arrow 2), opens the CurrentVersion window (arrow 3), which provides the
DeclaraƟon form of the item selected and a Source Code Example. Source code may be copied and pasted into the Script Editor window and then modified as needed,
or the CurrentVersion selecƟon can be double-clicked on and will appear in the Script Editor window at the cursor's last posiƟon. The Close Script, Run Script, Debug
Script, Break Points, and Script Parameter secƟons provide the code ediƟng funcƟons useful in programming API's.

444

 Figure 13

445

ScripƟng - FuncƟons

446

ResultPointY

447

ResultPointX2
ResultPointY2

BringToFront
ChildCount (2)
ChildItem (2)
ClearSelecƟon
CopyItem (2)
DeleteItem
GetItem (2)
GetSelecƟonList
IsType
ListData
MoveItemTo NewItem
(3)
ParentItemGUID
ParentItem (2)
SelectedItem (2)
ShowLabel
StartRecording
SelectedPage (2)
SendToBack
SelectedPageGUID
SelectItem ZoomToItem

SecƟons
AddPoint
DeletePoint
DrawOneWayLayout (2)
DrawTwoWayLayout (2)
GetOneWayLayout
GetTwoWayLayout (2)
NewSecƟon (3)
NewSubtractSecƟon
PointX
PointY
PointCount (3)
SetPoint (3)

ProperƟes
DeleteProperty
GetGUIDfromPath
GetJobTotal (2)
GetPropertyCount
GetPropertyFormula
GetPropertyResult
GetResultAsBoolean
GetResultAsFloat
GetResultAsInteger
GetResultAsString
GetPropertyName
GetPropertyAƩribute
GetPropertyAƩributeList
SetPropertyAƩribute
SetPropertyFormula (3)

BeepAcknowledged
CompareVersion (2)
CurrentUser
ExecuteScript (3)
GetAcƟonLog
GetPairedValue

448

GetResult
IsUnlocked (2)
KeyDown

449

Forms

Forms

 l

450

NewBuƩon

NewBuƩon

Creates a new TBuƩon and sets the LeŌ, Top, CapƟon and ModalResult ProperƟes as specified. Do not aƩempt to destroy or free a TBuƩon created with NewBuƩon.

Syntax:
Procedure: NewBuƩon(LeŌ, Top: Integer; CapƟon: String; Modalresult: Integer): TBuƩon;

Code Reference:

451

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call:

452

NewCheckBox

NewCheckBox

Creates a new TCheckBox and sets the LeŌ, Top, CapƟon and Checked ProperƟes as specified. Do not aƩempt to destroy or free a TCheckBox created withNewCheckBox.

Syntax:
Procedure: NewCheckBox(LeŌ, Top: Integer; CapƟon: String; Checked: Boolean): TCheckBox;

Code Reference:

453

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call:

454

NewColorBox

NewColorBox

Creates a new TColorBox and sets the LeŌ, Top and Selected ProperƟes as specified. Do not aƩempt to destroy or free a TColorBox created with NewColorBox.

Syntax:
Procedure: NewColorBox(LeŌ, Top: Integer; Selected: Integer): TColorBox;

Code Reference:

455

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call:

456

NewComboBox

NewComboBox

Creates a new TComboBox and sets the LeŌ, Top and Text ProperƟes as specified. Do not aƩempt to destroy or free a TComboBox created withNewComboBox.

Syntax:
Procedure: NewComboBox(LeŌ, Top: Integer; Text: String): TComboBox;

Code Reference:

457

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call:

458

NewEdit

NewEdit

Creates a new TEdit and sets the LeŌ, Top and Text ProperƟes as specified. Do not aƩempt to destroy or free a TEdit created with NewEdit.

Syntax:
Procedure: NewEdit(LeŌ, Top: Integer; Text: String): TEdit;

Code Reference:

459

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call:

460

NewForm

NewForm

Creates a new TForm object and sets the width, height, and capƟon as specified. Do not aƩempt to destroy or free forms created with NewForm.

Syntax:
Procedure: NewForm(Width, Height: Integer; CapƟon: String): TForm;

Code Reference:

461

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call:

462

NewLabel
NewLabel

Creates and returns a new TLabel object and sets the LeŌ, Top and CapƟon properƟes. Do not aƩempt to destroy or free labels created with NewLabel.DeclaraƟon:

Syntax:
Procedure: NewLabel(LeŌ, Top: Integer; CapƟon: String): TLabel;

463

API Call:

464

NewRadioBuƩon

NewRadioBuƩon

Creates a new TRadioBuƩon and sets the LeŌ, Top, CapƟon and Checked ProperƟes as specified. Do not aƩempt to destroy or free a TRadioBuƩon created
withNewRadioBuƩon.

Syntax:
Procedure: NewRadioBuƩon(LeŌ, Top: Integer; CapƟon: String; Checked: Boolean): TRadioBuƩon;

465

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call:

466

Math FuncƟons

Math FuncƟons

DecToEnglish

DecToEnglish

Converts a given dimension into its string representaƟon.

Syntax:
Procedure: DecToEnglish(Feet: Double): String;

API Call:

 i

467

DistanceBetweenPointsScaled

DistanceBetweenPointsScaled

Returns the angle between 2 points given by p1 and p2 coordinates (based on scale factor for the page).

Syntax:
Procedure: DistanceBetweenPointsScaled(p1X, p1Y, p2X, p2Y: Double): Double;

API Call:

468

DistanceFromLine

DistanceFromLine

Returns the distance of a point given by p3 is from a line, given by p1 and p2.

Syntax:
Procedure: DistanceFromLine(p1x, p1y, p2x, p2y, p3x, p3y: Double): Double;

API Call:

469

ExtendLine

ExtendLine

Calculates the points to extend a line given by p1 and p2 a given Distance, then returns the new points in variables p3 and p4.

Syntax:
Procedure: ExtendLine(p1x, p1y, p2x, p2y, Distance: Double; var p3x: Double; var p3y: Double; var p4x: Double; var p4y: Double);

API Call:

470

GetDistanceFromLine

GetDistanceFromLine

Coming soon

Syntax: Procedure: GetDistanceFromLine

API Call:

471

GetIntersectPoint

GetIntersectPoint

Calculates at what point Line 1, given by p1 and p2, intersects with Line 2, given by p3 and p4, and returns the result point in p5. Returns 1 (True) if the lines intersect

or 0 (False) if the lines are parallel.

Syntax:
Procedure: GetIntersectPoint(p1x, p1y, p2x, p2y, p3x, p3y, p4x, p4y: Double; var p5x: Double; var p5y: Double): Integer;

API Call:

472

GetPI
GetPI

Gets Pi.

Syntax: Procedure:

GetPI API Call:

473

Max

Max

Returns the larger of the values passed.

Syntax:
Procedure: Max(Value1, Value2: Double): Double;

API Call:

474

Min

Min

Returns the smaller of the values passed.

Syntax:
Procedure: Min(Value1, Value2: Double): Double;

API Call:

475

RoundDown

RoundDown

Rounds the given value down to the nearest whole number.

Syntax:
Procedure: RoundDown(Val: Double): Integer;

API Call:

476

DistanceBetweenPoints

DistanceBetweenPoints

Returns the distance between 2 points specified by p1 and p2 coordinates.

Syntax:
Procedure: DistanceBetweenPoints(p1X, p1Y, p2X, p2Y: Double): Double;

API Call:

477

RoundToNearest

RoundToNearest

Rounds the given value down to the nearest value as defined by precision.

Syntax:
Procedure: RoundToNearest(Val, Precision: Double): Double;

API Call:

478

RoundUp

RoundUp

Rounds the given value up to the nearest integer.

Syntax:
Procedure: RoundUp(Val: Double): Integer

API Call:

479

AngleBetweenPointsUnScaled

AngleBetweenPointsUnScaled

Returns the angle between 2 points given by p1 and p2 coordinates.

Syntax:
Procedure: AngleBetweenPointsUnScaled(p1X, p1Y, p2X, p2Y: Double): Double;

API Call:

480

ParallelLine

ParallelLine

Calculates the points to form a new line parallel line offset Distance from the original, specified by p1 and p2, then returns the new points in variables p3 and p4.

Syntax:
Procedure: ParallelLine(p1x, p1y, p2x, p2y, Distance: Double; var p3x: Double; var p3y: Double; var p4x: Double; var p4y: Double);

API Call:

481

Pi
Pi

Returnsthe numeric value for Pi (3.1415926535897932384626433832795).

Syntax:
Procedure: Pi: Double;

API Call:

482

PointOnAngle

PointOnAngle

Calculates a new point given by p1 a given Distance and Angle then returns the result point in p2.

Syntax:
Procedure: PointOnAngle(p1x, p1y, Angle, Distance: Double; var p2x: double; var p2y: double);

API Call:

483

TrimToArea

TrimToArea

Trims the ends of a Segment object to the boundaries of the given Area object.

Syntax:
Procedure: TrimToArea(AreaPath, SegmentPath: String);

API Call:

484

Update Methods

Update Methods

485

BeginUpdate (2)

BeginUpdate

Temporarily suspends program updates.

Syntax: Procedure:

BeginUpdate;

API Call:

486

BeginFormulaUpdate (2)

BeginFormulaUpdate

Temporarily suspends automaƟc property calculaƟons.

Syntax:
Procedure: BeginFormulaUpdate;

API Call:

487

CurrentVersion (2) CurrentVersion

Syntax:
Procedure: CurrentVersion: String;

488

EndFormulaUpdate (2)

EndFormulaUpdate

Ends the temporary suspension of automaƟc property calculaƟons.

Syntax:
Procedure: EndFormulaUpdate;

API Call:

489

EndUpdate (2)

EndUpdate

Ends the temporary suspension of program updates.

Syntax:
Procedure: EndUpdate;

API Call:

490

ImageRefresh

ImageRefresh

Refreshes the current screen image. Same as RefreshImage.

Syntax:
Procedure: ImageRefresh;

API Call:

491

RefreshImage

RefreshImage

Refreshes the current screen image. Same asImageRefresh.

Syntax:
Procedure: RefreshImage

API Call:

492

NewChangeGroup (2)

NewChangeGroup

Creates a new program change group.

Syntax:
Procedure: NewChangeGroup(AName: String);

API Call:

493

PostChanges (2)

PostChanges

Post all opened change groups to the program.

Syntax: Procedure: PostChanges;

API Call:

494

Windows Controls

Windows Controls

495

CurrentViewport (2)

CurrentViewport

In PlanSwiŌ, the documentaƟon window shows "BeginForumulaUpdate", not CurrentViewPort. ???? Coming soon

Syntax:
Procedure: Coming soon

API Call:

496

FindWindow

FindWindow

Finds a window based on the given criteria. Returns the window handle if successful or 0 if the window is not found.

Syntax:
Procedure: FindWindow(StartsWith, Contains, Excludes: String; Exact: Boolean): Integer; Contains,

Excludes, and Exact are opƟonal.

API Call:

497

FocusMainWindow

FocusMainWindow

Put user focus back on applicaƟon main window.

Syntax: Procedure:

FocusMainWindow;

API Call:

498

FocusWindow

FocusWindow

Put user focus back on applicaƟon main window.

Syntax:
Procedure: FocusWindow(Hwnd: Integer);

API Call:

499

SendKey

SendKey

Sends the given KeyCode to the acƟve PlanSwiŌ control. (Same as TypeKey).

Syntax:
Procedure: SendKey(AKey: Integer);

API Call:

500

SendKeys

SendKeys

Sends a string of keystrokes to the acƟve PlanSwiŌ control.

Syntax:
Procedure: SendKeys(AKeys: String);

API Call:

501

User Input

User Input

502

GetIntersectPoint (2)

GetIntersectPoint

Coming soon.

Syntax: Procedure:

GetIntersectPoint

API Call:

503

GetLine (2)

GetLine

Prompts the user to click 2 points on the acƟveplan to define a line then returns the coordinates in p1 and p2. Returns 1 if the funcƟon is successful or 0 if the user
cancels.

Syntax:
Procedure: GetLine(Var p1x: double; Var p1y: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

API Call:

504

GetPoint (2)

GetPoint

GetPoint prompts the user to select a point by clicking on the acƟveplan, then returns the point coordinates in X and Y. If the user clicks a valid point, the result is 1
(True); otherwise, the result is 0 (False).

Syntax:
Procedure: GetPoint(Var X: Double; Var Y: Double; Hint: String): Integer;

API Call:

505

GetRect (2)

GetRect

Prompts the user to click 2 points on the acƟve plan to define a rectangle, then returns the coordinates in p1 and p2. Returns 1 if the funcƟon is successful or 0 if the user
cancels.

Syntax:
Procedure: GetRect(Var p1x: double; Var p1y: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

API Call:

506

HitTest

HitTest

Coming soon

Syntax: Procedure:

HitTest API Call:

507

NewPoint (3)

NewPoint

Adds a new point to ItemPath at the X, Y coordinates. If the Item is not found or is not a drawing object, this procedure will be ignored.

Syntax:
Procedure: NewPoint(ItemPath: String; X, Y: Double);

API Call:

508

ResultPointX

ResultPointX

Returns the x coordinate from the last Getpoint, Getline or GetRect.

Syntax:
Procedure: ResultPointX: Double;

API Call:

509

ResultPointY

ResultPointY

Returns the y coordinate from the last Getpoint, Getline or GetRect.

Syntax:
Procedure: ResultPointY: Double;

API Call:

510

ResultPointX2

ResultPointX2

Returns the x2 coordinate from the last Getline or GetRect.

Syntax:
Procedure: ResultPointX2: Double;

API Call:

511

ResultPointY2

ResultPointY2

Returns the y2 coordinate from the last Getline or GetRect.

Syntax:
Procedure: ResultPointY2: Double;

API Call:

512

Items

Items

 l

513

BringToFront

BringToFront

Brings the given item to the forefront, above all other items.

Syntax:
Procedure: BringToFront(ItemPath: String);

API Call:

514

ChildCount (2)

ChildCount

Returns the number of child items for the item.

Syntax:
Procedure: ChildCount(ItemPath: String): Integer;

API Call:

515

ChildItem (2)

ChildItem

Returns the full path of the child item at posiƟon Index in the list. If the child item does not exist, an empty string is returned.

Syntax:
Procedure: ChildItem(ItemPath: String; Index: Integer): String;

API Call:

516

ClearSelecƟon

ClearSelecƟon

Un-selects all currently selected items.

Syntax: Procedure:

ClearSelecƟon;

API Call:

517

CopyItem (2)

CopyItem

Creates a copy of Item under Parent and returns the ID of the new item. If IncludeChildren is true, child items will be copied also. If SkipSecƟons is true, digiƟzed secƟons

will be duplicated also.

Syntax:
Procedure: CopyItem(Item: String; Parent: String; IncludeChildren: boolean; SkipSecƟons: boolean): String;

API Call:

518

DeleteItem

DeleteItem

Deletes the given item from the system. Returns 1 (True) is successful, otherwise 0 (False).

Syntax:
Procedure: DeleteItem(ItemPath: String): Integer;

API Call:

519

GetItem (2)

GetItem

Returns the item given by FullPath. Returns Nil if the object is not found.

Syntax:
Procedure: GetItem(sItemPath: string): string;

API Call:

520

GetSelecƟonList

GetSelecƟonList

Returns a list of order list of GUIDs assigned to secƟons.

Syntax:
Procedure: GetSelecƟonList;

API Call:

521

IsType

IsType

Returns 1 (True) if the item is of type given, otherwise returns 0 (False).

Syntax:
Procedure: IsType(ItemPath, Type: String): Integer;

API Call:

522

ListData

ListData

Coming soon

Syntax: Procedure:

ListData; API Call:

523

MoveItemTo

MoveItemTo

Returns True if the given item is successfully moved to a new parent item. MoveAcƟon is opƟonal, can be Above, Below or IntoTop; otherwise will default to IntoBoƩom.

Syntax:
Procedure: MoveItemTo(ItemPath, NewParent, MoveAcƟon: String): Boolean;

524

API Call:

525

NewItem (3)

NewItem

Creates a new child item for the given item. ItemType is opƟonal and allows you to set the type of item to create. Name is opƟonal and sets the name for the new child
item.

Syntax:
Procedure: NewItem(ItemPath, ItemType, Name: String): String;

API Call:

526

ParentItemGUID

ParentItemGUID

Returns the GUID (globally unique idenƟfier) of the Parent Item for the given item.

Syntax:
Procedure: ParentItemGUID(ItemPath: String): String;

API Call:

527

ParentItem (2)

ParentItem

Returns the parent item for the given item. If the funcƟon fails an empty string is returned.

Syntax:
Procedure: ParentItem(ItemPath: String): String;

API Call:

528

SelectedItem (2)

SelectedItem

Returns the full path to the currently selected item. If no item is selected an empty string is returned.

Syntax:
Procedure: SelectedItem: String;

API Call:

529

ShowLabel
ShowLabel

Sets the visibility of an item's label.

Syntax:
Procedure: ShowLabel(ItemPath: String; Visible: Boolean);

API Call:

530

StartRecording

StartRecording

ItemPath is opƟonal. If provided, ItemPath must be a digiƟzer object. If <itempath< i=""> is omiƩed, PlanswiŌ will aƩempt to record the currently selected item, if any.
Returns 1 (True) if successful, otherwise returns 0 (False).

Syntax:
Procedure: StartRecording(ItemPath: String): Integer;

API Call:

531

SelectedPage (2)

SelectedPage

Returns the full path to the currently selected page. If no page is selected, an empty string is returned.

Syntax:
Procedure: SelectedPage: String;

API Call:

532

SendToBack

SendToBack

Sends the given item to the back, behind all other items.

Syntax:
Procedure: SendToBack(ItemPath: String);

API Call:

533

SelectedPageGUID

SelectedPageGUID

Returns the GUID for the currently selected page. If no page is selected returns an empty string.

Syntax:
Procedure: SelectedPageGUID: String;

API Call:

534

SelectItem

SelectItem

Set the given items selected status to Selected. Returns True if successful, False if the operaƟon failed.

Syntax:
Procedure: SelectItem(ItemPathorGUID: string; Selected: boolean): Boolean;

API Call:

535

ZoomToItem

ZoomToItem

Redisplays the current view to a selected takeoff item on the page. A value can be assigned to allow for user sizeable margins around the viewed object (default = 30).

Syntax:
Procedure: ZoomToItem(sItemPath: string; Marginsize: string); integer;

API Call:

536

SecƟons

SecƟons

537

AddPoint

AddPoint

Adds a new point given by X, Y to the item. ItemPath must specify an exisƟng digiƟzer object or the procedure fails.

Syntax:
Procedure: AddPoint(ItemPath: String; X, Y: Double);

API Call:

538

DeletePoint

DeletePoint

Deletes the point at posiƟon Index.

Syntax:
Procedure: DeletePoint(ItemPath: String; Index: Integer);

API Call:

539

DrawOneWayLayout (2)

DrawOneWayLayout

FuncƟon used to perform segment layouts at a specified span, horizontal run, as well as spacing.

Syntax:
Procedure: DrawOneWayLayout(aItem: string; oSpanPnt1X; oSpanPnt1Y, oSpanPnt2X, oSpanPnt2Y, oRunPnt1X , oRunPnt1Y, oRunPnt2X , oRunPnt2Y: double;
bIncludeFirst, bIncludeLast: boolean; nSpacing: double; aAreaSecƟon: string): boolean;

Arguments:
AItem: String
Specifies the area secƟon to assign the layout segments to.
SpanLineX and SpanLineY: Double DirecƟon
span start and endpoint.
RunLineX and RunLineY: Double
Horizontal (side to side) run direcƟon of area to populate. Requires a start and endpoint;
bIncludeFirst: Boolean
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
bIncludeLast: Boolean
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.
AArea: String (opƟonal parameter)

540

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID (globally unique idenƟfier) to the area secƟon. Or, empty
double-quotes for no trim/extending required.

API Call:

DrawTwoWayLayout (2)

DrawTwoWayLayout

FuncƟon used to perform segment layouts (in 2 direcƟons) at a specified span, horizontal run, as well as spacing.

