Developer Documentation

Developer Documentation

The PlanSwift API provides developers the documentation (much of which is "coming soon") on PlanSwift that will provide them the tools needed to develop and link
applications to PlanSwift.

Before working with the API, a good understanding of the internal structure is vital and will require an Under-The-Hood (U-T-H) tab to be enabled.

CAUTION
By modifying or changing anything in the back end, you may adversely affect the operation of PlanSwift. Modifications should be done in a read-only mode. If any
modifications are done to the back end, those modifications will be lost when the application is re-installed.

CAUTION
Unless you really must do this, we recommend that you do not proceed.

PlanSwift does not provide Technical Support for this.

You are on your own!

Use at your own risk!

Should you choose to proceed anyway, you will need a password to go "under the hood" that can be obtained from your PlanSwift representative or by sending an email to
takeoff @constructconnect.com.

APl Documentation

API Documentation

This APl documentation provides the development information needed to connect PlanSwift to other applications. It includes a description of the internal structure of the API,
the object structure of the API, and how to access PlanSwift's Under-The-Hood section; it describes the root properties and settings hierarchy of the application commands
(including code examples in C#, Delphi, VB/VBA / OLE, Pascal Scripting, and Pascal Scripting OLE), settings hierarchy, sections on connecting with OLE and COM, the developer
documents section, and the API Reference section, including coding examples for COM Object Models and Scripting.

PlanSwift does not provide technical support for using the API.

Section Contents

> PlanSwift Structue
> Connecting to PlanSwif
> Developer Documens

> APl COM Referene

Related articles

Filter by label

There are no items with the selected labels at this time.

PlanSwift Structure

PlanSwift Structure

Going "Under-The-Hood" allows the programmer to link to PlanSwift software to develop applications that work with PlanSwift. Under-The-Hood provides a programmer the
capability to link to PlanSwift software to develop applications that work with PlanSwift.

Overview of Under-The-Hood

Any development environment that supports COM,such as:C#, Visual Basic, Delphi, Java, etc., can utilize the PlanSwift API. Developers can use whatever Integrated
Development Environment (IDE) they would like to. With managed code, you you don't have to worry about freeing up PlanSwift (removing it from memory). When
programming in unmanaged code, such as Delphi, you will have to free up PlanSwift.

There are two ways to connect to PlanSwift: one is Early Binding, and the other is Late Binding. Early Binding allows you access to Types: everything is pre-loaded into the
proper structure. Late Binding means that everything has already been executed within code; you just want to hook into that via Object Linking and Embedding (OLE) and
listen for those events, so you do not get the same functionality as in COM with its pre-loaded Types and Items. Early Binding is preferable because it is a lot easier to use Early
Binding with Types versus Late Binding and having to do a lot of guesswork.

Obtaining the Under-The-Hood password

To obtain the Under-The-Hood password, please contact your PlanSwift representative or send an email to takeoff@constructconnect.com. Section

Contents

Accessing Under-The-Hood (U-T-H

Root Properties

v

Settings Hierarchy

v

Item Structure Overviav

* Job

Storages

Plugins (2

¢ _Units

_Types

Types

Lists

Reports

Developers

Hatches

Estimating

Textures

Related articles

Filter by label

There are no items with the selected labels at this time.

Accessing Under-The-Hood (U-T-H)

Accessing Under-The-Hood (U-T-H)

Before working with the API, a good understanding of the internal structure is recommended. To review the structure, the Under-The-Hood (U-T-H) tab needs to be enabled.
This section describes how to enable the U-T-H tab in order to access the internal structure of PlanSwift.

By modifying or changing anything in the back end, you may adversely affect the operation of the application. Modifications should be done in a read-only mode. If any
modifications are done to the back end, those modifications will be lost when the application is re-installed.

Follow these steps to enable the Under-The-Hood U-T-H tab.

1. Open PlanSwift.

2. Click on Settings along the top ribbon bar (see #1 on Figure 1 below).

3. Select Interface from the options on the left (see #2 on Figure 1 below).
4. Click onShow Under the Hood Screerfsee #3 on Figure 1 below).