Syntax:
Procedure: DrawTwoWayLayout(aItem: string; oSpanPnt1X; oSpanPnt1Y, oSpanPnt2X, oSpanPnt2Y, oRunPnt1X , oRunPnt1Y, oRunPnt2X , oRunPnt2Y: double;
bIncludeFirst, bIncludeLast: boolean; nSpacing: double; aAreaSecƟon: string): boolean;
Arguments:
AItem: String
Specifies the area secƟon to assign the layout segments to.
SpanLineX and SpanLineY: Double DirecƟon
span start and endpoint.

RunLineX and RunLineY: Double
Horizontal (side to side) run direcƟon of area to populate. Requires a start and endpoint;
bIncludeFirst: Boolean
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
bIncludeLast: Boolean
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

541

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.
AArea: String (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area secƟon. Or, empty double-quotes for no
trim/extending required.

API Call:
GetOneWayLayout

GetOneWayLayout

FuncƟon used to perform segment layouts at a specified span, horizontal run, as well as spacing.

Syntax:
Procedure: GetOneWayLayout(aItem: string; sSpanHint, sRunHint: string; bIncludeFirst, bIncludeLast: boolean; nSpacing: double; aAreaSecƟon: string): boolean;
Arguments:
AItem: String
Specifies the area secƟon to assign the layout segments to.
sSpanHint: String
Hint message displayed on mouse cursor indicaƟng to pick the "span" direcƟon.
sRunHint: String
Hint message displayed on mouse cursor indicaƟng to pick the "run" direcƟon.
bIncludeFirst: Boolean
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

542

bIncludeLast: Boolean
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: String (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area secƟon. Or, empty double-quotes for no
trim/extending required.

API Call:
GetTwoWayLayout (2)

GetTwoWayLayout

FuncƟon used to perform segment layouts (in 2 direcƟons) at a specified span, horizontal run, as well as spacing.

Syntax:
Procedure: GetTwoWayLayout(aItem: string; sSpanHint, sRunHint: string; bIncludeFirst, bIncludeLast: boolean; nSpacing: double; aAreaSecƟon: string): boolean;

Arguments:
AItem: String
Specifies the area secƟon to assign the layout segments to.
sSpanHint: String
Hint message displayed on mouse cursor indicaƟng to pick the "span" direcƟon.
sRunHint: String
Hint message displayed on mouse cursor indicaƟng to pick the "run" direcƟon.

543

bIncludeFirst: Boolean
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
bIncludeLast: Boolean
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.
AArea: String (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area secƟon. Or, empty double-quotes for no
trim/extending required.

API Call:
NewSecƟon (3)

NewSecƟon

Adds a new secƟon to a digiƟzed type item and returns the full path to the new secƟon. If ParentPath does not exist, or is not a digitzer item, this funcƟon fails and
returns an empty string. SecƟonName is opƟonal.

Syntax:
Procedure: NewSecƟon(ParentPath, SecƟonName: String): String;

API Call:

544

NewSubtractSecƟon

NewSubtractSecƟon

Subtracts a new secƟon from a digiƟzed type item and returns the full path to the new secƟon. If ParentPath does not exist or is not a digitzer item, this funcƟon fails and
returns an empty string. SecƟonName is opƟonal.

Syntax:
Procedure: NewSubtractSecƟon;

API Call:

545

PointX

PointX

Returns the X coordinate of the point given by Index. If this funcƟon fails the return value is -1.

Syntax:
Procedure: PointX(ItemPath: String; Index: Integer): Double;

API Call:

546

PointY

PointY

Returns the Y coordinate of the point given by Index. If this funcƟon fails the return value is -1.

Syntax:
Procedure: PointY(ItemPath: String; Index: Integer): Double;

API Call:

547

PointCount (3)

PointCount

Returns the number of points recorded for the secƟon.

Syntax:
Procedure: PointCount(ItemPath: String): Integer;

API Call:

548

SetPoint (3)

SetPoint

Sets the X, Y coordinates of the given point.

Syntax:
Procedure: SetPoint(ItemPath: String; Index: Integer; X, Y: Double);

API Call:

549

ProperƟes

ProperƟes

DeleteProperty

DeleteProperty

Deletes a property from the item.

Syntax:
Procedure: DeleteProperty(ItemPath, PropertyName: String);

API Call:

550

GetGUIDfromPath

GetGUIDfromPath

Returns the GUID for the item based upon the path for the item.

Syntax:
Procedure: GetGUIDfromPath;

API Call:

551

GetJobTotal (2)

GetJobTotal

Retrieves the total number of items of a certain type in the enƟre opened job.

Syntax:
Procedure: GetJobTotal(sPropertyname: string; sItemType: string = ''): Double;

API Call:

552

GetPropertyCount

GetPropertyCount

Returns the number of properƟes for the given item.

Syntax:
Procedure: GetPropertyCount(ItemPath: String): Integer;

API Call:

553

GetPropertyFormula

GetPropertyFormula

Returns the formula for the given property.

Syntax:
Procedure: GetPropertyFormula(ItemPath, PropertyName: String): String;

API Call:

554

GetPropertyResult

GetPropertyResult

Returns the calculated result of the given property as a variant.

Syntax:
Procedure: GetPropertyResult(ItemPath, PropertyName: String): Variant;

API Call:

555

GetResultAsBoolean

GetResultAsBoolean

Returns the calculated result of the given property.

Syntax:
Procedure: GetResultAsBoolean(ItemPath, PropertyName: String; Default: Boolean): Boolean;

API Call:

Default is an opƟonal return value for the funcƟon in case of failure. If Default

556

GetResultAsFloat

GetResultAsFloat

 Returns the calculated result of the given property. is not provided it defaults to 0.

Syntax:
Procedure: GetResultAsBoolean(ItemPath, PropertyName: String; Default: Double): Double;

API Call:

Default is an opƟonal return value for the funcƟon in case of failure. If Default

557

GetResultAsInteger

GetResultAsInteger

 Returns the calculated result of the given property. is not provided it defaults to 0.

Syntax:
Procedure: GetResultAsInteger(ItemPath, PropertyName: String; Default: Integer): Integer;

API Call:

Default is an opƟonal return value for the funcƟon in case of failure. If Default

558

GetResultAsString

GetResultAsString

Returns the calculated result of the given property. is not provided it defaults to an empty string.

Syntax:
Procedure: GetResultAsString(ItemPath, PropertyName: String; Default: String): String;

API Call:

559

GetPropertyName

GetPropertyName

Returns the name of the nth property in the property list.

Syntax:
Procedure: GetPropertyName(ItemPath: String; Index: Integer): String;

API Call:

560

GetPropertyAƩribute

GetPropertyAƩribute

Returns the value of the given Item Property AƩribute.

Syntax:
Procedure: GetPropertyAƩribute(Itempath, PropertyName, AƩributeName: String): String;

API Call:

561

GetPropertyAƩributeList

GetPropertyAƩributeList

Returns the value of the given Item Property AƩribute.

Syntax:
Procedure: GetPropertyAƩributeList(Itempath, PropertyName: String): String;

API Call:

562

SetPropertyAƩribute

SetPropertyAƩribute

AƩempts to set the Item Property AƩribute to the given Value.

Syntax:
Procedure: SetPropertyAƩribute(ItemPath, PropertyName, AƩributeName, Value: String);

API Call:

563

SetPropertyFormula (3)

SetPropertyFormula

Sets the given property to the value specified if possible.

Syntax:
Procedure: SetPropertyFormula(ItemPath, PropertyName: String; Value: Variant; Type: String);

API Call:

564

Misc

Misc

BeepAcknowledged

BeepAcknowledged

Sends an instrucƟon to the computer to trigger an audible beep.

Syntax:
Procedure: BeepAcknowledged;

API Call:

565

CompareVersion (2)

CompareVersion

Compares two different versions of PlanSwiŌ.

Syntax:
Procedure: CompareVersion(arg1, arg2): integer;

API Call:

566

CurrentUser

CurrentUser

Returns the username of the current user.

Syntax: Procedure: CurrentUser:

String

API Call:

567

ExecuteScript (3)

ExecuteScript

Executes the script property PropertyPath and returns the result as a variant. Paramx is the opƟonal string parameters to pass to the script. Failure to pass required

parameters could lead to errors or failure. All scripts should check for invalid parameters and exit gracefully.

Syntax:
Procedure: ExecuteScript(PropertyPath, param1, param2, param3, param4, param5, param6, param7, param8, param9: String;): Variant;

API Call:

568

GetAcƟonLog

GetAcƟonLog

Returns to a string the enƟre contents of the applicaƟon AcƟon Log.

Syntax:
Procedure: GetAcƟonLog;

API Call:

569

GetPairedValue

GetPairedValue

Passed a search string and a set of paired strings, the result will be the value assigned to the search string.

Syntax:
Procedure: GetPairedValue(sSearchStr: string; sStringSet: string): string;

API Call:

570

GetResult

GetResult

Coming soon. Returns the calculated result from the given property ???.

Syntax:
Procedure: GetResult;

API Call:

571

IsUnlocked (2)

IsUnlocked

Checks the product acƟvaƟon status of a plugin. If AllowUnlock is true the user is prompted to AcƟvate if needed.

Syntax:
Procedure: IsUnlocked(AProduct: String; AMajorVer: Integer; AMinorVer: Integer; AllowUnlock: Boolean): Boolean;

API Call:

572

KeyDown

KeyDown

Pushes a Keydown event to PlanSwiŌ.

Syntax: Procedure:

KeyDown;

API Call:

573

KeyUp

KeyUp

Pushes a Keyup event to PlanSwiŌ.

Syntax: Procedure:

KeyUp;

API Call:

574

License

License

Coming soon

Syntax: Procedure:

License; API Call:

575

OpenJob (2)

OpenJob

Opens the job specified by JobPath. Returns True if successful, false if the job could not be found or opened.

Syntax:
Procedure: OpenJob(JobPath: String): Boolean;

API Call:

576

NewBlankPage (2)

NewBlankPage

Creates a blank page in the current job and returns the Page Item that was created.

Syntax:
Procedure: NewBlankPage(AName: string; AWidth, AHeight, ADPI: integer; AScale: string): string;

API Call:

577

SetRecordMode

SetRecordMode

Set the digiƟzer record mode to either "Box" mode or "Point to Point" mode. "Box" is the only valid seƫng; anything else will set the mode to "Point to Point".

Syntax:
Procedure: SetRecordMode(Mode: String);

API Call:

578

SetImagePropertyFromFile

SetImagePropertyFromFile

Assigns an image to a property within an item. Item is passed with a filespec parameter.

Syntax:
Procedure: SetImagePropertyFromFile(sItemPath: string; sPropertyItem: string; sFilespec: string): integer;

API Call:

579

SetEncrypted

SetEncrypted

Sets encrypƟon on scripted plugins.

Syntax: Procedure:

SetEncrypted;

API Call:

580

RGB

RGB

Passed RGB integers will return the "color" integer in ARGB format.

Syntax:
Procedure: RGB(nRed: integer; nGreen: integer; nBlue: integer): integer;

API Call:

581

ReapplyAllOfType

ReapplyAllOfType

Coming soon.

Syntax:
Procedure: ReapplyAllOfType(sType: string);

API Call:

582

OpenJobEx (2)

OpenJobEx

Shows the Open Job Dialog for the user to select a job to open.

Syntax:
Procedure: OpenJobEx;

API Call:

583

SetResult

SetResult

Assigns the result of the script to the passed value.

Syntax:
Procedure: SetResult(nResult: string);

API Call:

584

StopRecording

StopRecording

Forces a terminaƟon on any mouse takeoff recordings that got started.

Syntax:
Procedure: StopRecording;

API Call:

585

Dialogs

Dialogs

586

EditScriptProperty

EditScriptProperty

Loads the specified script property into the script editor and displays to the user for ediƟng.

Syntax:
Procedure: EditScriptProperty(ItemPath, PropertyName: String);

API Call:

587

EditItem

EditItem

Loads the given item into the Item Editor, then displays to the user for ediƟng. If ItemPath does not exist, or if the user cancels the dialog, the funcƟon fails and returns

False.

Syntax:
Procedure: EditItem(ItemPath: String): Boolean;

API Call:

588

Custom Dialogs

Custom Dialogs

One of the great new features in PlanSwiŌ9 is the ability to create reusable dialogs using stored items and properƟes; simply design an item with only the desired
properƟes set as Input.

589

Syntax:
Procedure: Coming soon

API Call:

590

MessageDialog

MessageDialog

Displays a dialog with a corresponding message.

591

Syntax: Procedure:

MessageDialog();

API Call:

592

My Color Dialog

My Color Dialog

Coming soon

593

Syntax: Procedure: Coming

soon

API Call:

594

ScriptMessageDialog

ScriptMessageDialog

Coming soon

595

Syntax: Procedure: ScriptMessageDialog;

API Call:

596

SelectItemDialog (2)

SelectItemDialog

Displays the ItemDialog with specified parameters that were passed as arguments.

597

Syntax:
Procedure: SelectItemDialog(AHeader: String = ''; ACapƟon: String = ''; RootItem: String = '');

API Call:

598

Global Variables and Constants

Global Variables and Constants

Coming soon

599

Syntax:
Procedure: Coming soon

API Call:

600

Developer Docs -- Freshdesk Xfer

Developer Docs–Freshdesk Xfer

601

COM Object Model - Events -- xfer from Freshdesk
COM Object Model Events – Transfer from FreshDesk

602

OnDoneRecording - FD

OnDoneRecording

Called when recording of a secƟon or the stop buƩon pressed.

DeclaraƟon: ???

API Calls

Delphi

C#

603

VB/VBA (OLE)

1

604

1631

OnJobOpen - FD

OnJobOpen

Triggered when a new job is opened in PlanSwiŌ.
DeclaraƟon: OnJobOpen;

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1633

OnNewItem - FD

OnNewItem

Triggered when a new item, specified by ItemPath, is created.
DeclaraƟon: OnNewItem(ItemPath: String);

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

606

1635

OnSelecƟonChanged - FD

OnSelecƟonChanged

Triggered when the PlanSwiŌ applicaƟon changes focus to a new "selectable" item in the editor.
DeclaraƟon: OnSelecƟonChanged;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1637

608

OnItemDelete - FD

OnItemDelete

Triggered when an item is deleted. ItemPath specifies which item was deleted.
DeclaraƟon: OnItemDelete(ItemPath: String);

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1639

OnItemChange - FD

OnItemChange

Triggered when an item, specified by ItemPath has been changed.
DeclaraƟon: OnItemChange(ItemPath: String);

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

610

1641

OnCopyItem - FD

OnCopyItem

Triggered when the PlanSwiŌ applicaƟon copies an item.
DeclaraƟon: OnCopyItem;

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1643

OnSelectedPageChange - FD

OnSelectedPageChange

Triggered when the PlanSwiŌ applicaƟon changes to a "new" page in the job.

612

1

Using the PlanSwiŌ Object Model
1

DeclaraƟon: OnSelectedPageChange;

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1645

OnNewJob - FD

OnNewJob

Triggered when the PlanSwiŌ applicaƟon starts a "new" job.
DeclaraƟon: OnNewJob;

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1647

OnJobClose - FD

OnJobClose

Triggered when the current job closes.
DeclaraƟon: OnJobClose;

614

1

Using the PlanSwiŌ Object Model
1

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1649

OnClose - FD

OnClose

Triggered when the PlanSwiŌ applicaƟon closes.
DeclaraƟon: OnClose;

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

616

1651

OnDoneRecordingDigiƟzer - FD

OnDoneRecordingDigiƟzer

Triggered when an item secƟon finishes recording.
DeclaraƟon: OnDoneRecordingDigiƟzer(ItemPath: String);

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

1653

OnSelectedSelecƟonChanged - FD
OnSelectedSelecƟonChanged

Triggered when the PlanSwiŌ applicaƟon changes to a new selecƟon.
DeclaraƟon: OnSelectedSelecƟonChanged;

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

618

Pascal ScripƟng

1655

OnDigiƟzerSecƟonChanged - FD

OnDigiƟzerSecƟonChanged

Triggered when the PlanSwiŌ applicaƟon focuses a new secƟon item.
DeclaraƟon: OnDigiƟzerSecƟonChanged;

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

1657

COM Object Model - Procedures -- Xfer from Freshdesk

COM Object Model - Procedures – Xfer from Freshdesk

620

BeginUpdate - FD

BeginUpdate

Temporarily suspends program updates.
Syntax:

Function: IPlanswift.BeginUpdate; Code Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

621

1

622

SetPropertyFormula - FD

SetPropertyFormula

Sets the Items Property Formula. (note) this will also create a new Property with the default a default Type as Text if the property does not exist.
Syntax:

 Procedure: IPlanswift.SetPropertyFormula(PropertyName, value: String);
Code Reference:

1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

623

624

1

Using the PlanSwiŌ Object Model
1

About - FD

About

Shows the About PlanswiŌ Dialog Syntax:
Procedure: IPlanswiŌ.About; Code Reference:

1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

625

Item Object Model

1

626

1

Using the PlanSwiŌ Object Model
1

OpenJobEx - FD

OpenJobEx

Opens the "Open Job" Dialog Box once the "Job Dialog" box appears. The com will suspend unƟl either a job is opened or the Cancel buƩon is pressed.
Syntax:

Procedure: IPlanSwiŌ.OpenJobEx;
Code Reference:

1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng

627

Item Object Model

1

Pascal ScripƟng (OLE)

628

1

Using the PlanSwiŌ Object Model
1

BeginFormulaUpdate - FD

BeginFormulaUpdate

Signals the beginning of a formula change operaƟon.
Syntax:

Procedure: BeginFormulaUpdate; Code Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng

629

Item Object Model

1

Pascal ScripƟng (OLE)

630

1

EndUpdate - FD

EndUpdate

Calls the PlanSwiŌ EndUpdate procedure Syntax: Procedure: PlanSwiŌ.EndUpdate; Code

InstrucƟon:
a. Create a New Project

b. Add PlanswiŌ Reference Usage

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

631

SetPoint - FD

SetPoint

Sets the digiƟzer point specified by PointIndex to the given X, Y coordinates.
Syntax:
Procedure: IPlanswift.SetPoint(PointIndex: Integer; X, Y: Double);

Code Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

procedure
 . GetSetPoint(sender: TObject);

 ps: IPlanSwift;

 xs,cx,cy: ;
 pgw,pgh,p1x,p1y,p2x,p2y,p3x,p3y,p4x,p4y:

 ps := coPlanswift . Create;
 area := ps . 'Job\Takeoff')
 area := area . , 'SetPointArea' ;
 sect := area . NewSection('SetPoint Area Section' ;
 . . 'PageWidth' ;
 . . ;
 . . GetPropertyResultAsFloat(;
 cx := pgw / 2 ;
 cy := pgh / 2 ;
 p1x := cx -

 * xs;
 p1y := cy -

 * xs;
 NewPoint(p1x,p1y);
 p2x := cx +

 * XS;

 NewPoint(p2x,p2y);

 p3y := cy +

 * xs;
 NewPoint(p3x,p3y);
 p4x := cx -

 * xs;

 NewPoint(sect . GUID,p4x,p4y);
 ;
 p1x := cx -

 * XS;
 SetPoint(sect . guid, 0

632

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

EndFormulaUpdate - FD

EndFormulaUpdate

Signals an end to the formula update operaƟon Syntax:
Procedure: EndFormulaUpdate

Code Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

1

633

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

634

1

CancelTool - FD

CancelTool
Cancels the currently acƟve tool in PlanSwiŌ.
Syntax:

Procedure: IPlanSwiŌ.CancelTool; Code

Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Open PlanswiŌ and select a digiƟzer object
6. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

635

636

1

CloseJob - FD

CloseJob

Closes the currently opened job.
Syntax:

Procedure: IPlanswiŌ.CloseJob; Code Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

637

Item Object Model

638

1

PostChanges - FD

PostChanges

Post changes made since call to NewChangeGroup. (See New Change Group).
Syntax:

Reference: IPlanswiŌ.PostChanges; Code

Reference:
1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

639

Item Object Model

640

1

Using the PlanSwiŌ Object Model
1

NewPoint - FD

NewPoint

Creates a new digiƟzer point at the X, Y coordinates.
Syntax:

Procedure: IPlanswift.NewPoint(X, Y: Double);
Code Reference:

1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

641

Item Object Model

Pascal ScripƟng

642

1

Using the PlanSwiŌ Object Model
1

NewChangeGroup - FD

NewChangeGroup

Starts a new change group. This will start the store of all com events taking place as an undo point unƟl a postchages event is called (See Post Changes).
Syntax:

Procedure: NewChangeGroup(GroupName: String);
Code Reference:

1. Create a New Forms ApplicaƟon
2. Add a PlanswiŌ to the References (PlanswiŌ_Tlb)
3. Add a buƩon to the form
4. Copy code below to the onclick event of the buƩon
5. Compile and run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

643

Item Object Model

Pascal ScripƟng

644

COM Object Model - FuncƟons -- Xfer from Freshdesk

COM Object Model - FuncƟons – Xfer from Freshdesk

645

1

SaveScreenShot - FD

SaveScreenShot

Save a screenshot of the acƟve monitor to a specified filespec.
Syntax:

Function: SaveScreenShot(const FileName: WideString; Prompt: WordBool): WordBool;
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

646

647

1

GetRect - FD

GetRect

Prompts the user to click 2 points on the acƟve plan to define a rectangle, then returns the coordinates in p1 and p2.
Returns 1 if the funcƟon is successful or 0 if the user cancels.
Syntax:
Function: GetRect(Var p1x: double; Var p1y: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

648

649

1

GetLine - FD

GetLine

Prompts the user to click 2 points on the acƟve plan to define a line then returns the coordinates in p1 and p2.
Returns 1 if the funcƟon is successful or 0 if the user cancels.
Syntax:

Function: GetLine(const ToolHint: WideString): ILine;
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

650

651

1

GetPropertyResult - FD

GetPropertyResult

Returns the calculated result from the given property.
Syntax:

Function: GetPropertyResult(ItemPath, PropertyName: String): Variant;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

652

1694

CompareVersion - FD

CompareVersion

Compares 2 different versions of PlanSwiŌ.
Syntax:

Function: CompareVersion; Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Cals

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

654

1

SelecƟonList - FD

SelecƟonList

Returns an ISelecƟonList object of all the selected items.
Syntax:

Function: SelectionList: ISelectionList;
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

1

Pascal ScripƟng

655

Item Object Model

IsUnlocked - FD

IsUnlocked

Checks the product acƟvaƟon status of a plugin. If AllowUnlock is true the user is prompted to AcƟvate if needed.
Syntax:
Function: IsUnlocked(AProduct: String; AMajorVer: Integer; AMinorVer: Integer; AllowUnlock: Boolean): Boolean;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

656

1

1

Pascal ScripƟng

657

Item Object Model

GetJobTotal - FD

GetJobTotal
Retrieves the total number of items of a certain type in the enƟre opened job.
Syntax:

Function: GetJobTotal(const Propertyname: WideString; const ItemType: WideString = ''): Double;
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form

3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

658

1

659

CopyItem - FD

CopyItem

Creates a copy of Item under Parent and returns the ID of the new item.
If IncludeChildren is true, child items will be copied also.
If SkipSecƟons is true, digiƟzed secƟons will be duplicated also.
Syntax:
Function: CopyItem(Item: String; Parent: String; IncludeChildren: boolean; SkipSections: boolean): String;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. copy code to buƩon onclick event

API Calls

Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

660

661

GetProperty - FD

GetProperty
Returns the IPropertyObject specified by ItemPath and PropertyName. Returns Nil if the Item or Property is not found.
Syntax:

Function: GetProperty(ItemPath, PropertyName: String): IPropertyObject;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

662

1

663

GetItem - FD

GetItem
Returns the item given by FullPath. Returns Nil if the object is not found.

Syntax:
Function: GetItem(FullPath: String): IItem;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

664

1

665

DrawTwoWayLayout - FD

DrawTwoWayLayout
FuncƟon used to perform segment layouts (in 2 direcƟons) at a specified span, horizontal run, as well as spacing.
Syntax:

Function: DrawTwoWayLayout(const AItem: WideString; const SpanLine: ILine; const RunLine: ILine;
bIncludeFirst: WordBool; bIncludeLast: WordBool; nSpacing: Double; const AArea: WideString): WordBool;

Arguments:
 AItem: WideString
 Specifies the area secƟon to assign the layout segments to.
 SpanLine: ILine
 DirecƟon span start and endpoint.
 RunLine: ILine
 Horizontal (side to side) run direcƟon of area to populate. Requires a start and endpoint;
 bIncludeFirst: WordBool
 Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
 bIncludeLast: WordBool
 Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
 nSpacing: Double
 Specifies the "run" spacing used when laying out segment objects.
 AArea: WideString (opƟonal parameter)
 Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or guide to the area secƟon. Or empty double-quotes for no
trim/extending required.
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

666

1

Pascal ScripƟng

667

PointCount - FD

PointCount
Returns the number of digiƟzer points for the item.
Syntax:

Function: PointCount: Integer;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

668

1

669

NewItemEx - FD

NewItemEx
Creates a new child item and returns the new item.
If EditProperƟes is true then the property editor will be displayed when the item is created.
Syntax:

Function: NewItemEx(ItemType, AName: String; EditProperties: Boolean): IItem;
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

670

1

671

OpenJob - FD

OpenJob
Opens the job specified by JobPath. Returns True if ssuccessful or false if the job could not be found or opened.

Syntax:
Function: OpenJob(JobPath: String): Boolean;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

672

1

673

GetPropertyFormula - FD

GetPropertyFormula
Returns the formula string for the property specified by ItemPath and PropertyName. Returns an empty string ('') if the item or property is not found.
Syntax:

Function: GetPropertyFormula(ItemPath, PropertyName: String): String;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

674

1

GetTwoWayLayout - FD

GetTwoWayLayout
FuncƟon used to perform segment layouts (in 2 direcƟons) at a specified span, horizontal run, as well as spacing.
Arguments:
 AItem: WideString
 Specifies the area secƟon to assign the layout segments to.
 SpanLine: ILine
 DirecƟon span start and endpoint.
 RunLine: ILine
 Horizontal (side to side) run direcƟon of area to populate. Requires a start and endpoint;
 bIncludeFirst: WordBool
 Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
 bIncludeLast: WordBool
 Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
 nSpacing: Double
 Specifies the "run" spacing used when laying out segment objects.
 AArea: WideString (opƟonal parameter)
 Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or guide to the area secƟon. Or, empty double-quotes for no
trim/extending required.
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

675

Pascal ScripƟng (OLE)

Pascal ScripƟng

676

1

Using the PlanSwiŌ Object Model
1

SetSelected - FD

SetSelected
Set the PlanSwiŌ job "object" to either selected or not selected based on the specified itempath. Syntax:

Function: SetSelected(const ItemPath: WideString; Value: WordBool);
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

677

Item Object Model

Pascal ScripƟng (OLE)

678

1

Using the PlanSwiŌ Object Model
1

SelectItemDialog - FD

SelectItemDialog
Displays the PlanswiŌ Select Item dialog to the user, then returns the selected item.
Syntax:
Function: SelectItemDialog(Header: String; Title: String; RootItemID: String): IItem;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

679

Item Object Model

Pascal ScripƟng (OLE)

680

1

Using the PlanSwiŌ Object Model
1

NewJobEx - FD

NewJobEx
Starts a "new" job in the PlanSwiŌ applicaƟon.
Syntax:

Function: NewJobEx(const JobName: WideString = ''): Wordbool;
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

681

Item Object Model

Pascal ScripƟng (OLE)

682

1

Using the PlanSwiŌ Object Model
1

CurrentVersion - FD

CurrentVersion
Returns the current version of the acƟve PlanSwiŌ applicaƟon.
Syntax:

Function: CurrentVersion; Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

683

Item Object Model

Pascal ScripƟng (OLE)

684

NewBlankPage - FD

NewBlankPage
Creates a blank page in the current job and returns the PAge Item that was created.
Syntax:
Function: NewBlankPage(const AName: WideString; AWidth, AHeight, ADPI: Integer; const AScale: WideString): IItem;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

685

686

NewItem - FD

NewItem
Creates a new child item and returns the new item.
Syntax:

Function: NewItem(ItemType: String; AName: String = ''): IItem;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

Pascal ScripƟng

687

Item Object Model

688

1

Using the PlanSwiŌ Object Model
1

IsBeta - FD

IsBeta
Returns True if Beta user, False if not.
Syntax:

Function: IsBeta: Boolean;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

689

Item Object Model

Pascal ScripƟng (OLE)

690

1

Using the PlanSwiŌ Object Model
1

Root - FD

Root
Returns the Root tree object in PlanSwiŌ.
Syntax:

Function: Root: IItem
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

691

Item Object Model

Pascal ScripƟng (OLE)

692

1

Using the PlanSwiŌ Object Model
1

CurrentViewport - FD

CurrentViewport
Gets the upper-right and lower-leŌ points of the viewport.
Syntax:

Function: CurrentViewport; Code

Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

693

Item Object Model

Pascal ScripƟng (OLE)

694

1

Using the PlanSwiŌ Object Model
1

SelectedPage - FD

SelectedPage
Returns the currently selected page item or nil if no page is selected.

Syntax:
Function: SelectedPage: IItem;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

695

Item Object Model

Pascal ScripƟng (OLE)

696

1

Using the PlanSwiŌ Object Model
1

DeleteItem - FD

DeleteItem
Deletes the item specified by ItemPath from the system.
Syntax:

Function: DeleteItem(ItemPath: String): Boolean;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

697

Item Object Model

Pascal ScripƟng (OLE)

698

1

GetOneWayLayout - FD

GetOneWayLayout
FuncƟon used to perform segment layouts at a specified span, horizontal run, as well as spacing.

Arguments:
AItem: WideString
Specifies the area secƟon to assign the layout segments to.
sSpanHint: WideString
Hint to user on mouse cursor specifying to select the span line.
sRunHint: WideString
Hint to user on mouse cursor specifying to select the run line.
bIncludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
bIncludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.
AArea: WideString (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or guid to the area secƟon. Or, empty double-quotes for no
trim/extending required.

Syntax:
Function:GetOneWayLayout(const AItem: WideString; const sSpanHint: WideString; const sRunHint:

WideString; bIncludeFirst: WordBool; bIncludeLast: WordBool; nSpacing: Double; const AArea:

WideString): WordBool; Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

699

Pascal ScripƟng

700

1

GetPropertyResultAsString - FD

GetPropertyResultAsString
Returns the result value of the given property. Returns Default if the property is not found.
Syntax:

Function: GetPropertyResultAsString(ItemPath, PropertyName: String; Default String = ''): String;
Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

Item Object Model

701

702

1

IsJobOpen - FD

IsJobOpen
Tests whether the PlanSwiŌ applicaƟon actually has a "Job" opened in the editor.

Syntax:
Function: IsJobOpen: Wordbool;

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Call
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

703

704

1

DrawOneWayLayout - FD

DrawOneWayLayout
FuncƟon used to perform segment layouts at a specified span, horizontal run, as well as spacing.
Syntax:

Function: DrawOneWayLayout(const AItem: WideString; const SpanLine: ILine; const RunLine: ILine;
bIncludeFirst: WordBool; bIncludeLast: WordBool; nSpacing: Double; const AArea: WideString): WordBool;

Arguments:
AItem: WideString
Specifies the area secƟon to assign the layout segments to.
SpanLine: ILine
DirecƟon span start and endpoint.
RunLine: ILine
Horizontal (side to side) run direcƟon of area to populate. Requires a start and endpoint;
bIncludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.
bIncludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.
nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.
AArea: WideString (opƟonal parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or guid to the area secƟon. Or, empty double-quotes for no
trim/extending required.

Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

705

Pascal ScripƟng

706

1

DeleteProperty - FD

DeleteProperty
Deletes PropertyName from ItemPath.
Syntax:

Function: DeleteProperty(ItemPath, PropertyName: String): Boolean;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

707

708

1

Using the PlanSwiŌ Object Model
1

EdiƟon - FD

EdiƟon
Returns the current PlanSwiŌ EdiƟon.
Syntax:

Function: Edition;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

709

710

1

Using the PlanSwiŌ Object Model
1

GetPropertyResultAsBoolean - FD

GetPropertyResultAsBoolean
AƩempt to return the result of the given property as a boolean value. If the calculated result can not be converted to a boolean value, the default value is
returned.
Syntax:

Function: GetPropertyResultAsBoolean(ItemPath, PropertyName: String; Default: Boolean = False): Boolean;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

711

Pascal ScripƟng

712

1

Using the PlanSwiŌ Object Model
1

GetPropertyResultAsInteger - FD

GetPropertyResultAsInteger
AƩempts to return the property value as an Integer. If the calculated value can not be converted to an integer, the value given in Default is returned.

Syntax:
Function: GetPropertyResultAsInteger(ItemPath, PropertyName: String; Default: Integer = 0): Integer;

Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

713

Item Object Model

Pascal ScripƟng (OLE)

714

1

Using the PlanSwiŌ Object Model
1

Handle - FD

Handle
Gets the handle of the current PlanSwiŌ applicaƟon.
Syntax:

Function: Handle: HResult; Code Reference:
1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanSwiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

715

Item Object Model

Pascal ScripƟng (OLE)

716

1

Using the PlanSwiŌ Object Model
1

GetZoom - FD

GetZoom
Returns the current "zoom" scale factor for the acƟve page.

Syntax:
Function: Get_Zoom: Double; Code Reference:

1. Create a New Form applicaƟon
2. Add a buƩon to the form
3. Add PlanswiŌ to reference (PlanswiŌ9_tlb in the uses)
4. Copy code to buƩon onclick event

API Calls
Delphi

C#

VB/VBA (OLE)

1

Pascal ScripƟng

717

Item Object Model

Pascal ScripƟng (OLE)

718

1

Using the PlanSwiŌ Object Model
1

GetPropertyResultAsFloat - FD

GetPropertyResultAsFloat
AƩempts to return the given property value as a floaƟng point value. If the calculated property value can not be converted, the value supplied by Default is
returned.
Syntax:

Function: GetPropertyResultAsFloat(ItemPath, PropertyName: String; Default: Double = 0): Double;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

719

Pascal ScripƟng

720

1

Using the PlanSwiŌ Object Model
1

IItems - Procedures -- Freshdesk Xfer

IItems - Procedures – Freshdesk Xfer

Procedures - Delete - FD

Procedures - Delete
Deletes the Item and its children from the system.
Syntax: Procedure: Delete;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1767

722

Procedures - NewPoint - FD

Procedures - NewPoint
Creates a new digiƟzer point at the X, Y coordinates.

Syntax:
Procedure: NewPoint(X, Y: Double);

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1769

Procedures - Delete Property - FD

Procedures - Delete Property
Deletes PropertyName from ItemPath.
Syntax:
Function: DeleteProperty(ItemPath, PropertyName: String): Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

724

1771

Procedures - SetPropertyFormula - FD

Procedures - SetPropertyFormula
Sets the given property formula to value.
Syntax:

Procedure: SetPropertyFormula(PropertyName, value: String);

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1773

Procedures - SetPoint - FD

Procedures - SetPoint
Sets the digiƟzer point specified by PointIndex to the given X, Y coordinates.

Syntax:
Procedure: SetPoint(PointIndex: Integer; X, Y: Double);

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

726

Pascal ScripƟng

727

1

728

IItems - Property -- Xfer from Freshdesk

IItems - Property --Xfer from Freshdesk

729

Property - ItemType - FD

Property - ItemType
Gets or Sets the Type property for the Item.
DeclaraƟon: ItemType: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1778

Property - Name - FD

Property - Name
Gets or Sets the Name property for the item

DeclaraƟon: Name: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

731

1780

IItems - FuncƟons -- Xfer from Freshdesk

IItems - FuncƟons – Xfer from Freshdesk

732

FuncƟons - GUID - FD

FuncƟons - GUID
Returns the GUID for the Item.
Syntax:

FuncƟon: IItem.GUID: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1783

FuncƟon - GetPropertyResultAsString - FD

FuncƟon - GetPropertyResultAsString
Returns the result value of the given property. Returns Default if the property is not found.
Syntax:
Function: IItem.GetPropertyResultAsString(ItemPath, PropertyName: String; Default String = ''): String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1785

734

NewProperty - FD

NewProperty
Creates a new property as specified and returns the new IPropertyObject.

ptNumber = 0 ptColor = 1 ptText = 2 ptMemo = 3 ptCheckBox = 4 ptPath = 5 ptImage = 6
ptLargeImage = 7 ptType = 8 ptScript = 9 ptFile = 10 ptLargeFile = 11 ptFileName = 12
ptConnecƟonString = 13 ptSlider = 14 ptDimension = 15

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

1787

736

Item Object Model
1

Using the PlanSwiŌ Object Model
1

FuncƟons - PropertyItem - FD

FuncƟons - PropertyItem
Returns the IPropertyObject at the given index.
Syntax:

Function: IItem.PropertyItem(Index: Integer);

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1789

FuncƟons - ChildItem - FD

FuncƟons - ChildItem
Returns the child item at the given index posiƟon.
Syntax:

Function: IItem.ChildItem(Index: Integer): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1791

FuncƟons - GetPropertyResult - FD

FuncƟons - GetPropertyResult
Returns the calculated result from the given property.
Syntax:
Function: GetPropertyResult(ItemPath, PropertyName: String): Variant;

738

Item Object Model
1

Using the PlanSwiŌ Object Model
1

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1793

FuncƟons - GetItemByGUID - FD

FuncƟons -GetItemByGUID
Returns the child item specified by aGUID.
Syntax:

Function: IItem.GetItemByGUID(aGUID: String): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1795

740

FuncƟons - ParentItem - FD

FuncƟons - ParentItem
Returns the parent to the Item.
Syntax:

Function:IItem.ParentItem: IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1797

FuncƟons - FullPath - FD

FuncƟons - FullPath
Returns the full path to the Item.
Syntax:

Function: IItem.FullPath: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1799

FuncƟons - GetPropertyResultAsBoolean - FD

FuncƟons - GetPropertyResultAsBoolean
AƩempt to return the result of the given property as a boolean value. If the calculated result cannot be converted to a boolean value, the default value is returned.

Syntax:

1

742

Item Object Model
1

Using the PlanSwiŌ Object Model
1

Function: IItem.GetPropertyResultAsBoolean(ItemPath, PropertyName: String; Default: Boolean = False): Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1801

FuncƟons - Edit - FD

FuncƟons - Edit
Displays the Item in the Editor Dialog.
Syntax:

Function: IItem.Edit(ShowAdvanced: Boolean = True): Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1803

FuncƟons - PropertyCount - FD

FuncƟons - PropertyCount
Returns the number of properƟes for this item.
Syntax:

Function:IItem.PropertyCount: Integer;

API Calls
Delphi

744

Item Object Model
1

Using the PlanSwiŌ Object Model
1

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1805

FuncƟons - NewSecƟon - FD

FuncƟons - NewSecƟon
Creates a new secƟon for the Item.
If the Item is not a draw object this funcƟon returns Nil.
Syntax:

Function: IItem.NewSection(AName: String = ''): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

746

1807

FuncƟons - NewItem - FD

FuncƟons - NewItem
Creates a new child item and returns the new item.
Syntax:

Function: IItem.NewItem(ItemType: String; AName: String = ''): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1809

FuncƟons - NewItemEx - FD

FuncƟons - NewItemEx
Creates a new child item and returns the new item.
If EditProperƟes is true then the property editor will be displayed when the item is created.
Syntax:
Function: IItem.NewItemEx(ItemType, AName: String; EditProperties: Boolean): IItem;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

748

Pascal ScripƟng

1811

FuncƟons - GetPoint - FD

FuncƟons - GetPoint
Returns the IPoint object from the given index posiƟon.