4’] Home Page Tools View Estimati Lists Settings | Reports Help Plugins e} ﬂl
License
Manager ~ 1
Licensing
Data Storage .
Gooeal Interface Settings
Company :
Keyboard Hotkeys Color Scheme: 3
Interface Blue ~ /
e ’l_Pa"\ 2 [Show Under The Hood Screen
nnotations
Graphics [] Show Types Tab in Templates Screen
Takeoff Tools
Snapping] Show Full Screen Cursor
Notifications [[] Draw Cross Hairs Cursor on Image
Digitizer T ablet
Property Groups [Large Scroll Bars

Advanced [“] Show Flying Tool Hints
[¥] Show Hover Hints
[] Show Dev Tools on Plugins Tab
[[] Show Browse For Job
[“] Disable Job Locking (requires Usemame when active).
[[] Show ReportDesigner
LItk Sece ShiCitiing Enter Password For Under The Hood

[] Show Auto Count Tool 4 — [|

[] Enable Extended DPI Range for TIFs

Figure 1

5. For the password, please contact your PlanSwift representative or send an email to takeoff@constructconnect.com. Enter the password (see number #4 of Figure 1) and
click on Ok.

6. An U-T-H (for "Under-the-Hood") tab now appears on the top ribbon bar (see the red arrow in Figure 2). Click on U-T-H.

Home | page Tools View Estimating Lists Templates Settings Reports Help U-TH Plugins fearch [| Undo |

J@@LZ € Q@QQ@ w B2 gt e %

New Open Email Back Fwd Zoom Zoom Zoom Pan Scale Dimension Atea Unear Segment Count Auto
Job Page In v Count
Job Navigat Zoom / Pan M Takeoff
Figure 2

7. Clicking on U-T-H tab displays the Under-The-Hood (U-T-H) hierarchy (Figure 3). PlanSwift is the root, or the parent object. Each of the folders beneath PlanSwift is a
child of PlanSwift.

#3) Home Page Tools View Estimating Lists Templates Settings Reports mgp|u-w[_

= DX | $

Properties Copy Paste Delete Refresh Bulk Update
Propasies’

PlanSwift Folder

H [|Lists

+-[] |Reports
- [B] |Developers
| 2) [Hatches
-\ |Estimating
HI) [Textures

OO e O sy e S o O O e PO

Figure 3

Root Properties

Root Properties

This section describes how to access the advanced Root Object Properties window.

Double-click on PlanSwift (see red arrow of Figure 1) to open the Advanced Properties window for the root object. Simple
Description
API Call: planswift
planswift.root

Use "\" (without the quotes) to access the root object.

o) Home Page Tools View Estmatng Lists Tempiates _Setungs _Reports Help | UTH | prgins = | Ut |
@ i T ; x ﬁ -] /B Warning: Making changes to data Under The Hood can ca
i ‘ 4 [] At corruption/loss, and could even cause PlanSwift to crash, Use 3
Properties Copy Paste Delete Refresh Bulk Update Browse to Doc .) B
Properties PlanSwift Folder - Editor PlanSwift will not be resposible for lost or incorrect data.
Custom 1 | Developery Warning / Disclaimer
- | ¥ Properties - []
B e & = = . = ~ ; . = Fom .
s 5 K | = | + * 7 () Q) | o | a ¥ | Shaw: Narmal S} oot Events
[Farmula [iputUnits [adjust [Result |output Units [11
> 3 @0
1 |Folder |[!E)<EPath:[\Datz |C:\Progran‘| Files {XSG)'| |@| ¢ | O
|| Inheritance path:
Input Advanced | Form | Ok | Cancel |

Figure 1

Settings Hierarchy

Settings Hierarchy

Settings are the root setting for PlanSwift. They are the default configuration settings for PlanSwift and can be written, read, and modified. Custom settings can also be added.
This section provides a list of these settings and coding examples in C#, Delph, VB / VBA OLE, and Scripting of how to access the settings.

To obtain the Advanced Properties of Settings, double click on Settings (red arrow in Figure 1).

M Home Page Tools View Estimating Lis|

éj T Tl x A
Properties Copy Paste Delete | Refresh Bulk Up

| Propel
Custom 1

Open Job Dialog
Recent Jobs
Blake Residence
Sample Plan
1004

MNotes

Show Me How

= |Email Job
= [Mew Job
= |Cpen Job
= |Print

= |Scale
-
-
-
-

Properties
ConfirmDim
Batch Rename
Qverlay

| Add Pages
F—:I--@|Doddng

(| iCurrEnt
Seripting
Reports

New Job Dialog
Properties Dialog
E=stimating

Add Page Dialog

666600

,_|
i)
[
a
o

Figure 1

See Figure 2 for the Settings Advanced Properties window. Note that you may or may not have some of these property values in your version of the software. API calls for each
of these are covered in alphabetical order.

e Properties - [Settings]

el X|@|+ - % 2 () OQ-| 20|~ v 2| Show: Nomal - @nggﬂt Events ~
Name A |Formula |Input Units |Adjust |Result |Ouiput Units |~
Item
i) o S[9]0
I Name Settings Settings @
Other
| AngleSnapHotKey 119 119 &SNP
| AutoSelectFirstPage True &0
| AutoUpdate True &HNQ O
Color Scheme Blue Blue &HNG IO
| ContinueWithHotkey 0 0 Euii
~| CreateBookmarkHotkey 66 66 &HNY| O
| CustomerMum dave.hansen @planswift.com dave. hansen @planswil @ ‘«Q O
| Default Measurement Type |English English &Y O
| DefaultAreaTransparency 100 100 &GO
| DefaultCountTransparency 100 100 Q|
| DefaultCurrency $ S ||
| DefaultlinearTransparency 100 100 L Eeain|
-| DefaultNoteTransparency 105 105 &SP O
| DefaultSegmentTransparency |100 100 &H QO
| Digitizersnap True @a
| DigitizerSnapHotkey 114 114 QO ||
| EnhancedImage True &Y O
FlyingToolHints True @10
~tFullscreenCursor True & QO
~{Height 822 822 &SNP O
| Hide Types Tab O False & QO
-t Install GUID {ACD46CF9-B796-4BEA-9398-60733AA63EBC} {ACD46CF3-B796-4BEL @ Q [}
| JumpLastview O False Q|
~fLanguage English English G| O
| LastReportvalidUntil 60 days 60 days Q| O
left -1905 -1305 90
~MagnifierHotKey 77 77 SO
| MeasurementEntry English English &GO
| NewAreaHotKey 49 49 QO
| NewCountHotKey 52 52 & QO
I NewFromTemplateHotkey 84 84 &G
I NewLinearHotKey 50 50 &Y O
| NewNoteHotKey 187 187 &SN O
NewSectionHotKey 78 78 &0
| NewSegmentHotkey 51 51 &GO
| NoAskBreakInheritance O False SO
~{ NoAskCopyPoints O False &GO
~jNodeSize 4 4 &GO
~1Ortho True G| O
~IPIN PatioFive50 PatioFive50 &P O
-1 PageNameFormula [Title] [-][Pg#] [Title] [-1[Pa#] Q|
| PanHoverSpeed 44 44 &Y O
~{ PanZoomHover True QO
| PanZoomHoverDelay 500 500 &HNG|O
~| PanZoomHoverTransparency |90 90 SO
| PanspeedKeyboard 125 125.00 &Y O
| PointSize 10 10 | QO
| PropertiesWindowHeight 952 952 & PO
| PropertiesWindowLeft 410 410 &GO
| PropertiesWindowTop 43 49 9| O
| PropertiesWindowWidth 883 883 &GO
| Property Groups Item Item EAEain|
| REPORTDESIGNER True é‘ Q O
| RecordHotKey 82 82 Q@0
| Reportvaliduntil 30 Days 30 Days QO
| SalesTax1 0 % 0.00 % &SNP
| SalesTax2 0 % 0.00 % &Y O
| ScrollDownHotkey 68 68 &GO
ScrollLeftHotkey 83 83 &0

SCIOIKIGNTHOTKEY U s A | L
ScrollUpHotkey 69 59 PN
SendErrorReport O False @ v O
SendScreenshot False P
F ShowWelcome O False ST
SmartOrtho v True &P O
ToggleImageEstimatingHotKey | 123 123 el
ToggleOrthoHotkey 72 72.00 &0
Top 8 8 QO
Width 1534 1534 HEIE

{ WindowState 1 1 HNP|C
ZoomHotkey 121 121 &Y O
ZoomHoverSpeed 40 40 &P O
ZoomInHotKey 174 174 SO
ZoomOutHotKey 109 109 &P O
ZoomSpeed 5 5.00 & QO
ZoomSpeedKeyboard 50 50.00 &P O
ZoomToFitHotkey 118 118 HNP|C =
Inheritance path:
Input Form Ok Cancel
Figure 2
API Calls
° Delphi
* CH
. VB/VBA (OLE)
. Scripting
Delphi