Syntax:Function: IItem.GetPoint(PointIndex: Integer): IPoint
API Calls

750

FuncƟons - GetItem - FD

FuncƟons - GetItem
Returns the item given by FullPath. Returns Nil if the object is not found. Syntax:

Function: IItem.GetItem(FullPath: String): IItem;
API Calls

FuncƟons - CanRecord - FD

751

FuncƟons - CanRecord
Returns true if the item is record-able item.
Syntax:

Function: IItem.CanRecord: Boolean;
API Calls

FuncƟons - DeleteItem - FD

752

FuncƟons - DeleteItem
Deletes the item specified by ItemPath from the system.
Syntax:

Function: IItem.DeleteItem(ItemPath: String): Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

753

1816

FuncƟons - GetProperty - FD

FuncƟons - GetProperty
Returns the IPropertyObject specified by ItemPath and PropertyName. Returns Nil if the Item or Property is not found.
Syntax:

Function: IItem.GetProperty(ItemPath, PropertyName: String): IPropertyObject;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1818

FuncƟons - GetPropertyResultAsInteger - FD

FuncƟons - GetPropertyResultAsInteger
AƩempts to return the property value as an Integer. If the calculated value cannot be converted to an integer, the value given in Default is returned.
Syntax:

Function: IItem.GetPropertyResultAsInteger(ItemPath, PropertyName: String; Default: Integer = 0): Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

755

1820

FuncƟons - PointCount - FD

FuncƟons - PointCount
Returns the number of digiƟzer points for the item.
Syntax:

Function:IItem.PointCount: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1822

FuncƟons - GetPropertyFormula - FD

FuncƟons - GetPropertyFormula
Returns the formula string for the property specified by ItemPath and PropertyName.
Returns an empty string ('') if the item or property is not found.
Syntax:

Function: IItem.GetPropertyFormula(ItemPath, PropertyName: String): String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

757

Pascal ScripƟng

1824

FuncƟons - ChildCount - FD

FuncƟons - ChildCount
Returns the number of child items for the item.
Syntax:

Function: IItem.ChildCount: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1826

FuncƟons - DoRecord - FD

FuncƟons - DoRecord
Begins recording digiƟzer points for the Item. Returns False if no points are recorded.

Syntax:
Function: DoRecord: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

759

Pascal ScripƟng

1828

FuncƟons - GetPropertyResultAsFloat - FD

FuncƟons - GetPropertyResultAsFloat
AƩempts to return the given property value as a floaƟng point value. If the calculated property value cannot be converted, the value supplied by Default is
returned.
Syntax:
Function: IItem.GetPropertyResultAsFloat(ItemPath, PropertyName: String; Default: Double = 0): Double;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1830

IPoint - Property -- Xfer from Freshdesk

IPoint - Property xx -Xfer from Freshdesk

Property - X - FD

Property - X
Gets or Sets the X coordinate for the IPoint.
Syntax:

Property:IItem.IPoint(X: Double; Y: Double);

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

762

1833

Property - Y - FD

Property - Y
Get or Sets the Y coordinate of the IPoint.
Syntax:

Property: IItem.IPoint(X:Double; Y: Double);

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1835

IPropertyObject - Procedures -- Xfer from FreshDesk

IPropertyObject - Procedures -- Xfer from FreshDesk

764

Procedures - EditScript - FD

Procedures - EditScript
Opens the script property in the script editor. If the property is not of type ptScript this method is ignored.

Syntax:
Procedure: IPropertyObject.EditScript;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1837

1838

IPropertyObject - FuncƟons -- Xfer from Freshdesk

IPropertyObject - FuncƟons – Xfer from Freshdesk

1839

FuncƟons - MeetsInputCondiƟon - FD

FuncƟons - MeetsInputCondiƟon
Returns true if the InputCondiƟon has been met.
Syntax:

Function: MeetsInputCondition;

API Calls

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

768

1841

FuncƟons - ExecuteScript - FD

FuncƟons - ExecuteScript
Executes the script property, passing a CRLF delimited list of parameters. Returns the value assigned to Result in the script.

Syntax:
Function: ExecuteScript(ParamList: String = ''): Variant;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1843

FuncƟons - ResultAsString - FD

FuncƟons - ResultAsString
Returns the property result of the property.
Syntax:

Function: ResultAsString: String;

770

Item Object Model
1

Using the PlanSwiŌ Object Model
1

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1845

FuncƟons - System Locked - FD

FuncƟons - System Locked
Returns True if the property is locked by the system.
Syntax:

Function: SystemLocked: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1847

772

FuncƟons - ResultAsInteger - FD

FuncƟons - ResultAsInteger
Returns the property result as an integer if possible. Syntax:

Function: ResultAsInteger: Integer;

API Calls

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1849

FuncƟons - System Hidden - FD

FuncƟons - System Hidden
Returns True if the property is Hidden by the system.
Syntax:

Function: SystemHidden: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1851

FuncƟons - ResultAsVariant - FD

FuncƟons - ResultAsVariant
Returns the property result as a Variant;
Syntax:

Function: ResultAsVariant: Variant;

774

Item Object Model
1

Using the PlanSwiŌ Object Model
1

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1853

FuncƟons - PropertyType - FD

FuncƟons - PropertyType
Returns the Type aƩribute for the property.
Syntax:

Function: PropertyType: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1855

776

FuncƟons - ResultAsFloat - FD

FuncƟons - ResultAsFloat
Returns the Type aƩribute for the property.
Syntax:

Function: PropertyType: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

777

1

778

IPropertyObject - Property -- Xfer from Freshdesk

IPropertyObject - Property – Xfer from Freshdesk

779

Item Object Model
1

Using the PlanSwiŌ Object Model
1

Property - Expression - FD

Property - Expression
Gets or Sets the Expression aƩribute for the property. Syntax:

Property: IPropertyObject.Expression: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

1860

Property - TreeList - FD

Property - TreeList
Gets or Sets the TreeList aƩribute of the property. If ListType = ltTreeList this aƩribute will contain the full path to the treelist item to use for a root item in the list.

Syntax:
Property: TreeList: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

781

Item Object Model
1

Using the PlanSwiŌ Object Model
1

1862

Property - SimpleList - FD

Property - SimpleList
Gets or Sets the SimpleList aƩribute for the property. If ListType = ltSimpleList, the SimpleList aƩribute will be the CRLF delimited string of list items.

Syntax:
Property: SimpleList: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

1864

783

Property - SliderMax - FD

Property - SliderMax
Gets or Sets the SliderMax aƩribute for the property.

Syntax:
Property: SliderMax: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1866

Property - ListShowSearch - FD

Property - ListShowSearch
Gets or Sets the ListShowSearch aƩribute for the property.
Syntax:

Property: ListShowSearch: Boolean;

API Calls

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

785

1868

Property - InheritAcƟon - FD

Property - InheritAcƟon
Gets or sets the InheritAcƟon aƩribute for this property.

iaNormal = 0 iaIgnore = 1
iaInheritFormula = 2
iaInheritResult = 3 iaFlaƩen
= 4
Syntax:
Property: InheritAction: Inheritactions;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1870

Property - SliderMin - FD

Property - SliderMin
Gets or Sets the SliderMin aƩribute for this property.

Syntax:
Property: SliderMin: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1872

Property - InputCondiƟon - FD

Property - InputCondiƟon
Gets or Sets the InputCondiƟon aƩribute for the property.
Syntax:

Property: InputCondition: String;

787

Item Object Model
1

Using the PlanSwiŌ Object Model
1

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1874

Property - InputUnits - FD

Property - InputUnits
Gets or Sets the InputUnits aƩribute for the property.
Syntax:

Property: InputUnits: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1876

789

Property - IsInput - FD

Property - IsInput
Gets or Sets the IsInput aƩribute for the property.

Syntax:
Property: IsInput: Boolean;

API Calls

Property - Units - FD

Property - Units
Gets or Sets the Units aƩribute for the property.

Syntax:
Property: Units: String;

790

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

791

Property - SliderShowTicks - FD

Property - SliderShowTicks
Gets or Sets the SliderShowTicks aƩribute for this property.
Syntax:

Property: SliderShowTicks: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

792

Item Object Model
1

Using the PlanSwiŌ Object Model
1

Property - SliderTickFrequency - FD

Property - SliderTickFrequency
Gets or Sets the SliderTickFrequency aƩribute for this property.
Syntax:

Property: SliderTickFrequency: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1883

Property - DecimalPlaces - FD

Property - DecimalPlaces
Gets or Sets the DecimalPlaces aƩribute for the property.
Syntax:

Property: IPropertyObject.DecimalPlaces: Integer;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1885

Property - ListShowOnlyTypes - FD

Property - ListShowOnlyTypes
Gets or Sets the ListShowOnlyTypes aƩribute for this property.
Syntax:

Property: ListShowOnlyTypes: String;

794

Item Object Model
1

Using the PlanSwiŌ Object Model
1

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1887

Property - InheritPullForm - FD

Property - InheritPullForm
Gets or Sets the InheritPullFrom aƩribute for this property.
Syntax:

Property: InheritPullFrom: String;

API Calls

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1889

796

Property - ListType - FD

Property - ListType
Gets or Sets the ListType aƩribute for the property.

Syntax:
Property: ListType: ListTypes;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1891

Property - ScriptParameters - FD

Property - ScriptParameters
Gets or Sets the ScriptParameters aƩribute for this property. This
string is a CRLF delimited list of Parameter names.
Syntax:

Property: ScriptParameters: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

798

1893

Property - UserHidden - FD

Property - UserHidden
Gets or Sets the UserHidden aƩribute for the property.

Syntax:
Property: UserHidden: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1895

Property - ScriptLanguage - FD

Property - ScriptLanguage
Gets or Sets the ScriptLanguage aƩribute for this property.

slPascal = 0 slBasic = 1
slExecute = 2
Syntax:

Property: ScriptLanguage: ScriptLanguages;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

800

Pascal ScripƟng

1897

1

Property - Group - FD

Property - Group
Gets or Sets the Group aƩribute for the property.

Syntax:
Property: Group: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1899

Property - ListProperƟesToSet - FD

Property - ListProperƟesToSet
Gets or Sets the ListProperƟesToSet aƩribute for this property.
Syntax:

Property: ListPropertiesToSet: String;

802

Item Object Model
1

Using the PlanSwiŌ Object Model
1

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1901

Property - ListColumnAutoWidth - FD

Property - ListColumnAutoWidth
Gets or Sets the ListColumnAutoWidth aƩribute for the property.
Syntax:

Property: ListColumnAutoWidth: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1903

804

Property - List - FD

Property - List
Gets or Sets the List aƩribute for the property. If ListType = ltList then this string will be the full path to the PlanSwiŌ List Object as defined on the List tab on the main
ribbon bar.
Syntax:

Property: List: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1905

Property - Formula - FD

Property - Formula
Gets or Sets the Formula aƩribute for the property.

Syntax:
Property: Formula: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

806

1907

Property - Image Transparent - FD

Property - Image Transparent
Gets or Sets the ImageTransparent aƩribute for this property.
API Call:
Syntax:

ImageTransparent: Boolean;

 API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1909

Property - CompileDenyWrite - FD

Property - CompileDenyWrite
Gets or Sets the CompileDenyWrite aƩribute for this property.
Syntax:

Property: IPropertyObject.CompileDenyWrite: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

1

808

Pascal ScripƟng

1911

Property - UserLocked - FD

Property - UserLocked
Gets or Sets the UserLocked aƩribute of the property.

Syntax:
Property: UserLocked: Boolean

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1913

Property - IsInherited - FD

Property - IsInherited
Gets or Sets the IsInherited aƩribute for this property.
Syntax:

Property: IsInherited: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

810

Pascal ScripƟng

1915

Property - CompileDenyRead - FD

Property - CompileDenyRead
Gets or Sets the CompileDenyRead aƩribute for this property.
Syntax:

Property: IPropertyObject.CompileDenyRead: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

1

Pascal ScripƟng

1917

Property - InputType - FD

Property - InputType
Gets or Sets the InputType aƩribute for the property.

inpStoreLocal = 0 inpStoreParent = 1 Syntax: InputType: InputTypes;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

812

1919

Property - Adjust - FD

Property - Adjust
Gets or Sets the Adjust aƩribute for the property.

Syntax:
Property: Adjust: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1

1921

Property - ListResultColumn - FD

Property - ListResultColumn
Gets or Sets the ListResultColumn aƩribute for the property. If the ListType = ltList, this aƩribute specifies which column to return for the result.

Syntax:
Property: ListResultColumn: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

814

Pascal ScripƟng

1923

Property - CalculateBeforeInherit - FD

Property - CalculateBeforeInherit
Gets or Sets the CalculateBeforeInherit aƩribute for the property.
Syntax:

Property: IPropertyObject.CalculateBeforeInherit: Boolean;

API Calls

VB/VBA (OLE)

Pascal ScripƟng (OLE)

1

Pascal ScripƟng

1925

Property - ListFromProperty - FD

Property - ListFromProperty
Gets or Sets the ListFromProperty aƩribute for the property; Syntax:

Property: ListFromProperty: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

816

817

Property - PlugInToExecuteBuƩonCapƟon - FD

Property - PlugInToExecuteBuƩonCapƟon
Gets or Sets the PlugInToExecuteBuƩonCapƟon aƩribute for this property.
Syntax:

Property: PlugInToExecuteButtonCaption: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

818

1

819

Item Object Model
1

Using the PlanSwiŌ Object Model
1

Property - ListVisibleColumnsInDropdown - FD

Property - ListVisibleColumnsInDropdown

Gets or Sets the ListVisibleColumnsInDropdown aƩribute for this property.
Syntax:

Property: ListVisibleColumnsInDropdown: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng

1930

Property - ScriptType - FD

Property - ScriptType

Gets or Sets the ScriptType aƩribute for this property.
Syntax:

Property: ScriptType: ScriptTypes;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1932

Property - ListShow1Level - FD

Property - ListShow1Level
Gets or Sets the ListShow1Level aƩribute for this property.
Syntax:

821

Item Object Model
1

Using the PlanSwiŌ Object Model
1

Property: ListShow1Level: Boolean;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1934

Property - PluginToExecute - FD

Property - PluginToExecute

Gets or Sets the PlugInToExecute aƩribute for this property.
Syntax:

Property: PlugInToExecute: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1936

Property - ListReturnFullPath - FD

Property - ListReturnFullPath

Gets or Sets the ListReturnFullPath for this property.
Syntax:

Property: ListReturnFullPath: Boolean;

API Calls
Delphi

823

Item Object Model
1

Using the PlanSwiŌ Object Model
1

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1938

Property -- Name - FD

Property -- Name

Gets or Sets the Name property for the item.
Syntax: Property: Name: String;

API Calls
Delphi

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1940

Property - CompileDenyOLE - FD

Property - CompileDenyOLE

Gets or Sets the CompileDenyOLE aƩribute for this property.
Syntax:

Property: IPropertyObject.CompileDenyOLE: Boolean;

API Calls
Delphi

825

Item Object Model
1

Using the PlanSwiŌ Object Model
1

C#

VB/VBA (OLE)

Pascal ScripƟng (OLE)

Pascal ScripƟng
1942

826

ScripƟng - FuncƟons -- Xfer from Freshdesk

ScripƟng - FuncƟons – Xfer from Freshdesk

827

FuncƟons - New Label - FD

FuncƟons - New Label
Creates and returns a new TLabel object and sets the LeŌ, Top and CapƟon properƟes. Do not aƩempt to destroy or free labels created with NewLabel.

DeclaraƟon:
<!--startsyntax-->Function: NewLabel(Left, Top: Integer; Caption: String): TLabel;<!--endsyntax-->

API Calls
Delphi

828

FuncƟons - NewForm - FD

FuncƟons - NewForm

Create a new TForm object and sets the width, height, and capƟon as specified. Do not aƩempt to destroy or free forms created with NewForm.
Syntax:

Function: NewForm(Width, Height: Integer; Caption: String): TForm;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call
Delphi

829

FuncƟons - NewComboBox - FD

FuncƟons - NewComboBox

Creates a new TComboBox and sets the LeŌ, Top and Text ProperƟes as specified. Do not aƩempt to destroy or free a TComboBox created with NewComboBox.
Syntax:

Function: NewComboBox(Left, Top: Integer; Text: String): TComboBox
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

830

Property - NewCheckBox - FD

Property - NewCheckBox

Creates a new TCheckBox and sets the LeŌ, Top, CapƟon and Checked ProperƟes as specified. Do not aƩempt to destroy or free a TCheckBox created with NewCheckBox.
Syntax:

Function: NewCheckBox(Left, Top: Integer; Caption: String; Checked: Boolean): TCheckBox;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Call
Delphi

831

FuncƟons - NewBuƩon - FD

FuncƟons - NewBuƩon

Creates a new TBuƩon and sets the LeŌ, Top, CapƟon and ModalResult ProperƟes as specified. Do not aƩempt to destroy or free a TBuƩon created with NewBuƩon.
Syntax:

Function: NewCheckBox(Left, Top: Integer; Caption: String; Checked: Boolean): TCheckBox;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

832

FuncƟons - NewEdit - FD

`FuncƟons - NewEdit

Creates a new TEdit and sets the LeŌ, Top and Text ProperƟes as specified. Do not aƩempt to destroy or free a TEdit created with NewEdit.
Syntax:

Function: NewEdit(Left, Top: Integer; Text: String): TEdit;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. press run

API Calls
Delphi

833

Property - NewRadioBuƩon - FD

Property - NewRadioBuƩon

Creates a new TRadioBuƩon and sets the LeŌ, Top, CapƟon and Checked ProperƟes as specified. Do not aƩempt to destroy or free a TRadioBuƩon created with
NewRadioBuƩon.
Syntax:

Function: NewRadioButton(Left, Top: Integer; Caption: String; Checked: Boolean): TRadioButton;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

834

Property - NewColorBox - FD

Property - NewColorBox

Creates a new TColorBox and sets the LeŌ, Top and Selected ProperƟes as specified. Do not aƩempt to destroy or free a TColorBox created with NewColorBox.
Syntax:

Function: NewColorBox(Left, Top: Integer; Selected: Integer): TColorBox;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

835

FuncƟons - Math FuncƟons -- Xfer from Freshdesk

FuncƟons - Math FuncƟons – Xfer from Freshdesk

836

Math FuncƟons - RoundUp - FD

Math FuncƟons - RoundUp

Rounds the given Val up to the nearest integer.
DeclaraƟon:

RoundUp(Val: Double): Integer

Source Code
Delphi

837

Math FuncƟons - ParallelLine - FD

Math FuncƟons - ParallelLine

Calculates the points to form a new line parallel line offset Distance from the original, specified by p1 and p2 then returns the new points in variables p3 and p4.
DeclaraƟon:

ParallelLine(p1x, p1y, p2x, p2y, Distance: Double; var p3x: Double; var p3y: Double; var p4x: Double; var p4y: Double);

Source Code
Delphi

838

Math FuncƟons - RoundToNearest - FD

Math FuncƟons - RoundToNearest

Rounds the given value down to the nearest value as defined by precision.
DeclaraƟon:

RoundToNearest(Val, Precision: Double): Double;

Source Code
Delphi

839

Math FuncƟons - DistanceFromLine - FD

Math FuncƟons - DistanceFromLine

Returns the distance of a point given by p3 is from a line, given by p1 and p2.
DeclaraƟon:

DistanceFromLine(p1x, p1y, p2x, p2y, p3x, p3y: Double): Double;

Source Code
Delphi

840

Math FuncƟons - DistanceBetweenPoints - FD

Math FuncƟons - DistanceBetweenPoints

Returns the distance between 2 points specified by p1 and p2 coordinates.
DeclaraƟon:

DistanceBetweenPoints(p1X, p1Y, p2X, p2Y: Double): Double;

Source Code
Delphi

841

Math FuncƟons - GetIntersectPoint - FD

Math FuncƟons - GetIntersectPoint

Calculates at what point Line 1, given by p1 and p2 intersects with Line 2, given by p3 and p4 and returns the result point in p5. Returns 1 (True) if the lines intersect or 0
(False) if the lines are parallel.
DeclaraƟon:

GetIntersectPoint(p1x, p1y, p2x, p2y, p3x, p3y, p4x, p4y: Double; var p5x: Double; var p5y: Double): Integer;

Source Code
Delphi

842

Math FuncƟons - RoundDown - FD

Math FuncƟons - RoundDown

Rounds the given Val down to the nearest integer.
DeclaraƟon:
RoundDown(Val: Double): Integer

Source Code
Delphi

843

Math FuncƟons - Pi - FD

Math FuncƟons - Pi
Returns the numeric value for Pi (3.1415926535897932384626433832795).