Using litem Object Model

main;

C#

Using litem Object Model

VB/VBA (OLE)

Using litem Object Model

main ()

plan

t

Scripting

10

t.getItem('"\Settings');

11

AllowExtenderDPI

AllowExtenderDPI

Boolean value that enables or disables extended DPI Range for TIFFs. Checked is true and enables it; unchecked is false and disables it. Figure 1 shows where this setting is
controlled in the Settings / Interface / Interface Settings window.

Figure 1

API Calls
* Delphi
¢ CH#

* VB/VBA (OLE)
* Pascal Scripting
® Pascal Scripting (OLE)

Delphi

Using litem Object Model

[

main;

H O ©W ® J o U W N

o

[

O O J o U W N

C#

Using litem Object Model

ft();

n(@"

Using PlanSwift Object Model

12

Main ()

< o s W N

VB/VBA (OLE)

Using litem Object Model

Bw N

o »

ift9.PlanCenter"

ttin

W N e

(&

Pascal Scripting

Using Item Object Model

B W N

(&

Pascal Scripting (OLE)

Using Item Object Model

xtenderDPI')) ;

Root Object Model

AngleSnapHotKey

13

AngleSnapHotKey

Integer value that returns an ANSI key code (default code 72, key H). Figure 1 shows where the AngleSnapHotKey assignment is made. Ortho Snap (another name for
Angle Snap) is also controlled in the PlanSwift window (Figure 2) and in the Settings Window (Figure 3).

API Calls

* VB/VBA (OLE)
Pascal Scripting OLE

* Delphi
ccH
Delphi

D) tome Page Toos View Estmating _Lists _Tompates | Settngs | Repors top_pmgis S | [U |
oo
Maraoes -
[-
Dotz
General Keyboard Hotkeys
e Halkss Pumary G Gy
Dbty ZomoFt[F7 | SncathZoom it + |
povetsions Zoom 0| SmcohZean 0 Nan-_|
TZZ’:,’TW Previous Zoom: [None NNWLAM};—‘\
Nottiine selole | oot s—]
Do T Scnlbomp——] g
Pty trops s |
seotfgtl] Sunsos o Recodna 7|
ewsecin]
s % Togolnase/Esmaig Wow 17—]
‘Seaich Bookmarks: | None L .
ot Wi e
Tonl Dt S (77—
Togge Angle Snap (Orthol. [F§
Toggle Veriy Points:
Quick Seact[space |
Figure 1
= 7 : T - T ¥ e
-] Practice Residential Plan - Use for demo & : il
i
T ilng
M == L i ~
A Xy § i :
] . select Stop
i
hearch: | | = —
| shen digitizing
%] PlanSwift Shortcuts L 2
| yboard shorteuts
Pages, Bookmarks
at view of the page
7 Takeoff Summary
- rea and Linear t
Lt HNotes -

o

1820.5,2811.0

|Sna|:| |W| Freetand |Ven'fy Puints|

Figure 2

-@ Home Page Tools View Estimating Lists Templates | Settings = Reports

A

License
Manager ~

Licensing

- Data Storags i
- General Snapping
- Company
- Keyboard Hotkes Enable Snapping to points

- Interface [#] Snap to PlanSwilt points

s ifdn (] Sniap to CAD poirts
- Arnotations :
- Graphics Hover ko Snap &xis

Tokeol Tocs it [2] Orthe - Snap b angles [hald Shiftfor temporaty enable/disable]
‘Shapping.

e Smart Ortha - Shap only when close (o angles
Matifications

Digizer Tatlet
Property Groups
Advanced

Figure 3

Pascal Scripting

14

Using litem Object Model

=
oW N H O ©w o J o U oW N

o VW ® J o U

C#

Using litem Object Model

ift();

m(@ "

VB/VBA (OLE)

Using litem Object Model

ift9.PlanCenter"

15

Pascal Scripting OLE

Item Object Model

BSw N

Pascal Scripting

Item Object Model

g w NP

AutoUpdate

AutoUpdate

Boolean value that toggles AutoUpdate on or off. Checked is true (on) and enables it. Unchecked is false (off) and disables it. If this box is checked, the Update
Notifications settings in Figure 1 will be set to Notify me of all recommended updates. If the box is not checked, then the Update Notifications screen will be set to Do
not notify me of updates. If the Update Notifications in the Settings / Notifications area is set to Notify me of all recommended updates, then the U-T-H AutoUpdate
value will toggle to checked (true).

16

/3 Home Page Tools View Estimating Lists Templates & Settings | Re

ko

License
Manager =
Licensing

- Data Storage

- General Notifications

- Campary e

- Keyboard Hotkeys Update Motifications

- |nterface () Do nat natify me of updates

- Zoom # Pan :

Arnaes (@) Notify me of all recomended updates

-~ [raphics () Notify me of all updates

- Takeoff Tools

Snépplng Beta Tester

- Motifications e

- Digitizer T ablet [Wham if ereating a LOCAL job

-~ Prapetty Groups] Wain i creating an ARCHIVE job

- Advanced : :
‘whamn if not installed properly
[Canfim when deleting cbjects
Show Dizclaimer when Auto Scaling a page
Ask to delete the item when the last section iz deleted
Aizk bo copy digitizer points when copying items.
Ak to break property inhentance.
[C] Do not wam when importing POF files.

Figure 1

API Calls
* Delphi
¢ CH

* VB/VBA (OLE)
Pascal Scripting OLE
® Pascal Scripting

Delphi

Using litem Object Model

main;

W N e

= O W ©® J o U

[ETN

Using PlanSwift Object Model

O W W J oUW N

i

17

C#

Using litem Object Model

< o U W N

o U W N

VB/VBA (OLE)

Using litem Object Model

o U W N

oo W N

Pascal Scripting OLE

Item Object Model

sSow N

Pascal Scripting

18

Item Object Model

g W N

19

AUTOCOUNTWIZARD

AUTOCOUNTWIZARD

Boolean value that enables or disables the display of Auto Count tool on the Main Menu. Checked (true) enables its display; unchecked (false) disables it. Figure
1 shows where this value is controlled in the Main Menu / Settings / Interface Settings window. Figure 2 shows where the Auto Count tool is displayed on the Main Menu
when enabled.

4‘9 Home Page Tools View Estimating Lists Templates Settings | R

he

License
Manager =
Licensing
- Data étorage :
- General Interface Settings
- Company

- Keyboard Hotkeys Calar Scheme:

Elue b
Shaw Under The Hood Screen
Show Tepes Tabin Templates Screen

- [@raphics
- Takeoff Tools
- Shapping

- Motifications

- Digitizer T ablet
- Property Groups
- Advanced

Show Full Screen Cursor

[] Drraw Cross Hairs Cursar on I mage
[1 Large Serall Bars

Show Flying Toal Hints

Show Hover Hints

[] Shaw Dev Tools an Plugins Tab

[] Shaw Brawse FarJab

Dizable Job Locking [requires Usemame when active].
[] Shaw RepartDesigner

[| Disable Estimage Grid Overtyping
Show Auto Count Taol

[T] Enable Extended DFI Range for TIFs

Figure 1

Reports Help U-TH Plugins |search
Nowe B itk e %

an Secale Dimension Area Linear Segment Count Auto Single
s e . Count Cliek ™

Measure Takeaff

Figure 2

API Calls
* Delphi
¢ cH#

* VB/VBA (OLE)
® Pascal Scripting (OLE)
Pascal Scripting

Delphi

Using litem Object Model

main;

oo W N

20

H O ©W 0 J o

= e

Using PlanSwift Object Model

N O

< o u

\UTOCOU

C#

Using litem Object Model

o Ul W N

W N e

o O«

VB/VBA (OLE)

Using litem Object Model

enter"

ft9.PlanCenter"

', "AUTOCOUNTWIZARD")

Pascal Scripting (OLE)

21

Item Object Model

=W N e

Settings',

Pascal Scripting

Item Object Model

a o W N e

22

AutoDimenOnScale

AutoDimenOnScale

Boolean value that controls the display of the Disclaimer when Auto Scaling a page if box is checked. Checked (true) displays the disclaimer; unchecked (false) disables
display of the disclaimer. The PlanSwift Home / Main Menu ribbon bar Scale Settings control and the window it opens is shown in Figure 1. Click on Auto in the window
to control scale automatically (Figure 2). After selecting a scale (from the drop-down shown in Figure 3) and clicking OK, the Auto Scale Disclaimer window (Figure 4) is
visible (as long as the AutoDimenOnscale variable is set to true).