Syntax: Pi: Double;

Source Code
Delphi

844

Math FuncƟons - DecToEnglish - FD

Math FuncƟons - DecToEnglish

Converts a given dimension into its string representaƟon.
Syntax:

Function: DecToEnglish(Feet: Double): String;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. press run

API Calls
Delphi

845

Math FuncƟons - ExtendLine - FD

Math FuncƟons - ExtendLine

Calculates the points to extend a line given by p1 and p2 a given Distance then returns the new points in variables p3 and p4.
DeclaraƟon:

ExtendLine(p1x, p1y, p2x, p2y, Distance: Double; var p3x: Double; var p3y: Double; var p4x: Double; var p4y: Double);

Source Code
Delphi

846

Math FuncƟons - AngleBetweenPointsUnScaled - FD

Math FuncƟons - AngleBetweenPointsUnScaled

Returns the angle between 2 points given by p1 and p2 coordinates.
DeclaraƟon:

AngleBetweenPointsUnScaled(p1X, p1Y, p2X, p2Y: Double): Double;

Source Code

Delphi

847

Math FuncƟon - Min - FD

Math FuncƟon - Min

Returns the smaller of the values passed. DeclaraƟon:
Min(Value1, Value2: Double): Double;

Source Code
Delphi

848

Math FuncƟon - Max - FD

Math FuncƟon - Max

Returns the larger of the values passed.
DeclaraƟon:

Max(Value1, Value2: Double): Double;

Source Code
Delphi

849

Math FuncƟons - PointOnAngle - FD

Math FuncƟons - PointOnAngle

Calculates a new point given by p1 a given Distance and Angle then returns the result point in p2.
DeclaraƟon:

PointOnAngle(p1x, p1y, Angle, Distance: Double; var p2x: double; var p2y: double);

Source Code
Delphi

850

Math FuncƟons - Procedures -- Xfer from Freshdesk

Math FuncƟons - Procedures – Xfer from Freshdesk

851

Procedures - TrimToArea - FD

Procedures - TrimToArea

Trims the ends of a Segment object to the boundaries of the given Area object.
DeclaraƟon:

TrimToArea(AreaPath, SegmentPath: String);

Source Code
Delphi

852

Update Method - FuncƟons -- Xfer from Freshdesk

Update Method - FuncƟons -- Xfer from Freshdesk

853

Update Method - CurrentVersion - FD

Update Method - CurrentVersion

Returns the current versions of PlanswiŌ.
DeclaraƟon: CurrentVersion: String;

Source Code

Delphi

854

Update Methods - Procedures -- Xfer from Freshdesk

Update Methods - Procedures -- Xfer from Freshdesk

855

Update Methods - EndUpdate - FD

Update Methods - EndUpdate

Ends the temporary suspension of program updates.
DeclaraƟon: EndUpdate;

Source Code
Delphi

856

Update Methods - BeginFormulaUpdate - FD

Update Methods - BeginFormulaUpdate

Temporarily suspends automaƟc property calculaƟons.
DeclaraƟon: BeginFormulaUpdate;

Source Code
Delphi

857

Update Methods - Begin Update - FD

Update Methods - BeginUpdate

Temporarily suspends program updates.
DeclaraƟon: BeginUpdate;

Source Code
Delphi

858

Update Methods - RefreshImage - FD

Update Methods - RefreshImage

Refreshes the current screen image. Same as ImageRefresh.
DeclaraƟon: RefreshImage

Source Code
Delphi

859

Update Methods - NewChangeGroup - FD

Update Methods - NewChangeGroup

Creates a new program change group.
DeclaraƟon:

NewChangeGroup(AName: String);

Source Code
Delphi

860

Update Methods - PostChanges - FD

Update Methods - PostChanges

Post all opened change groups to the program.
DeclaraƟon: PostChanges;

Source Code
Delphi

861

Update Methods - EndFormulaUpdate - FD

Update Methods - EndFormulaUpdate

Ends the temporary suspension of automaƟc property calculaƟons.
DeclaraƟon: EndFormulaUpdate;

Source Code
Delphi

862

Update Methods- ImageRefresh - FD

Update Methods - ImageRefresh
Refreshes the current screen image. Same as RefreshImage.
DeclaraƟon:

ImageRefresh;

Source Code
Delphi

863

Windows Controls - FuncƟons -- Xfer from Freshdesk

Windows Controls - FuncƟons -- Xfer from Freshdesk

864

Windows Controls - FindWindow - FD

Windows Controls - FindWindow
Finds a window based on the given criteria. Returns the window handle if successful or 0 if the window is not found.
Contains, Excludes and Exact are opƟonal.
DeclaraƟon:

FindWindow(StartsWith, Contains, Excludes: String; Exact: Boolean): Integer;

Source Code
Delphi

865

Windows Controls - FocusWindow - FD

Windows Controls - FocusWindow

Gives focus to the window given by Hwnd.
DeclaraƟon:

FocusWindow(Hwnd: Integer);

Source Code
Delphi

866

Windows Controls - Procedures -- Xfer from Freshdesk

Windows Controls - Procedures -- Xfer from Freshdesk

867

Windows Controls - Send Key - FD

Windows Controls - Send Key

Sends the given KeyCode to the acƟve PlanSwiŌ control.
DeclaraƟon: SendKey(AKey: Integer);

Source Code
Delphi

868

Windows Controls - SendKeys - FD

Windows Controls - SendKeys

Sends a string of keystrokes to the acƟve PlanSwiŌ control. Same as TypeKeys
DeclaraƟon:

SendKeys(AKeys: String);

Source Code
Delphi

869

User Input - FuncƟons -- Xfer from Freshdesk

User Input - FuncƟons -- Xfer from Freshdesk

870

User Input - ResultPointV2 - FD

User Input - ResultPointV2

Returns the y2 coordinate from the last Getline or GetRect.
DeclaraƟon: ResultPointY2: Double;

Source Code
Delphi

871

User Input - GetPoint - FD

User Input - GetPoint

GetPoint prompts the user to select a point by clicking on the acƟve plan, the returns the point coordinates in X and Y .
If the user clicks a valid point, the result is 1 (True), otherwise the result is 0 (False).
DeclaraƟon:

GetPoint(Var X: Double; Var Y: Double; Hint: String): Integer;

Source Code
Delphi

872

User Input - ResultPointX2 - FD

User Input - ResultPointX2

Returns the x2 coordinate from the last Getline or GetRect.
DeclaraƟon: ResultPointX2: Double;

Source Code
Delphi

873

User Input - GetLine - FD

User Input - GetLine

Prompts the user to click 2 points on the acƟve plan to define a line then returns the coordinates in p1 and p2.
Returns 1 if the funcƟon is successful or 0 if the user cancels.
DeclaraƟon:

GetLine(Var p1x: double; Var p1y: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

Source Code
Delphi

874

User Input - ResultPointX - FD

User Input - ResultPointX

Returns the x coordinate from the last Getpoint, Getline or GetRect.
DeclaraƟon: ResultPointX: Double;

Source Code
Delphi

875

User Input - GetRect - FD

User Input - GetRect

Prompts the user to click 2 points on the acƟve plan to define a rectangle then returns the coordinates in p1 and p2.
Returns 1 if the funcƟon is successful or 0 if the user cancels.
DeclaraƟon:

GetRect(Var p1x: double; Var p1y: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

API Call
Delphi

876

User Input - ResultPointY - FD

User Input - ResultPointY

Returns the y coordinate from the last Getpoint, Getline or GetRect.
DeclaraƟon: ResultPointY: Double;

Source Code
Delphi

877

Items - FuncƟons -- Xfer from Freshdesk

Items - FuncƟons -- Xfer from Freshdesk

878

Items - SelectedPage - FD

Items - SelectedPage

Returns the full path to the currently selected page.
If no page is selected and an empty string is returned.
DeclaraƟon: SelectedPage: String;

Source Code
Delphi

879

Items - IsType - FD

Items - IsType

Returns 1 (True) if the item is of type given, otherwise returns 0 (False).
DeclaraƟon:

IsType(ItemPath, Type: String): Integer;

Source Code
Delphi

880

Items - ChildItem - FD

Items - ChildItem

Returns the full path of the child item at posiƟon Index in the list. If the child item does not exist an empty string is returned.
DeclaraƟon:

ChildItem(ItemPath: String; Index: Integer): String;

Source Code
Delphi

881

Items - ParentItem - FD

Items - ParentItem

Returns the parent item for the given item.
If the funcƟon fails an empty string is returned.
DeclaraƟon:
ParentItem(ItemPath: String): String;

Source Code
Delphi

882

Items - StartRecording - FD

Items - StartRecording

ItemPath is opƟonal. If provided, ItemPath must be a digiƟzer object.
If is omiƩed, PlanSwiŌ will aƩempt to record the currently selected item, if any.
Returns 1 (True) if successful, otherwise returns 0 (False).
DeclaraƟon:

StartRecording(ItemPath: String): Integer;

Source Code
Delphi

883

Items - MoveItemTo - FD

Items - MoveItemTo

Returns True if the given item is successfully moved to a new parent item.
MoveAcƟon is opƟonal, can be Above, Below or IntoTop otherwise will default to IntoBoƩom.
DeclaraƟon:

MoveItemTo(ItemPath, NewParent, MoveAcƟon: String): Boolean;

Source Code
Delphi

884

Items - SelectedItem - FD

Items - SelectedItem

Returns the full path to the currently selected item If no item is selected an empty string is returned.
DeclaraƟon: SelectedItem: String;

Source Code
Delphi

885

Items - NewItem - FD

Items - NewItem
Creates a new child item for the given item.
ItemType is opƟonal and allows you to set the type of item to create.
Name is opƟonal, sets the name for the new child item.
DeclaraƟon:

NewItem(ItemPath, ItemType, Name: String): String

Source Code
Delphi

886

Items - ChildCount - FD

Items - ChildCount
Returns the number of child items for the item.
DeclaraƟon:

ChildCount(ItemPath: String): Integer;

Source Code
Delphi

887

Items - DeleteItem - FD

Items - DeleteItem

Deletes the given item from the system. Returns 1 (True) is successful, otherwise 0 (False).' DeclaraƟon:
DeleteItem(ItemPath: String): Integer;

Source Code
Delphi

888

Items - Procedures -- Xfer from Freshdesk

Items - Procedures -- Xfer from Freshdesk

889

Items - ShowLabel - FD

Items - ShowLabel
Sets the visibility of an items label.
DeclaraƟon:

 ShowLabel(ItemPath: String; Visible: Boolean);

Source Code
Delphi

890

SecƟons - FuncƟons -- Xfer from Freshdesk

SecƟons - FuncƟons -- Xfer from Freshdesk

891

SecƟons - PointCount - FD

SecƟons - PointCount

Returns the number of points recorded for the secƟon.
DeclaraƟon:

PointCount(ItemPath: String): Integer;

Source Code
Delphi

892

SecƟons - NewSecƟon - FD

SecƟons - NewSecƟon

Adds a new secƟon to a digiƟzed type item and returns the full path to the new secƟon.
If ParentPath does not exist, or is not a digitzer item, this funcƟon fails and returns an empty string. SecƟonName is opƟonal.
DeclaraƟon:

NewSecƟon(ParentPath, SecƟonName: String): String;

Source Code
Delphi

893

SecƟons - PointX - FD

SecƟons - PointX

Returns the X coordinate of the point given by Index
If this funcƟon fails the return value is -1.
DeclaraƟon:

 PointX(ItemPath: String; Index: Integer): Double;

Source Code
Delphi

894

ScripƟng - PointY - FD

ScripƟng - PointY

Returns the Y coordinate of the point given by Index If this funcƟon fails the return value is -1.
DeclaraƟon:

PointY(ItemPath: String; Index: Integer): Double;

Source Code
Delphi

895

SecƟons - Procedures -- Xfer from Freshdesk

SecƟons - FuncƟons -- Xfer from Freshdesk

896

SecƟons -SetPoint - FD

SecƟons - SetPoint

Sets the X, Y coordinates of the given point.
DeclaraƟon:

SetPoint(ItemPath: String; Index: Integer; X, Y: Double);

Source Code
Delphi

897

SecƟons - AddPoint - FD

SecƟons - AddPoint

Adds a new point given by X, Y to the item.
ItemPath must specify an exisƟng digiƟzer object or the procedure fails.
DeclaraƟon:

AddPoint(ItemPath: String; X, Y: Double);

Source Code
Delphi

898

SecƟons - DeletePoint - FD

SecƟons - DeletePoint

Deletes the point at posiƟon Index.
DeclaraƟon:

DeletePoint(ItemPath: String; Index: Integer);

Source Code
Delphi

899

ProperƟes - FuncƟons -- Xfer from Freshdesk

ProperƟes - FuncƟons -- Xfer from Freshdesk

900

ProperƟes - GetPropertyResult - FD

ProperƟes - GetPropertyResult

Returns the calculated result of the given property as a variant.
DeclaraƟon:

GetPropertyResult(ItemPath, PropertyName: String): Variant;

Source Code
Delphi

901

ProperƟes - GetResultAsInteger - FD

ProperƟes - GetResultAsInteger

Returns the calculated result of the given property.
Default is an opƟonal return value for the funcƟon in case of failure. If Default is not provided it defaults to 0
DeclaraƟon:

GetResultAsInteger(ItemPath, PropertyName: String; Default: Integer): Integer;

Source Code
Delphi

902

ProperƟes - GetPropertyAƩributeList - FD

ProperƟes - GetPropertyAƩributeList

Returns a Name=Value list of the given property aƩributes.
DeclaraƟon:

GetPropertyAƩributeList(Itempath, PropertyName: String): String;

Source Code
Delphi

903

ProperƟes - GetPropertyFormula - FD

ProperƟes - GetPropertyFormula

Returns the formula for the given property.
DeclaraƟon:

GetPropertyFormula(ItemPath, PropertyName: String): String;

Source Code
Delphi

904

ProperƟes - GetPropertyCount - FD

ProperƟes - GetPropertyCount

Returns the number of properƟes for the given item.
DeclaraƟon:

GetPropertyCount(ItemPath: String): Integer;

Source Code
Delphi

905

ProperƟes - GetPropertyName - FD

ProperƟes - GetPropertyName

Returns the name of the nth property in the propertylist.
DeclaraƟon:

GetPropertyName(ItemPath: String; Index: Integer): String;

Source Code
Delphi

906

ProperƟes - GetResultAsFloat - FD

ProperƟes - GetResultAsFloat

Returns the calculated result of the given property.
Default is an opƟonal return value for the funcƟon in case of failure. If Default is not provided it defaults to 0.
DeclaraƟon:

GetResultAsBoolean(ItemPath, PropertyName: String; Default: Double): Double;

Source Code
Delphi

907

ProperƟes - GetResultAsBoolean - FD

ProperƟes - GetResultAsBoolean

Returns the calculated result of the given property.
Default is an opƟonal return value for the funcƟon in case of failure. If Default is not provided it defaults to FALSE.
DeclaraƟon:

GetResultAsBoolean(ItemPath, PropertyName: String; Default: Boolean): Boolean;

Source Code
Delphi

908

ProperƟes - GetResultAsString - FD

ProperƟes - GetResultAsString
Returns the calculated result of the given property.
Default is an opƟonal return value for the funcƟon in case of failure. If Default is not provided it defaults to an empty string.
DeclaraƟon:

GetResultAsString(ItemPath, PropertyName: String; Default: String): String;
Source Code
Delphi

909

ProperƟes - GetPropertyAƩribute - FD

ProperƟes - GetPropertyAƩribute
Returns the value of the given Item Property AƩribute
DeclaraƟon:

GetPropertyAƩribute(Itempath, PropertyName, AƩributeName: String): String;

Source Code
Delphi

910

ProperƟes - Procedures -- Xfer from Freshdesk

ProperƟes - Procedures -- Xfer from Freshdesk

911

ProperƟes - SetPropertyAƩribute - FD

ProperƟes - SetPropertyAƩribute

AƩempts to set the Item Property AƩribute to the given Value.
DeclaraƟon:

SetPropertyAƩribute(ItemPath, PropertyName, AƩributeName, Value: String);

Source Code
Delphi

912

ProperƟes - Set PropertyFormula - FD

ProperƟes - SetPropertyFormula

Sets the given property to the value specified if possible.

DeclaraƟon
SetPropertyFormula(ItemPath, PropertyName: String; Value: Variant; Type: String);

913

ProperƟes - Delete Property - FD

ProperƟes - Delete Property

Deletes a property from the item.
DeclaraƟon:

DeleteProperty(ItemPath, PropertyName: String);

Source Code
Delphi

914

Misc - FuncƟons -- Xfer from Freshdesk

Misc - FuncƟons -- Xfer from Freshdesk

915

Misc - ExecuteScript - FD

Misc - ExecuteScript

Executes the script property PropertyPath and returns the result as a variant.
Paramx is the opƟonal string parameters to pass to the script. Failure to pass required parameters could lead to errors or failure. All scripts should check for invalid
parameters and exit gracefully.
DeclaraƟon:

ExecuteScript(PropertyPath, param1, param2, param3, param4, param5, param6, param7, param8, param9: String;): Variant;

Source Code
Delphi

916

Misc - Current User - FD

Misc - Current User

Returns the username of the current user.
DeclaraƟon: CurrentUser: String

Source Code
Delphi

917

Dialogs - FuncƟon -- Xfer from Freshdesk

Dialogs - FuncƟon -- Xfer from Freshdesk

918

Dialogs - EditItem - FD

Dialogs - EditItem

Loads the given item into the Item Editor then displays to the user for ediƟng.
If ItemPath does not exist or if the user cancels the dialog the funcƟon fails and returns False.
DeclaraƟon:

EditItem(ItemPath: String): Boolean;

Source Code
Delphi

919

Dialogs - ScriptMessageDialog - FD

Dialogs - ScriptMessageDialog

DeclaraƟon: ScriptMessageDialog

Source Code
Delphi

920

Dialogs - Message Dialog - FD

Dialogs - Message Dialog DeclaraƟon:
 MessageDialog();

921

Dialogs - SelectItemDialog - FD

Dialogs - SelectItemDialog

Displays the PlanSwiŌ ItemDialog with specified parameters that were passed as arguments.

DeclaraƟon:
SelectItemDialog(AHeader: String = ''; ACapƟon: String = ''; RootItem: String = '');

Source Code
Delphi

922

Dialogs - Procedures -- Xfer from Freshdesk

Dialogs - Procedures -- Xfer from Freshdesk

923

Dialogs - EditScriptProperty - FD

Dialogs - EditScriptProperty

Loads the specified script property into the script editor and displays to the user for ediƟng.

DeclaraƟon:
EditScriptProperty(ItemPath, PropertyName: String);

Source Code
Delphi

924

Dialogs - Objects -- Xfer from Freshdesk

Dialogs - Objects -- Xfer from Freshdesk

925

Dialogs - CustomDialogs - FD

Dialogs - CustomDialogs

One of the great new features in PlanSwiŌ9 is the ability to create reusable dialogs using stored items and properƟes, simply design an item with only the desired
properƟes set as Input.

Source Code:
Delphi

926

PlanSwiŌ SDK -- Xfer from Freshdesk

PlanSwiŌ SDK -- Xfer from Freshdesk

927

PlanSwiŌ9 SDK - FD

PlanSwiŌ9 SDK

DescripƟon:
PlanSwiŌ9 SDK Version 1.2 is now available. This SDK contains the necessary source code for Delphi, Excel, C#, VBA, and HTA. There are several examples for you to use.
What's in the package:

The zip file contains 3 folders:

Delphi Source Code:

Sample HTA

2045

Development Archives - OLE AutomaƟon Manual
 What is COM?

What is OLE AutomaƟon?