Reports Help _Plugins =
e L]
i 2 ot ik e g
b |[scl Dimension | Ares Linear Segment Count | Singie
- o " Gl
Wpsue kot
Read Our =

tions. = *
\L Help Files

lgan Arc

v a Page 3
< N Free Online
ategration G e

scale

UEUS

-
@

Fraction

pw To Feet 5 Inch

d FAQ {] :|" i

—

free 1-on-1' g

794 Ext Doovscsouson e
[Automaticall creste dimension ne

Show Me
How

[— o

Figure 1

Ty g
[standard (F15 " {Metric [auto

1 ~

| WARNING: Automatic setting of scale is only as

| | accurate as the scanned in drawing. MAKE SURE

i ¥OU DOUBLE CHECK SEVERAL DIMENSIONS ON

THE PAGE TO MAKE SURE THE SCALE WAS SET
ACCURATELY.

L
o'o"
| [&pply Seale to all pages. i G [-
Automatically create dimension line

E‘E ShmMe : Cancel .

Figure 2

: SR # bnly as
accurate ag 1/16 [E SURE
YOu DOUBI 3/32' DNS ON
THE PAGE {1,/2" =1'0" ns SET
316" =1'0" l

YT
1 =10
o0 142" =1'0"
[14pply Scal 13.":1 1=. 10..0 ear Scale
Automaticg.12" =1'0"
E.E Show 3 Z
Bow

1" =600

1" =600
102 7 g v

— 1

Figure 3

waRrnnG:|1/32"

‘ Cancel
T T

23

Auto Scale Disclaimer X

DISCLAIMER: Automatic setting of scale is only as
accurate as the scanned in drawings.

MAKE SURE YOU DOUBLE CHECK SEVERAL DIMENSIONS
ON EACH PAGE TO MAKE SURE THE SCALE WAS SET
ACCURATELY.

'WE WILL NOT BE HELD RESPONSIBLE FOR ANY LOSS
ASSOCIATED WITH IMPROPERLY SCALED PAGES.

Do not show this again

Figure 4

API Calls

De

Delphi

C#

VB/VBA (OLE)

Pascal Scripting OLE Pascal
Scripting

Iphi

Using litem Object Model

=
©C W ® oUW NP H O W o J o ;s W N

[

C#

main;

24

Using litem Object Model

ift () ;

< o U W N

VB/VBA (OLE)

Using litem Object Model

ft9.PlanCenter"

Pascal Scripting OLE

Item Object Model

W N

Root Object Model

Pascal Scripting

25

Item Object Model

g W N

BSw N

AutoSelectFirstPage

AutoSelectFirstPage

Boolean value controlling whether the first page (in the Pages, Bookmarks window from the Home tab) is automatically selected (Figure 1). Checked (true) selects the first
page automatically (Figure 2). Unchecked (false) brings up a blank PlanSwift screen (Figure 3).

utoDimenOnS

ean) ;

Home: Tools.

License

Manager =
Licensing

Page

Data Storage

View Estimating

Gieneral General

- Company
Keybsard Hotkeys utomaically open the last ob when PlarSuit apens
Interface utomatically open the first page of & job when apening

Lists Templates | Setiings | Reports Help U

oomien utomaic jump o the last view when opering a page
Annatations
Giaphics [] Automalically remove license when exting
- Takeoff Tools [Use Intemet Explorer Proxy Settings
Shapping
Nofaions Englih Metic:
- Diizer Tablt Disply; Engish vl DelawnsM]
Property Groups.
Advanced Eniry: Englsh -
Language Measursment Type Default Curency
English ~ | English vl ~
[Debug Language:
Figure 1

New Open Pint Email | Back Zoom
Job
Job Navigate
Pages, Bookmarks «

Home | Page Tools View Estimating Lists Templates

Jmd @) QEEQ N v gl K % B

Ft Zoom Zoom Pan
P

Settings _ Reports Help UTH Phugins "