929

What is COM?
Component Object Model (COM) is an interface standard for soŌware componentry introduced by MicrosoŌ in 1993. It is used to enable interprocess communicaƟon and
dynamic object creaƟon in any programming language that supports the technology. The term COM is oŌen used in the soŌware development industry as an umbrella term
that encompasses the OLE, OLE AutomaƟon, and AcƟveX, COM+DCOM technologies.
The essence of COM is a language-neutral way of implemenƟng objects that can be used in environments different from the one they were created in, even across machine
boundaries. For well-authored components, COM allows reuse of objects with no knowledge of their internal implementaƟon, as it forces component implementers to provide
well-defined interfaces that are separate from the implementaƟon. The different allocaƟon semanƟcs of languages are accommodated by making objects responsible for their
own creaƟon and destrucƟon through reference-counƟng. CasƟng between different interfaces of an object is achieved through the QueryInterface() funcƟon. The preferred
method of inheritance within COM is the creaƟon of sub-objects to which method calls are delegated.

Although the interface standard has been implemented on several plaƞorms, COM is primarily used with MicrosoŌ Windows. COM is expected to be replaced at least to some
extent by the MicrosoŌ .NET framework, and support for Web Services through the Windows CommunicaƟon FoundaƟon (WCF). However, COM objects can sƟll be used with
all .NET languages without problems. Networked DCOM uses binary proprietary formats, while WCF encourages the use of XML-based SOAP messaging. COM is very similar to
other component soŌware interface standards, such as CORBA and Java Beans, although each has its own strengths and weaknesses. It is likely that the characterisƟcs of COM
make it most suitable for the development and deployment of desktop applicaƟons, for which it was originally designed.

930

What is OLE AutomaƟon?
In MicrosoŌ Windows applicaƟons programming, OLE AutomaƟon (later renamed by MicrosoŌ to just AutomaƟon, although the old term remained in widespread use), is an
inter-process communicaƟon mechanism based on Component Object Model (COM) that is intended for use by ScripƟng Languages -originally Visual Basic, but now many
languages that run on Windows. It provides an infrastructure whereby applicaƟons called automaƟon controllers can access and manipulate (i.e. set properƟes of or call
methods on) shared automaƟon objects that are exported by other applicaƟons. It supersedes Dynamic Data Exchange (DDE), an older mechanism for applicaƟons to control
one another. As with DDE, in OLE AutomaƟon the automaƟon controller is the "client" and the applicaƟon exporƟng the automaƟon objects is the "server".

931

Enabling the AllowManualAcƟvaƟon Property

The “Enable Manual AcƟvaƟons” checkbox in the license manager has been hidden so that it is no longer available to the user. Manual AcƟvaƟon may sƟll

be enabled through U-T-H Seƫngs.

To enable manual acƟvaƟon:

1. Enable U-T-H (Under the Hood)
2. Select U-T-H from the main menu, right click on “Seƫngs” and select “ProperƟes”
3. In the ProperƟes Form, click the “Advanced” buƩon.
4. In the “Other” secƟon, near the boƩom (before “Sales Tax 1” and “Sales Tax 2”), look for a property named “AllowManualAcƟvaƟon“.

5. If this property exists, check the checkbox to set its value to “True”.
6. If this property does not exist, create a new property called “AllowManualAcƟvaƟon“, with a Type of “Checkbox” and a Group of “Other”.

Save the new property and then check the checkbox to set its value to “True”.

7. Manual acƟvaƟon should now be enabled.

Contact Us

Related arƟcles

 Contact Us

932

DraŌ/Needs Update
(Missing Images) How To: Add a Bookmark
(Needs Images + Updated Link) Online Forum
Area Pro (Check Links)
Concrete for Budget Takeoff (check links)
DigiƟzing or Moving Beyond the Current View (Zoom) (Needs Images)
Drag and Drop Folders from Templates to EsƟmaƟng (Needs Images/Video)
Export to MS Project for PlanSwiŌ version 9 (Check Links)
How To: Add AƩachments to a Project. (Needs Images)
How To: Create Advanced Parts Using Expressions (Needs Updates)
How To: Use the Fill Down and Fill With (Needs Images)
Import a Job from a PlanSwiŌ E-Mail
MulƟline Tool (Needs Image)
PainƟng (Check Links)
Plumbing Standard (Check Links)
Select and Set (Check Links)
Shape Stamper (Check Links)
SubtracƟng a SecƟon (Needs images)

Switch Pages from Takeoff Summary (Needs Images)

933

(Missing Images) How To: Add a Bookmark
Bookmarks provide an easy way to quickly move to pages and even specific areas of pages. By default, PlanSwiŌ docks the Bookmarks to the Pages window. The Pages window
is at the top, the Bookmarks window below that.

If you wish, you can undock the Bookmarks window by right-clicking the Pages, Booksmarks window header, clicking on Bookmarks, then clicking on Undock.

The undocked window can now be dragged to wherever it is convenient for you.

934

To add a Bookmark, first select the page from the Pages window that you would like to bookmark. If you want to bookmark a parƟcular area of the page, pan to that area
(right-click and drag). If you want it zoomed in on, use the mouse wheel to zoom to the level that you would like. Bookmarks automaƟcally store both the pan and zoom
seƫngs in place at the Ɵme you create the bookmark. Bookmarks may also be organized and stored in folders. To set a bookmark, click on the green plus (+) in the Bookmarks
window, enter the new name for the bookmark in the Bookmark window that opens, and click on OK.

935

The new bookmark appears in the Bookmark window.

 If you want to move the new bookmark to a higher level, click on the bookmark, then click on the up/down arrows buƩon. This opens the Adjust Bookmarks Order window,
where you can click on any bookmark, then click on the arrow keys to move the bookmark. The two large up and down arrows on the right move the bookmark all the way to
the top or boƩom of the list. The two small up and down arrows on the leŌ move the bookmark up or down one line for each click.

The leŌ and right arrows allow you to move the bookmark into or out of any folder you can create using the folder buƩon in the Bookmarks window.

936

Once the bookmark is added, simply click on it to immediately view the page (and the locaƟon on the page) saved with the bookmark.

Enter a name for the Bookmark, check the box for Create Snapshot if you want to capture a small image of the bookmarked area, then click Ok. To view the snapshot of the
Bookmark, click in the camera icon to the right of the bookmark name.

Now there is a created Bookmark in the Bookmark window. AnyƟme a page is open, clicking the desired Bookmark in the list will automaƟcally change the page to a view of
that specific Bookmark.

(Needs Images + Updated Link) Online Forum

Visit the PlanSwiŌ Forum for help OR Online Forum BuƩon 2

The PlanSwiŌ Online Forum is your place to connect with other users of PlanSwiŌ to share and learn new ideas. You can also connect with PlanSwiŌ experts inside the forum
to gain great informaƟon.

1. To connect with the forum from inside PlanSwiŌ, you need to have an internet connecƟon, then select the "PlanSwiŌ Online Forum" buƩon.

Join the PlanSwiŌ forum to share ideas and get help OR Online Forum Selected 2

2. You will need to register to become a forum member to post quesƟons and comments. You can register by clicking here.

937

Export to MS Project for PlanSwiŌ version 9 (Check Links)

1.1. PlanSwiŌ default names of properƟes column and
user-defined names
DescripƟon: These fields are made for mulƟ-language support and User Defined Export of Costs and Prices (where Price Each or Cost Each = MS Project Resource Standard Rate
and Price Total or Cost Total = MS Project Task or Assignment Costs). In the main case, they do not need ediƟon.

1.2. Parts exporƟng to Resources opƟons
DescripƟon: Here are five combos. They manage the way that each different Part Type is exported to MS Project. Available opƟons are Material, Work and Cost (2007 and up).

1.3. The Logic of Export is (for now fixed L):
1.3.1. If Item Type is Folder, DigiƟzer or Assembly it will create Tasks;
1.3.2. If Item Type is Part, Material, Labor, Equipment, Sub or Other it will check Parts exporƟng opƟons and create Resources and add Assignments(There is a checkfor

resource uniqueness â€“ key is Part Type and Part Name)

1.4. The Result is a Copy of EsƟmaƟng but in MS Project
BUT ONLY IF the logic of used methodology in esƟmaƟng is equal to Logic of Export. In other words: in the esƟmaƟng must not be used Items with Type â€˜ITEMâ€™ and
Parts are Childs of â€˜Tasksâ€™ and do not have their own SubChilds.
- See more at: hƩp://www.planswiŌ.com/phpkb/arƟcle/export-to-ms-project-for-planswiŌ-version-9-2227.html#sthash.GGfLLnjj.dpuf
How To: Create Advanced Parts Using Expressions (Needs Updates)
In this arƟcle, we will cover how to create advanced parts using expressions.

An expression in a programming language is a combinaƟon of values, variables, operators, and funcƟons that are interpreted (evaluated) according to the parƟcular rules of
precedence and of associaƟon for a parƟcular programming language, which computes and then produces (returns, in a stateful environment) another value.

The expression is said to evaluate to that value. As in mathemaƟcs, the expression is (or can be said to have) its evaluated value; the expression is a representaƟon of that
value.

Requirements:
Version 8.5
Difficulty - Moderate

This part will be a drywall item where you can select the sheet size, sheet thickness, and type of drywall. Based on the selecƟons you make, you can determine a unit price to
apply to the sheet count that is generated. This will allow you to create one complex part rather than several individual parts.

1. Click on the "New Part" buƩon located at the top of the esƟmaƟng window to add a new item.
2. Give the part a name. In this example, we will use "Drywall Template".

Tip: At this point, it is good pracƟce to think about all of the variables you will need for your part. Map it out with paper and pencil first, this will help you to think it through
before you start wriƟng the necessary code.

1. In my example, I have determined that I need to create the following properƟes (shown in blue):

938

Sheet Width and Sheet Height (to specify the sheet size I want). Check the box to set it as an input.
Layers for Side A and Layers for Side B (this will allow me the flexibility to specify different layers for each side i.e. Side A specifies - 1 layer and side B - 2 layers). Check
the box to set it as an input.
Sheet Thickness (1/4", 1/2", 5/8", etc.; set the type to Text and check the box for input).
Type (Std. Gyp, Type-X, Moisture Resistant etc.) Set the type to Text and check the box for input.
SqFt Calc (for calculaƟng the gross Sq Ft of board)
1/4" Std Gyp, 1/2" Std Gyp, 5/8" Std Gyp, 1/4" Type-x, 1/2" Type-x, 5/8" Type-x, 1/4" MR, 1/2" MR, and 5/8"MR (for entering the price per square foot). 1/4" Price,
1/2" Price, and 5/8" Price (this is where we will write the expressions). AŌer entering the name, change the type to Expression (Pascal).
We will also take advantage of the List feature as we create the new properƟes. For sheet Thickness, create a list of 1/4", 1/2", 5/8" and check the box to only select
from this list. For Type, create a list of Std. Gyp, Type-X, Moisture Resistant and check the box to only select from this list. You can change the names or add more to suit
your own needs; just remember to add them in to the expressions as well.

Tip: When creaƟng new properƟes, I like to uƟlize the Group feature. You will noƟce I have created a group for the properƟes that I have set to be input items. This will not affect
the calculaƟons in any way but just keeps things organized.

1. Start with the basic calculaƟons first.
Let's do the Gross Square footage first. You can see we have used ([Area]* ([Layers Side A] + [Layers Side B])). This is giving you the correct square footage to start the
calculaƟon.
Now we can build the QTY calculaƟon - RoundUp([Gross SqFT] / ([Sheet Width * Sheet Height)). This will take the gross square footage we just calculated above and
divide the footage by the square footage of the sheet size. This will give us the sheet count required and round to the nearest full sheet.
The Price Each calculaƟon is where we will use the nested property - [[Size] price] this takes the value from the property "Size" and appends it to the text " price" thus
creaƟng the property of, for example, "1/4" Price". Note: Be mindful of any spaces you create in property names as these are recognized as characters. In this example,
there is a space before "price".
AŌer [[Size] price], which is going to be the price per square foot, add *([Sheet Width]*[Sheet Height]). This will now calculate the price per square foot and mulƟply by
the square footage of the sheet size. This will give you the price per sheet.
The Price Total is simply leŌ as the QTY mulƟplied by the Price of each sheet.

2. Now for the Expressions...

Open the Edit Formula window by clicking on the ellipses buƩon () in the value field. This will open the Edit Formula window. This window allows a greater view of
the formula you are creaƟng. This is the area where everything is case sensiƟve.
Let's start with the IF statement - If('[Type]' = 'Std. Gyp.') then Result := [1/4" std gyp] else
This is saying if the 'Type' property is exactly equal to the value 'Std. Gyp.' then use the result that is in the '1/4" std gyp' property. If it isn't, then read the next line. This
repeats unƟl the code reads Else Result := 0 thus if none of the criteria match, use 0.

3. You can copy this formula and paste it into the other properƟes for the other sizes; just edit the [1/4"...] to match the appropriate size.
4. We're almost ready to try our new part! Now just populate the price per square foot for all of the different types you have created.

5. Here is one more expression you can use if you like. This one can be set up in the Name property. Double click on the Name property and once again set the 'Type' to

Expression (Pascal).
IF ([Area] = 0) then Result := 'Drywall Template' else Result := '[Sheet Width] X [Sheet Height] X [Size] [Type]'
This states that when the [Area] is equal to 0 use 'Drywall Template' for the Name; if not, use the sheet height, width, size and type based on the selecƟons chosen from
the inputs.

With all of the calculaƟons completed, your part is ready for use. Try it on a pracƟce area by dragging it from the SwiŌDepot window on to your DigiƟzer. It should open the
'Input' window and you should be able to select from your drop-down menu: the size and the type of drywall, the sheet height and width, and the number of layers on each
side of the wall. If it is a ceiling, just use one of the sides.

It is always a good pracƟce to try all of the different combinaƟons from your newly created part to check for any errors and correct them. With the addiƟon of the expressions,
this type of dynamic part can be created for any number of building components. Drywall, concrete, metal and wood studs, pricing, names, grades, gauges. The possibiliƟes are
almost limitless!

939

Import a Job from a PlanSwiŌ E-Mail
1. Open the PlanSwiŌ email in your default email client (Outlook, Yahoo, Gmail, etc...) The email

should look something like the informaƟon listed below.

A PlanSwiŌ user has sent you some files.
Click the following link to download:
hƩp://share.planswiŌ.com/download/?file=J86E1SS3-7AN8-HD4S-C06A-4LIVW6VBBW5 This file will
be available for download for 30 days from today (expiring 04/08/11).
PlanSwiŌ is the #1 takeoff and esƟmaƟng soŌware, and it comes with powerful, yet easy to use, on-screen digiƟzer and takeoff tools. Discover how much Ɵme you can
save with PlanSwiŌ. Available for download at hƩp://www.planswiŌ.com/requesƩrial

2. Click the first link in the email.
3. A dialog box will appear asking you to save the file. Save the file to your desktop or locaƟon of your choice.
4. Open PlanSwiŌ, if it is not already open. (If you do not have a copy of PlanSwiŌ, click here).
5. Click on the tab named Other and click the Unzip SwiŌJob buƩon.
6. The Open dialog will appear. Select the file you saved in step 3 and press Open.
7. The Import dialog will appear. Select your storage locaƟon (the default locaƟon is your local computer).
8. Name the job (IMPORTANT: rename the job to avoid duplicates).
9. Press Ok.

This will now start the import process. CongratulaƟons you have just imported your first job!

940

How To: Add AƩachments to a Project. (Needs Images)
 To add aƩachments to your project, start by opening the aƩachments sidebar window in PlanSwiŌ.

1. Allows you to create a New Folder for organizing aƩachments.
2. Allows you to add aƩachments by opening Windows Explorer. Simply select the desired files in Windows Explorer, and click Open.
3. Allows you to delete any files or folders in the AƩachments sidebar.
4. Allows you to view and edit basic and advanced properƟes regarding the selected AƩachment. For more informaƟon about advanced properƟes, click hereto watch the

video.
5. DirecƟonal arrows allow you to organize the aƩachments by moving them up, down, leŌ or right. Note: Moving files leŌ or right is only useful when placing or removing files

from folders.

There is also the opƟon of adding desired aƩachments to the AƩachment sidebar window simply via drag and drop.

If you have mulƟple aƩachments for one job, you have the opƟon of searching for a specific aƩachment or file via the Search bar located at the top of the
AƩachment sidebar window.

941

SubtracƟng a SecƟon (Needs images)
To subtract a secƟon from an already exisƟng digiƟzed area, first select the digiƟzed area you will be ediƟng. Once selected, the perimeter of the digiƟzed area should be
highlighted red.
Then, right click the digiƟzed area and select 'Subtract from SecƟon'.

From there, conƟnue to digiƟze the area you would like to remove. Please note that you must stay within the bounds of the area you are subtracƟng from.

Video:

Drag and Drop Folders from Templates to EsƟmaƟng (Needs Images/Video)
This feature was added into version 9.3. It allows for the user to drag a folder from the template window and drop it and its contents into the EsƟmate window.
This funcƟon greatly improves the user's ability to create specific job templates of takeoff items and parts specific to a construcƟon sector such as, but not limited to:

Commercial
ResidenƟal
MulƟ-Family Hotel

942

Note: This approach is more streamlined than copying and pasƟng from the Templates tab.

943

Switch Pages from Takeoff Summary (Needs Images)
Available in 9.3+.

1. In case you are not in Takeoff Summary, click Takeoff Summary.
2. Select the drop-down box at the top of the Takeoff Summary sidebar.
3. Select the page you wish to switch to.

Takeoff Summary Page Switch

944

DigiƟzing or Moving Beyond the Current View (Zoom) (Needs Images)
Hover Scrolling - Wheel Mouse Pan - Zoom / Pan Tool - Scroll Bars

Hover Scrolling:
1. As your mouse nears the top, right, boƩom, or leŌ of the plan/takeoff screen you will noƟce two transparent blocks of blue (see the Hover Scroll image below). The

darker of the two has an arrow in it.
2. Hovering (not clicking) your mouse in the darker blue box will make the plan scroll quickly in the direcƟon of the arrow.
3. Hovering your mouse in the lighter blue box will make the plan scroll slowly in the direcƟon of the arrow.
4. While scrolling you may press the Spacebar to reverse the direcƟon of the scroll (see the Hover Scroll aŌer Spacebar image below.) This is useful if you went too far and

don't want to move the mouse to the other side of the screen to scroll down.
Note: If you reach the edge of the PlanSwiŌ drawing area, you will be presented with red boxes instead of blue. This means that you cannot scroll anymore in that direcƟon
(see the Red Hover image below).

Hover Scroll:

Hover Scolling

Hover Scroll aŌer Space Bar:

Hover Scolling - Back Red

Hover:

Red Hover - Edge of page

Wheel Mouse Pan:
1. Hold your wheel mouse buƩon down and "drag" the plan.
2. Release the buƩon to conƟnue digiƟzing or repeat step 1 to pan some more.

Pan via the Zoom / Pan tool:
1. This tool is discussed in detail in the Zoom and Pan secƟon.

Scroll Bars:
1. On the right and the boƩom of the current view, you will see scrollbars. You can click and drag these scroll bars to move around the plan.

How To: Use the Fill Down and Fill With (Needs Images)
This arƟcle will explain how to use the Fill Down and Fill With opƟons in the right click menus on the EsƟmaƟng, Templates and Reports screen.

First, select the cells in the grid that you want to update. This can be done one of two ways. Hold the CTRL key on your keyboard and click the cells in the column that you want
to update, or click the first cell, then hold the SHIFT key and select the last cell to select the range.

Right-click on one of the selected cells and select Fill With.

You will be prompted to enter a value in the dialog box.

945

Select OK. The values will update.

Take note that Locked properƟes will not get overwriƩen. If your field contains a formula that you do not want over-wriƩen, it is recommended that you lock those properƟes.
Repeat these steps to use the Fill Down opƟon. The only difference it that it uses the value in the topmost selected cell to fill the other selecƟons.

PainƟng (Check Links)

PainƟng
PainƟng for plugin is a quick and easy database intended for swiŌ takeoff of PainƟng on a budget basis. This database covers all the major type of takeoff issues that a PainƟng
contractor will encounter.