Sale Dimension | Atea Linear Segment Count Auto
- - - " Count

Measure Takealt

Single Send
Click ™ Data~

17.00 x 11.00

Record

@

Annotations

o U

Annotations

=

Image

L+ XE S FBE

L

Search
-4 A2.11 - Sample Comm.
Guowyos wss

G Open Office 106 378.7
£ Warehouse 107 18588

150 Avchitectural lens [8 Pages]
) Rotate ths page
2 Overlay this page
2l Ths page has been inverted
2 Level s page
l A6 GATPE_BUMRGEDTIRCP &
| A2_11BULDING 11_FLOORPLAN &
&l A1_0 OVERALL STTE PLANL ®
] A4_11BULDING 11_BTERIORE...
163 Structural Plns [3Pages]
53152 11806~ 11 FOND,

HE T

Useful videos and links to get started

Watch "Show Me How" Videos

5 7 - Read Our
I3 Getting Started 8 Annotations Help Files
13 Start a New Project 3 Creating an Arc
I3 Open Existing Projects [Overlay a Page
Free Online
1 Setting the Scale O Excel Integration Bices
3 Watch all the Videos
Purchase wm "How To" ||&ey Chat
i < >
alicense |[|L.@ and FAQ &5 with us

Call now to schedule a free 1-on-1 web demo:

Figure 2

26

Search

%) | Home | page Tools View Estimating Lists Templates Seftings Reporis Help Plugins

P)
L=

New Open

io5 Navigte Zaom /Pan Measure Takeatt

Pages, Bookmarks «;

L XEFSF 5]

Search: x

&l A2.11 - Sample Commerdal Fl... = B &

3 Lobby 101
T3 Open Office 106 378.7
£ Warehouse 107 1948.8 =2
&3 office 102
3 Womens RR 104
3 MensRR 105
11 Exterior wals
1 Interior wals
% +Doors
32 ArchtecturalPlans [8 Pages]
(2 Rotate this page

i No Job Here

g A5 6ATIPE_ENARGEDTIRSP &
{8 A2_11BUNDING 11_FLOORPLAN &

Record

Figure 3

API Calls

* Delphi

* CcH#

* VB/VBA (OLE)

® Pascal Scripting (OLE)
® Pascal Scripting
Delphi

Using litem Object Model

= e
Sow N P O ©w o J o U oW N

o W ® J o U

C#

27

Using litem Object Model

< o U W N

VB/VBA (OLE)

Using litem Object Model

Pascal Scripting (OLE)

Item Object Model

=W N

Pascal Scripting

28

Item Object Model

W N

) 7

(&

N O I

Color Scheme

Color Scheme

String value that controls the color scheme of PlanSwift's top window area. Choices are Blue, Black, or Silver. The default is Blue. See Figure 1. Selecting Black is shown in
Figure 2.

,‘%.- Home Page Tools View Estimating Lists Templates | Seftings | R

ket

License
Manager ~

Licensing

- Data Storage .
... Geraial Interface Settings

- Compary

- Kepboard Hotkeys Color Scheme: /
- Interface | Blue ~ | h

- Zoom 4 Pan Black t 25

- Annatations |

- [iraphicz Silver tes Screen

- Takeotf Tools

- Shapping Show Full Sereen Curzor
N.ot.lf.lcatlons [Draw Cross Hairs Cursar on Image
- Dligitizer T ablet L I8
- Property Groups [] Larg=Serall Bars
- fudvanced Show Flying Tool Hints

Figure 1

:& Home Page Tools View Estimating Lists Templates [Riguiliis

he

License
Manager

- Data Storage
.. Gereral Interface Settings
- Compang
- Keyboard Hotkeys
- Interface
- Zoom # Pah
- Anhotations
- [raphice
- Takeoff Tools
- Snapping Show Full Sereen Cursar

N.ot.if.ic:ations [Drraws Crass Hairs Cursar on Image
- Digitizer T ablet

. Praperty Groups [] Large Scioll Bars
- Advanced Show Flping Toal Hints

Color Scheme:

Figure 2

29

API Calls

* Delphi

¢ cH#

* VB/VBA (OLE)

* Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

P O ©W W J o U WN

o

Using PlanSwift Object Model

[

main;

O W ® oUW N

[

C#

Using litem Object Model

tring())

VB/VBA (OLE)

30

Using litem Object Model

o U W N

ift9.PlanCenter"

" ttin

uos W N

Pascal Scripting (OLE)

Item Object Model

Pascal Scripting

Item Object Model

t.getItem(
t

a o W N e

Using the PlanSwift Object Model

31

ContinueWithHotKey

ContinueWithHotKey

Integer value returns an ANSI key code (default is "None") for the Continue With command. Figure 1 shows where the Continue With hotkey is assigned. Figure 2 shows
the Continue With window when opened. Figure 3 shows the right-click menu where Continue With is normally activated (click on the takeoff item that is to be continued
to select it, then right-click on it to see the drop-down menu, and then click on Continue With to open the Continue With window).