 Plugin SecƟons
The database is sequenced into :
 Paint Interior Wall 1 Side
 Paint Interior Wall 2 Sides
 Paint Interior Trim
 Paint Exterior Wall by LF
 Paint Exterior Wall by SF
 Paint Exterior Trim
 CMU & Concrete SpecialƟes
 Paint Ceilings
 Paint Windows
 Paint Doors & Frames
 Paint Floors
 Paint Stairwells
 Paint Steel Shapes

*** Note, that the order of these condiƟons are set correctly as we have set up the data. The PlanswiŌ program will move these condiƟons around as you use the Plugin.
This is a known issue and the fix is under way with a future PlanswiŌ upgrade.

Takeoff View:
This is a screenshot of the takeoff window. NoƟce the sequence of the folders on the right side.

Each folder is discussed in detail below.

Paint Wall on 1 Side
This secƟon is to be used when you are painƟng a wall on one side only. There are child folders for different paint substrates such as:
 Paint Wall on 1 Side GWB
 Paint Wall on 1 Side CMU
 Paint Wall on 1 Side Concrete
 Paint Wall on 1 Side Plaster

946

 Paint Wall on 1 Side Wood
 Stain Wall on 1 Side Wood

Each sub secƟon in turn is organized as follows. For this example we are using the GWB as an example:
 Paint Wall on 1 Side GWB
 Paint Wall Primer & 2 Coats on 1 Side GWB 8'
 Paint Wall Primer & 2 Coats on 1 Side GWB 9'

Paint Wall Primer & 2 Coats on 1 Side GWB 10'
 Paint Wall Primer & 2 Coats on 1 Side GWB 11'

Paint Wall Primer & 2 Coats on 1 Side GWB 12'
 Input other height
 Paint Wall Primer & 2 Coats on 1 Side GWB 15'

*** Note, that the order of these condiƟons are set correctly as we have set up the data. The PlanswiŌ program will move these condiƟons around as you use the Plugin.
This is a known issue and the fix is under way with a future PlanswiŌ upgrade.

The first 5 condiƟons are pre-set so that you do not have to input the height of the wall. These heights are set up and the math is completed to calculate the SF of the 1
sided wall that you are to paint. As an example, if you have a 9 foot wall to takeoff select this condiƟon, takeoff the length of the wall and this length is calculated Ɵmes the
height of 9 foot for you. This method will cover 85% of what the average use will encounter.

For the Ɵmes you have a wall of a different height click on the "Input other Height" folder and then the condiƟons inside this folder. As you use this condiƟon the 1st
quesƟon you will see will be the height of the wall. This is pre-set to 15 feet. Change to reflect the actual wall height you want to see. A screen shot of this condiƟon is as
follows.

When you input the wall height the descripƟon will change to reflect the wall height of the takeoff.

Paint Wall on 2 Sides
This secƟon is to be used when you are painƟng a wall on 2 sides. There are child folders for different paint substrates such as:
 Paint Wall on 2 Sides GWB
 Paint Wall on 2 Sides CMU
 Paint Wall on 2 Sides Concrete

Paint Wall on 2 Sides Plaster
 Paint Wall on 2 Sides Wood
 Stain Wall on 2 Sides Wood

Each sub secƟon in turn is organized as follows. For this example we are using the GWB as an example:
 Paint Wall on 1 Side GWB

947

 Paint Wall Primer & 2 Coats on 2 Sides GWB 8'
 Paint Wall Primer & 2 Coats on 2 Sides GWB 9'

Paint Wall Primer & 2 Coats on 2 Sides GWB 10'
 Paint Wall Primer & 2 Coats on 2 Sides GWB 11'

Paint Wall Primer & 2 Coats on 2 Sides GWB 12'
 Input other height
 Paint Wall Primer & 2 Coats on 2 Sides GWB 15'
*** Note, that the order of these condiƟons are set correctly as we have set up the data. The PlanswiŌ program will move these condiƟons around as you use the Plugin.
This is a known issue and the fix is under way with a future PlanswiŌ upgrade.

The first 5 condiƟons are pre-set so that you do not have to input the height of the wall. These heights are set up and the math is completed to calculate the SF of the 2
sided wall that you are to paint. As an example if you have a 9 foot wall to takeoff select this condiƟon. Takeoff the length of the wall and this length is calculated Ɵmes the
height of 9 foot for you Ɵme both sides of the wall. This method will cover 85% of what the average use will encounter.

For the Ɵmes you have a wall of a different height click on the "Input other Height" folder and then the condiƟons inside this folder. As you use this condiƟon the 1st
quesƟon you will see will be the height of the wall. This is pre-set to 15 feet. Change to reflect the actual wall height you want to see.

Paint Interior Trim
This secƟon is to be used when you are painƟng trim. There are child folders for different paint substrates such as:
 Paint Interior Trim
 Stain Interior Trim

Each sub secƟon in turn is organized as follows. For this example we are using the Paint Interior Trim as an example:
 Paint Interior Trim
 Paint Primer & 2 Coats @ Crown Molding
 Paint Primer & 2 Coats @ Picture Rail
 Paint Primer & 2 Coats @ Cornice Molding
 Paint Primer & 2 Coats @ Chair Rail
 Paint Primer & 2 Coats @ Map Rail
 Paint Primer & 2 Coats @ Wall Cap
 Paint Primer & 2 Coats @ Baseboard

*** Note, that the order of these condiƟons are set correctly as we have set up the data. The PlanswiŌ program will move these condiƟons around as you use the Plugin.
This is a known issue and the fix is under way with a future PlanswiŌ upgrade.

Click on the green buƩon for the condiƟon that you want. Input the width of the trim. For a starƟng point all trim is assumed to be 1 foot wide. Then takeoff the length of
the trim.
The Stain Interior Trim works exactly as the paint.

Paint Exterior Wall by LF
This secƟon is to be used when you are painƟng an exterior wall and taking off the wall by lineal feet. All exterior wall in this secƟon is assumed to be a one sided wall.
There are child folders for different paint substrates such as:
 Paint Exterior Wall CMU
 Paint Exterior Wall Concrete Wall
 Paint Exterior Wall EIFS Wall
 Paint Exterior Wall Metal Siding
 Paint Exterior Wall Clapboards
 Paint Exterior Wall Shingles
 Stain Exterior Wall Clapboards

Stain Exterior Wall Shingles

948

Each sub secƟon in turn is organized as follows. For this example we are using the CMU as an example:
 Paint Exterior Wall CMU
 Paint Exterior CMU Block Filler & 2 Coats 1 Side 8'
 Paint Exterior CMU Block Filler & 2 Coats 1 Side 9'

Paint Exterior CMU Block Filler & 2 Coats 1 Side 10'
 Paint Exterior CMU Block Filler & 2 Coats 1 Side 11'

Paint Exterior CMU Block Filler & 2 Coats 1 Side 12'
 Input other height
 Paint Exterior CMU Block Filler & 2 Coats 1 Side 15'
*** Note, that the order of these condiƟons are set correctly as we have set up the data. The PlanswiŌ program will move these condiƟons around as you use the Plugin.
This is a known issue and the fix is under way with a future PlanswiŌ upgrade.

The first 5 condiƟons are pre-set so that you do not have to input the height of the wall. These heights are set up and the math is completed to calculate the SF of the wall
that you are to paint. As an example if you have a 9 foot wall to takeoff select this condiƟon, takeoff the length of the wall and this length is calculated Ɵmes the height of 9
foot for you. This method will cover 85% of what the average use will encounter.

For the Ɵmes you have a wall of a different height click on the "Input other Height" folder and then the condiƟons inside this folder. As you use this condiƟon the 1st

quesƟon you will see will be the height of the wall. This is pre-set to 15 feet. Change to reflect the actual wall height you want to see When you input the wall height the

descripƟon will change to reflect the wall height of the takeoff.

Paint Exterior Wall by SF
This secƟon is to be used when you are painƟng an exterior wall and taking off the wall with the elevaƟon view by square feet. This secƟon contains all the direct
condiƟons. There are no child folders to this secƟon.
 Paint Exterior Wall CMU Wall Block Filler & 2 Coats
 Paint Exterior Wall Concrete Wall Block Filler & 2 Coats
 Paint Exterior Wall EIFS Wall Primer & 2 Coats
 Paint Exterior Wall Metal Siding Primer & 2 Cots
 Paint Exterior Wall Clapboards Primer & 2 Coats

Paint Exterior Wall Shingles Primer & 2 Coats
 Stain Exterior Wall Clapboards Sealer & 2 Coats

Stain Exterior Wall Shingles Sealer & 2 Coats

Pick the condiƟon you wish to use, by clicking on the green buƩon, then takeoff the area in SF of the area to be painted.

Use the Boxout funcƟon of PlanswiŌ to deduct exterior openings from the base area.

CMU & Concrete SpecialƟes
This is a small secƟon to be used for specialty condiƟons with CMU or Concrete walls. This secƟon contains the following types of coaƟngs.
 CMU-Concrete Stain Cover
 CMU-Concrete Block Filler
 CMU-Concrete Elastomeric Hydro CoaƟng CMU-

Concrete Clear Hydro Sealer

Pick the condiƟon you wish to use, by clicking on the green buƩon, then takeoff the area in SF of the area to be painted.

Paint Windows
This is a secƟon to be used for the painƟng of windows. Windows come in a variety of sizes, materials, types, and manufactures. All of this is ignored in this secƟon, and we
are using the Window ID for each type of Window as idenƟfied by the Architect or Engineer.

949

Choose the window ID by number, in the properƟes box you can change the descripƟon to match the specificaƟons of the window. Once this is done, then count each of
this type of window.

In this secƟon you have a choice for a window that is painted and also for a wood window that is stained.

Paint Doors & Frames
This is a small secƟon to be used for the painƟng of doors. Doors are broken apart by single or double doors, the transoms and sidelights, then for specialty doors.
Doors and frames are further broken apart by being hollow metal or wood. The door size is not a consideraƟon as this makes liƩle difference in the amount of
paint, or the man hour per door leaf. The secƟons are as follows. Paint Single Doors
 Paint Double Doors
 Transoms - Sidelights - Borrow Light
 Specialty Doors
In turn, each secƟon is further broken down into condiƟons for each secƟon. For example at Paint Single Door you have the following door types to paint.
 Paint Single HM Frame & HM Door
 Paint Single HM Frame & Wood Door
 Paint Single Wood Frame & Wood Door
 Stain Single Wood Frame & Wood Door

Then in turn each of the above condiƟons will have separate condiƟons for the door and frame. This way you can adjust the cost of each as desired. At double doors the
math is set up to provide the painƟng for 1 double frame and 2 door leafs.

Paint Ceilings
This is a secƟon to be used for the painƟng of ceilings. There are no child folders in this secƟon, as it directly contains all the condiƟons for the ceiling painƟng. Here is a
screen shot of all the condiƟons for painƟng ceilings.

Paint Stairwells
This is a secƟon to be used for the painƟng of stairwells. This secƟon is broken down into the components of the stairwell starƟng from the inside of the exterior walls, and
then of the stairwell parts. Each type of condiƟons has the takeoff method for the type of takeoff needed. There are no child folders in this secƟon, as it directly contains all
the condiƟons for the stairwell painƟng. Here is a screen shot of all the condiƟons for painƟng stairwells.

Paint Floors
This is a secƟon to be used for the painƟng of floors. There are no child folders in this secƟon, as it directly contains all the condiƟons for the floor painƟng. All floors are
taken off by SF. These are the condiƟons in this secƟon:

950

 Floor Power Acid Wash
 Concrete Floor Sealer
 Concrete Floor Stain
 Concrete Floor Non-Traffic Enamel
 Concrete Traffic Wear Enamel
 Concrete Floor Paint

Paint Steel Shapes
PainƟng Steel is much more complex than other issue. The shape of the steel determines the square foot of paint are per lineal feet of steel. All steel is calculated in rough
this manner to determine the SF of the paint area.

Count of steel pieces x LF of each Steel x SF per LF of Steel = SF of Paint Area

The user must input the following
 LF of Each Steel Piece
 SF per LF of Steel
 Steel Weight per LF

Using the example of a W-Flange beam here is the properƟes box for input of this informaƟon.

The quesƟons might vary depending on the type of steel that is being painted. Also as a user be careful on the SF per LF you set up. This will vary depending on the posiƟon
of the steel in the structure.

The following steel shapes are available for takeoff in the database.
 Paint Steel W-Flange
 Paint Steel Square Tube
 Paint Steel Rectangle Tube
 Paint Steel C Channel
 Paint Steel MC Channel
 Paint Steel Tee
 Paint Steel Angle

Each secƟon has detailed condiƟons for each major size of steel. In general the thickness of the steel is not considered. For example the steel secƟon with the MC Channel
condiƟons opened is show here.

951

Support
The developer of this PlanSwiŌ library has worked in the construcƟon soŌware database industry for 15 years and works daily with esƟmators of all types.
Database SoluƟons planswiŌ@database-soluƟons.com

- See more at: hƩp://www.planswiŌ.com/phpkb/arƟcle/painƟng-2255.html#sthash.mDKt9TAS.dpuf

952

Plumbing Standard (Check Links)
Plumbing Standard for plugin is a quick and easy database intended for swiŌ takeoff of plumbing on a budget basis. This database covers all the major type of takeoff issues
that a plumbing contractor will encounter.

To Install
Open PlanSwiŌ.
Go to the "Seƫng" Tab
Click on the "Import Plugin Package"
Follow the direcƟons provided by PlanswiŌ.
AŌer installaƟon you will find "Plumbing Standard" in the "Templates" Tab ready for your use.

To Uninstall
Go to the plugin store tab and select Uninstall Plugins

Plugin SecƟons
The database is sequenced into :
Demo
DomesƟc Water
Drainage
Sanitary Waste
Drainage & Sanitary Misc
Fixtures
Plumbing Equipment
Medical Gas System
Vacuum System Compressed
Air System

Takeoff View:
This is a screenshot of the takeoff window. NoƟce the sequence of the folders on the right side.

Demo
The Demo secƟon provides takeoff for miscellaneous issues that a plumbing contractor will encounter such as demoliƟons and removal. The child folders here are: Plumbing
DemoliƟon
Plumbing Remove & Re-install
Cut & Patch
Core Drill at Floor
Core Drill at Wall

To use this secƟon open up the folder you wish, click on the green buƩon to takeoff the condiƟon and mark this condiƟon on the drawings.
All condiƟons in this secƟon are count acƟviƟes.
DomesƟc Water

953

The domesƟc water secƟon provides takeoff for water piping of different types and diameters. The piping is set up on a budget basis with the lineal footage of the pipe as the
only takeoff consideraƟon. This secƟon is organized as a parent-child folder arrangement. Under each major folder is a child folder with the material spec of the pipe. The
parent child folders are organized as follows:
DomesƟc Water - Underground
DomesƟc Water Underground Copper Sweat
DomesƟc Water Underground Copper Press Fit
DomesƟc Water Underground CPVC Sch 80
DomesƟc Water Underground CPVC Flowguard
DomesƟc Water Underground PEX
DomesƟc Water - Interior
DomesƟc Water Interior Copper Sweat
DomesƟc Water Interior Copper Press Fit
DomesƟc Water Interior CPVC Sch 80
DomesƟc Water Interior CPVC Flowguard
DomesƟc Water Interior PEX
DomesƟc Water Misc
Water Manifold
Water Flexible Connectors & Hose
Water Backflow Preventer
Water AnƟ Siphon Vacuum Breaker Water
Pressure Regulators
In each child folders the takeoff condiƟons are there for the each size of pipe.
This is a screen shot of this secƟon with one child folder opened up.

The fiƫngs of the pipe are not available in this secƟon. There will soon be a different assembly template database for detailed pipe takeoff with fiƫngs.

Drainage
The drainage secƟon provides takeoff for drainage piping of different types and diameters. The piping is set up on a budget basis with the lineal footage of the pipe as the only
takeoff consideraƟon. This secƟon is organized as a parent-child folder arrangement. Under each major folder is a child folder with the material spec of the pipe. The parent
child folders are organized as follows:
Drainage - Underground
Drainage Underground Cast Iron SV
Drainage Underground Cast Iron XH
Drainage Underground Cast Iron Ho-Hub
Drainage Underground PVC DWV Drainage
Underground ABS DWV
Drainage - Aboveground
Drainage Above Ground Cast Iron SV
Drainage Above Ground Cast Iron XH

954

Drainage Above Ground Cast Iron Ho-Hub
Drainage Above Ground PVC DWV
Drainage Above Ground ABS DWV
This is a screen shot of this secƟon with one child folder opened up.

Sanitary Waste
The Sanitary Waste secƟon provides takeoff for waste piping of different types and diameters. The piping is set up on a budget basis with the lineal footage of the pipe as the
only takeoff consideraƟon. This secƟon is organized as a parent-child folder arrangement. Under each major folder is a child folder with the material spec of the pipe. The
parent child folders are organized as follows:
Waste - Underground
Waste Underground Cast Iron SV
Waste Underground Cast Iron XH
Waste Underground Cast Iron Ho-Hub
Waste Underground Duriron
Waste Underground PVC DWV
Waste Underground ABS DWV
Waste Underground Polypropylene DWV
Waste Underground Fuseal
Waste - Above Ground
Waste Inside Cast Iron SV
Waste Inside Cast Iron XH
Waste Inside Cast Iron Ho-Hub
Waste Inside Duriron
Waste Inside PVC DWV
Waste Inside ABS DWV
Waste Inside Polypropylene DWV
Waste Inside Fuseal
Waste Copper DWV

955

Drainage & Sanitary Misc

The Drainage & Sanitary Misc secƟon provides takeoff for miscellaneous issues of drainage and waste piping that you will encounter to takeoff. This is a secƟon of equipment
and fixtures required to be taken off with drainage and waste piping. Each child folder of the secƟon has the condiƟons.
Sanitary Drains
Roof Drains
Roof PenetraƟon and Boot
Area Drain
Trench Drains
Sanitary Pumps
Grease Interceptors
Package Sanitary Pump StaƟon

Fixtures
The Fixtures secƟon provides takeoff for all types of fixtures that you will need for standard takeoff issues. All fixtures are taken off by the count method. Each child folder of
the secƟon has the condiƟons.
Fixtures - Bath
Fixtures - Laundry
Fixtures - Medical
Fixtures - Emergency
Fixtures - Drinking Fountain
Fixtures - Kitchen
Fixtures - Other

Medical Gas System and Vacuum System
The Medical Gas system and the Vacuum system both work in the same manner so they are discussed together. For each secƟon there is a folder for the pipe, and then another
folder for the outlets.
The folders are as follows and each folder has the condiƟons you need for takeoff.
Medical Gas System
Oxy/Med GasPipe - Copper
Medical Gas Outlets

956

Vacuum System
Vacuum Pipe - Copper
Vacuum Outlets
This is a screen shot of this secƟon with one child folder opened up.

Compressed Air System
The Compressed Air System is compressed of several folders with the compressed air pipe and drops then another folder for the equipment. The folders are as follows and
each folder has the condiƟons you need for takeoff.
Compressed Air Pipe Copper
Compressed Air Pipe Black Steel
Compressed Air Pipe Gal Steel
Compressed Air Pipe Polypropylene
Compressed Air Equipment

This is a screen shot of this secƟon with one child folder opened up. NoƟce the drops are with the pipe as a count condiƟon.

Upgrades
The Budget Concrete Template will receive an upgrade in the spring and fall of 2012. As a purchaser of the template you can receive this upgrade at no cost.
If you own the database I will put your suggesƟons into the upgrades. Just email the developer at planswiŌ@database-soluƟons.com

Support
The developer of this PlanSwiŌ library has worked in the construcƟon soŌware database industry for 15 years and works daily with esƟmators of all types.
Database SoluƟons planswiŌ@database-soluƟons.com
- See more at: hƩp://www.planswiŌ.com/phpkb/arƟcle/plumbing-standard-2254.html#sthash.9g5YLwfu.dpuf

957

MulƟline Tool (Needs Image)

MulƟline Tool
Items Included:
MulƟline

Requirements
No special requirements.

Install Notes
Files Needed MulƟline.SwiŌPluginPackage from PlanSwiŌ Plugin Store

Steps
1. Open PlanSwiŌ if it is not already open.
2. Go to Plugin Store Tab and make the necessary steps for downloading the plugin.
3. When download is finished choose "Open”. This will process the installaƟon.

AŌer installaƟon you will find MulƟline Tool in Linear Dropdown Menu on the Home Menu Tab.

Removal Notes
Steps

1. Open PlanSwiŌ if it is not already open.
2. Go To Plugin Store Tab
3. Click on the Uninstall Plugin buƩon in Plugin Tools SecƟon
4. Choose "MulƟline” and proceed with Next

Usage
This tool is for fast drawing of a mulƟple parallel lines. Custom opƟons include:

of Lines – Number of addiƟonal elements, that will be created ·
Offset – Distance between elements ·
JusƟficaƟon – the side where the addiƟonal secƟons(items) will be created ·
Each SecƟon As New Item ChekBox ·
New Item Type List ·
Auto Generate ChekBox

Methods(available in MulƟline SecƟon Only -)
1. Draw MulƟline – for drawing the addiƟonal secƟons for first Ɵme
2. Refresh MulƟline – for redrawing addiƟonal secƟons in these events

 OnPointMoved

958

959

Select and Set (Check Links)
Select and Set allows you to select secƟons and set properƟes on all the selected secƟons. You can use for mulƟplying your secƟons also.

How to use:

1. Select the secƟons of the items you want to set a property on.
2. Click on the Select and Set Icon (Home Tab).
3. Type in the property you want to set.
4. Type in the text value you want on that property you specified.
You can view in the EsƟmaƟng tab (with secƟons showing) the properƟes you set on the secƟons. You can turn on show secƟons by clicking on the filter buƩon and checking
secƟons. Also add properƟes you want as columns with the columns buƩon.

Warning:
Be very careful what property you set. It will overwrite the exisƟng value on that property. May not work well with counts should work fine with label counts. PlanswiŌ does
not provide support for this plugin.

For More InformaƟon : hƩps://plugins.planswiŌ.com/plugin-details/planswiŌ-tools/select-and-set/

960

Shape Stamper (Check Links)
How to use:
1. Select the secƟon you want the shape of.

2. Click on the "Get Shape" icon on the top bar.

3. Select the secƟons you want to apply that shape to.

4. Click on the "Stamp Shape" icon on the top bar. You can select a item and get its shape. Then stamp out other items with that same shape.

Warning: AS IS Be very careful. It will overwrite the exisƟng value on the DigiƟzerData property. May not work well with counts because you may have double stacked nodes
which will make two counts on top of each other. Depending on how you recorded the item you got the shape from. PlanSwiŌ does not provide support for this plug-in.

For More InformaƟon: hƩps://plugins.planswiŌ.com/plugin-details/planswiŌ-tools/shape-stamper/

961

Area Pro (Check Links)
Items Included:

Items
Area Pro
Page Items Area Pro SecƟon FuncƟonality:

Area Pro Plug-in will install a new digiƟzer item, enables you to receive calculated informaƟon for Area Items™ with SubtracƟon about:
Total Openings Area
Total Openings Linear Total
Gross Area
Gross Linear Total
Gross Volume InstallaƟon:

Open PlanSwiŌ if it is not already open.
Go to "Download Plugins" Sidebar and make the necessary steps for downloading the plugin.
When download is finished choose

For more informaƟon : hƩps://support.planswiŌ.com/soluƟon/arƟcles/13000002693-area-pro
Concrete for Budget Takeoff (check links)
Concrete for Budget Takeoff plugin is a quick and easy database intended for swiŌ takeoff of concrete without a lot of detail. This database covers all the major type of concrete
and is intended to all for takeoff to gather the SF of forming, CY of concrete and the SF of finish.

To Install
Open PlanSwiŌ.
Go to the "Seƫng" Tab
Click on the "Import Plugin Package"
Follow the direcƟons provided by PlanswiŌ.
AŌer installaƟon you will find "Budget Concrete" in the "Templates" Tab ready for your use.

To Delete
Go to the "Templates" Tab
Right click on the "Budget Concrete" Tab
Click on "Delete Tab"

Plugin SecƟons
The database is sequenced into :
 FooƟngs & Pile Caps
 Columns & Piers
 Walls
 Slab - SOG
 Slab - Elevated
 Slab - Misc Work
 Misc Concrete
 Reinforcing
 Concrete Purchase

Finish, Cure & Seal

Takeoff View:

962

This is a screenshot of the takeoff window. NoƟce the sequence of the folders on the right side.

FooƟngs & Pile Caps
The fooƟngs & pile cap secƟon provides takeoff of concrete, forms and finish for the following condiƟons:
ConƟnuous FooƟngs Assembly - Formed both sides
ConƟnuous FooƟngs Assembly - Formed one side
ConƟnuous FooƟngs Assembly - not formed
Column or Pier FooƟng Assembly Rectangle
Column or Pier FooƟng Assembly Round
Column or Pier FooƟng Assembly Octagon
Pile Cap Assembly Rectangle
Pile Cap Assembly Round
Pile Cap Assembly Octagon

The assemblies for round shape will use the diameter for both the forming and volume calculaƟons.

The assemblies for octagon will use the lineal foot of one side of the octagon for the forming and volume calculaƟons.

Each assembly has a part for the takeoff of the concrete, the forming, and the finish.

This is a screen shot of the fooƟng & pile cap secƟon.

The takeoff properƟes for each assembly in this secƟon is as follows:

963

The user will input the dimension informaƟon based on the geometry of the condiƟon and revise the waste if desired.

Columns & Piers
The columns & Piers secƟon provides takeoff of concrete, forms and finish for the following condiƟons:
Columns - Rectangle
Columns - Round
Columns - Octagon Piers - Rectangle
Piers - Round
Piers - Octagon
Sonotube Concrete

The assemblies for round shape will use the diameter for both the forming and volume calculaƟons.
The assemblies for octagon will use the lineal foot of one side of the octagon for the forming and volume calculaƟons.

The assembly for sonotube allows for sonotube of 8 inches to 42 inches in all standard diameters for sonotube.

Each assembly has a part for the takeoff of the concrete, the forming, and the finish.

This is a screen shot of the Columns & Piers secƟon.

Walls
The Walls secƟon provides takeoff of concrete, forms, bulkhead form, and finish for the following condiƟons:
Wall Concrete Grade Beam
Stem Wall
Pilasters @ Concrete Wall
Wall Brickshelf
Wall Boxout by Count
Sonotube Concrete

The assembly for walls and grade beam allows for the takeoff of:
 Wall Concrete
 Wall Form
 Wall Bulkhead Form
 Wall Column Beam Pockets
 Wall Top Finish

The assembly for stem wall allows for the takeoff of:
 Wall Concrete
 Wall Form
 Wall Top Finish

964

The assembly for pilasters allows for the takeoff of:
 Wall Concrete
 Pilaster Wall Form Pilaster Top Finish

The assembly for wall Brickshelf allows for the takeoff of:
 Brickshelf concrete Deduct
 Brickshelf Form

The Wall Boxout assemblies allow for the takeoff of:
 Wall Boxout Concrete Deduct
 Wall Boxout Form
The takeoff properƟes of the concrete wall assembly are as follows.

Slab - SOG
The SOG secƟon provides a series of assemblies for taking off different types and condiƟons of typical slab on grade condiƟons. The takeoff assemblies are as follows:
Mud Slab
Column Diamonds
SOG Exterior - Edge Formed all Sides
SOG Interior - No Edge Form
SOG ConstrucƟon Joint Form SOG

Thickened Edge
SOG Thickened Slab by LF
SOG Thickened Slab by Area SOG

Boxout

The assembly for Mud Slab allows for the concrete - form - finish takeoff of a mud slab in the construcƟon work zone.

The assembly for Column Diamonds is specific to takeoff the column diamonds of an interior SOG. This is a count assembly where you count the column diamonds then in the
properƟes set the length and width of the diamond

The assembly for SOG Exterior - Edge Formed all Sides is for exterior SOG in which the enƟre slab is formed

The assembly for SOG Interior - No Edge Form is for interior SOG in which the slab is poured up against a wall and therefore an expansion joint is required in lieu of the edge
form.

The assembly for SOG ConstrucƟon Joint Form is specifically to take off the bulkhead construcƟon joint form of larger SOG when you have to pour the larger slab in pours by
bays.

965

The assembly SOG Thickened Edge is specific for the thickened edge porƟon only of a SOG. This assembly only brings in the addiƟonal formwork and required for the thickened
edge. The thickened edge is assumed to be monolithic with the slab. The interior side is assumed to slope at a 45 degree angle up to the nominal SOG. This is concrete only as
there is no forming for this condiƟon.

The assembly SOG Thickened Slab by LF is for a thickened secƟon of the slab in the interior of the SOG that is take off by lineal feet. For example along a bearing wall line
where the SOG is thicker for structural reasons. The slope on both sides is assumed to be at a 45 degree angle. This is concrete only as there is no forming for this condiƟon.

The assembly SOG Thickened Slab by Area is for a thickened secƟon of the slab in the interior of the SOG that is take off by area SF. For example at a chimney area where extra
support is required. The calculaƟon is a straight area Ɵmes depth for the concrete. Since the slope on the edge is not taken into account the waste is changed to 10 %. Increase
the waste if you desire. This is concrete only as there is no forming for this condiƟon.

The assembly for the SOB Boxout is specific to the Boxout of a slab. This assembly will give you the items for the deduct of the concrete in the SOG and the add for the Boxout
form. This is an alternaƟve to the using the Boxout feature in the area calculaƟon.

For each of the above assemblies in the properƟes window you will be asked in the quesƟons pertaining to that condiƟon. For example here is the properƟes for the SOG
Exterior - Edge Formed all Sides.

Slab - Elevated
The elevated slab secƟon provides a series of assemblies for taking off different types and condiƟons of typical elevated slabs. This includes both slab on metal deck, structural
slabs, and pan or dome slabs. The takeoff assemblies are as follows:
Slab on Metal Deck
Slab on Metal Deck ConstrucƟon Joint
Slab on Metal Deck Boxout
Structural Slab
Pan Slab
Structural or Pan Slab Boxout
Structural or Pan Slab ConstrucƟon Joint

The assembly for Slab on Metal Deck is for a slab on metal deck and the exterior edge form. This assembly will use the average depth of the metal deck concrete. This takes
into account the concrete in the flukes of the metal deck. The average depth should be provided by the deck supplier.

The assembly for Slab on Metal Deck ConstrucƟon Joint Form is specifically to take off the bulkhead construcƟon joint form of larger slab when you have to pour the larger
slab in pours by bays.

The assembly for the Slab on Metal Deck Boxout is specific to the Boxout of the slab. This assembly will give you the items for the deduct of the concrete in the slab and the ad
for the Boxout form. This is an alternaƟve to the using the Boxout feature in the area calculaƟon.

The assembly for the Structural Slab is specific to a self supporƟng structural slab that is boƩom formed and supported with shoring Ɵll the concrete is cured. AddiƟonal lines
for the boƩom form and the shoring are added. The shoring is calculated in cubic feet , therefore the properƟes will ask for the height above the finish floor of the structural
slab.

The assembly for the Pan Slab is specific to a self supporƟng pan filled structural slab that is boƩom formed and supported with shoring Ɵll the concrete is cured. AddiƟonal
lines for the boƩom form and the shoring are added. The shoring is calculated in cubic feet , therefore the properƟes will ask for the height above the finish floor of the
structural slab.

966

The assembly for the Structural or Pan Slab Boxout is specific to the Boxout of the slab. This assembly will give you the items for the deduct of the concrete in the slab and the
add for the Boxout form. This is an alternaƟve to the using the Boxout feature in the area calculaƟon.

The assembly for the Structural or Pan Slab ConstrucƟon Joint is specifically to take off the bulkhead construcƟon joint form of larger slab when you have to pour the larger
slab in pours by bays.

Slab - Misc Work
The Miscellaneous Work slab secƟon provides a series of assemblies for taking off different types of slabs.
Topping Slab
Topping Slab ConstrucƟon Joint
Topping Slab Boxout
 Equipment Pad

The assembly for Topping Slab is for a the topping slab that is poured for the finish surface on a slab. In this case the topping slab is not designated as being on grade or
elevated, but as a topping slab. The assembly brings in the concrete, forms, and finish of the topping slab.
The assembly for Topping Slab ConstrucƟon Joint is specifically to take off the bulkhead construcƟon joint form of the topping slab when you have to pour the larger slab in
pours by bays.

The assembly for the Topping Slab Boxout is specific to the Boxout of the slab. This assembly will give you the items for the deduct of the concrete in the slab and the ad for
the Boxout form. This is an alternaƟve to the using the Boxout feature in the area calculaƟon.

The assembly for Equipment Pad is used to takeoff the misc equipment pads that you will have for equipment seƫngs.

Misc Concrete
The Miscellaneous Concrete secƟon provides a place for sidewalk and metal pan stair assemblies. The assemblies in this secƟon are as follows:
Sidewalk by LF
Sidewalk by Area
Metal Pan Landings
Metal Pan Risers

The assembly Sidewalk by LF is intended to for sidewalks where the user would like to takeoff the sidewalk by the lineal foot. Takeoff the sidewalk by the lineal feet of the
centerline of the walk. This assembly will take off the forming, concrete, finish and the liquid curing white pigment finish used on sidewalks. The sidewalk concrete depth is set
to 4" and the width is set to 4'. These are the normal dimensions for sidewalks but can be changed by the user if desired.

The assembly Sidewalk by Area is intended to for sidewalks where the user would like to takeoff the sidewalk by the area square foot. This assembly will take off the forming,
concrete, finish and the liquid curing white pigment finish used on sidewalks. The sidewalk concrete depth is set to 4" as this is the normal depth of sidewalks, but can be
changed by the user is need be. The edge form calculaƟon will use the external lineal feet of area.

The assembly Metal Pan Landings is intended for takeoff of the metal pan landings of a stairwell. Count the landings with the takeoff and input at the properƟes tab for the
input of the lending length, width, and the depth of the concrete.

The assembly Metal Pan Risers is intended for takeoff of the metal pan riser of a stairwell. Count the risers with the takeoff and input at the properƟes tab for the input of the
riser, width, and the depth of the concrete.

Forming Misc
The Forming Misc secƟon provides a place for other forming issues that the user may wish to takeoff. The point of the enƟre database is for budget concrete so these specific
condiƟons are not a part of the assemblies that are listed above. This secƟon is not set up as assemblies but as a secƟon to takeoff the parts for all these condiƟons. This
secƟon is broken down as follows:
 Keyway & Chamfer
 Vapor Barriers
 Anchor Bolts & Templates

967

 Rigid InsulaƟon
 Set Steel in Concrete
 Crack Control

The secƟon for Keyway & Chamfer holds the items for keyway for 2x4, 2x6, and upset keyway. Also Edge chamfer item is here.

The secƟon for Vapor Barriers contains the vapor barriers in 4 mill, 6 mill and for moistop.

The secƟon for Anchor Bolts & Templates contains anchor bolts from 1/2" up to 2" in all nominal sizes. Also included are anchor bolt templates for 2-4-6-and 8 anchor bolt
sets.

The secƟon for Rigid InsulaƟon contains rigid insulaƟng for both under slab and foundaƟon insulaƟon form 1" to 3" in all nominal sizes in between.

The secƟon for Set Steel in Concrete contains numerous types of embedded steel shapes and condiƟons.

The secƟon for Crack Control contains condiƟons for saw cut of slab, zip strips and hand tool of joints.
Reinforcing
The Reinforcing secƟon provides a place for reinforcing issues that the user other forming issues that the user may wish to takeoff. The point of the enƟre database is for
budget concrete so these specific condiƟons are not a part of the assemblies that are listed above. This secƟon is not set up as assemblies but as a secƟon to take off the parts
for all these condiƟons. This secƟon is broken down as follows:
 Rebar
 Rebar CAD Weld ConnecƟons
 Rebar Threaded Connectors
 Rebar Dowels
 Welded Wire Mesh

This secƟon will be greatly upgraded in the next release of this database.

The Rebar secƟon provides condiƟons for all nominal rebar sizes from #3 to # 14.

The Rebar CAD Weld ConnecƟons secƟon provides condiƟons for all rebar CAD weld connecƟons in al nominal rebar sizes from #3 to # 14.

The Rebar Threaded Connectors secƟon provides condiƟons for all rebar threaded connecƟons in all nominal rebar sizes from #3 to # 14.

The Rebar Dowel secƟon provides condiƟons for all rebar dowels in all nominal rebar sizes from #3 to # 8

The Welded Wire Mesh secƟon provides area SF condiƟons for every wire mesh size available.

Finish, Cure & Seal
The Finish, Cure & Seal secƟon provides a place for finishing acƟviƟes to placed concrete. The point of the enƟre database is for budget concrete so these specific
condiƟons are not a part of the assemblies that are listed above. This secƟon is not set up as assemblies but as a secƟon to takeoff the parts for all these condiƟons. The
secƟon is broken down as follows:
 Finish Flatwork
 Other Finish
 Concrete Rubbing & Grind
 Curing
 Seal & Hardener

The Finish Flatwork SecƟon is the placeholder for specific finish opƟons, color, and shake on products.

The Other Finish SecƟon is a place for top of wall and stair finish.

968

The Concrete Rubbing & Grind SecƟon is the p[lace for grind, sandblast, rubbing, and bush hammer of the concrete finish.

The Curing SecƟon provides other opƟons for curing.

The Seal & Harder secƟon provides for specific types of sealers and hardeners

Upgrades
The Budget Concrete Template will receive an upgrade in the spring and fall of 2012. As a purchaser of the template you can receive this upgrade at no cost.

If you own the database I will put your suggesƟons into the upgrades. Just email the developer at planswiŌ@database-soluƟons.com

Support
The developer of this PlanSwiŌ library has worked in the construcƟon soŌware database industry for 15 years and works daily with esƟmators of all types.

David Ayers
Database SoluƟons planswiŌ@database-soluƟons.com
- See more at: hƩp://www.planswiŌ.com/phpkb/arƟcle/concrete-for-budget-takeoff-2226.html#sthash.VSaiaYud.dpuf

969

Outdated / Don't Need

970

Callouts

 Activation Errors & Troubleshooting 104

 Troubleshooting Activation Errors 105

 Manually Activating PlanSwift107

PlanSwift Knowledge Base 27
 Release Notes 28
 Release Notes History 29
 Release Notes v.11.0.00.129 (Release Date: July 10, 2023) 30
 Release Notes v.11.0.0.89 (Released: 09/08/2022) 32
 Workaround for Storages Settings 34
 Release Notes v.10.03.0.56 Released: 03/03/2022 35
 Release Notes v.10.03.0.50 Released: 07/21/2021 37
 Release Notes v.10.03.0.48 Released: 05/18/2021 38
 Release Notes v.10.02.05.41 Released: 04/30/2020 40
 Release Notes v.10.02.05.40 Released: 03/19/2020 42
 Release Notes 10.2.4 (03/2019) 44
 Release Notes 10.2 (3/28/2018) 45
 New Sample Content 47
 New Sample Templates 48
 New Sample Plans 49
 New Sample Parts 57
 New Sample Assemblies 58
 Release Notes 10.1.1.8 (includes 10.1.1.7) 59
 Release Notes ConstructConnect Platform Plugin Released: 07/09/2020 60
 Known Issues Log 61
 The PlanSwift Customer Portal (MyAccount) 62
 Registering for a MyAccount Profile 69
 How an Admin Creates MyAccount Profiles for Users 72
 Resetting or Changing Your Account Password 73
 Installing and Licensing PlanSwift 75
 System Requirements 76
 Does PlanSwift Run on Windows 10? Windows 11? Windows 365? 78
 Can I Install PlanSwift on a Mac? 79
 Windows Version Compatibility 80
 Downloading and Installing PlanSwift 82
 Upgrading PlanSwift 86
 Using PlanSwift Automatic Updates 87
 Required (Mandatory) Updates 92
 How To: Uninstall PlanSwift 94
 Licensing PlanSwift (Activation) 98
 Deactivating Your License (to Use on a Different Machine) 99
 PlanSwift Licensing FAQs 102

 Can I Avoid Manual
Activation? 113

 Manual Deactivation 114

 Manually Activating a One-Time PlanSwift License 118

 Manual Licensing
FAQs120