#3) vome Page Tools View Estimating Lists Tempiates | Setings | Reports Help UTH Pluging ““*! [
Licence
Manager -
Gisaing
~Daa Storage.
General Keyboard Hotkeys
Conpary
KesbosdHalkan Piinay Socondary Primary Socondry
Inetace
Iheisa Zomtofi[F7 | [tene SachZoonire ¢ [fone |
Bavetsions Zoom[F10__| [None Smoah Zoom 0t [~ | [Nome
Guhic,
s, PrviousZoon [Nors one e
Hees o Liear
Noticsions i e NewSegnert s |
Diger Tablet Seolown (0| [Mene__] Newtamt[s |
Py s ScrlLete 5 [Hene | —
Sort it 7 hone | StasSion Pont Recodng 3|
NewSecorc [} |
Meielv__ | (None | imatng Wi 12
Coste Bockmak 8 one Norrta e
chBookmake [Nare | [None
Contrun Witk ore | [None |
ToogeDipe: Srap [F3
Toggle Angle Snap (Orthol: [H
ToagleVeryPoris 5
Quik Searce [Space
Figure 1
Continue With x
Searchs |
e =
E] Continue with Existing
= () Sample Plan Takeoffs
G Lobby 101
&7 Open Office 106
3 Warehouse 107 LI
- offce 102
€3 Womens RR 104
11 Exterior wals
3 MensRR 105
2 Doors
I Interior wats
&+ £ Resdentl Pl Takeoffs
0 wrea
O avea
€3 area
€ area
3 area
O area
] area
O Area
2 Book.
8 concel

Figure 2

32

[’ Properties
4 Hide

“I" Move

@ Lock

() ShowLabel

@ Add More Points

[ET) Mew Section

i [E] Subtract From Section (P2P)
Subtract from Section (BOX)

Single Click Subtract Section

fo Copy

I Paste
x Delete
Add Arc Point
F At Order L4
B Edit Hyperlink...
C> Send Data »
= 5o To ltem in Estimating
& Go To ltem in Takeoff Summary

=25 Continue With 4'—__-—-—-_

“) Undo Report Layout Change

Figure 3

API Calls
* Delphi
e

* VB/VBA (OLE)
® Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

[

main;

= e
©C W ® I U S W N H O W ®J oUW N

[

33

C#

Using litem Object Model

Bw N

< o O

B W N

Property (@"

o »

VB/VBA (OLE)

Using litem Object Model

B W N

o »

W N

(&

Pascal Scripting (OLE)

Item Object Model

N O R

Pascal Scripting

Item Object Model

s w N e

(&

34

Using the PlanSwift Object Model

35

CreateBookmarkHotKey

CreateBookmarkHotKey

Integer value returns an ANSI key code (default code 66, the letter B) for the Create Bookmark command. Figure 1 shows where the Create Bookmark hotkey is assigned.

Advanced

#3) Home Page Tools View Estimatng Lists Templates | Settngs | Reports Help U-TH Plugins

Keyboard Hotkeys

ZoomtaFit[F7

Zoom:

Previous Zoorm

Serllp:
Sctol Down:
SelLett

Serl Right
Magnifer

eate Booknark
Search Boskmatks:
Contiue Wi

Toggl Digtzer Snip:

Toogle Veily Poits:

Guick Seach 55

Undo

Primay Secondary

SreshZoom e [Nan+] [one |
SrahZoom Dt [Nan-_] [hore |
Nowhves 1
New Linear: [2
NowSoanent [|
Newcank[i |

Stat/Stop Fot Recording [
New Section

Taggle Inage/E simating Windon:
New ot [~

Figure 1

API Calls

Delphi

C#

Delphi

CH

VB/VBA (OLE)

Pascal Scripting (OLE)
Pascal Scripting

Using litem Object Model

o U W N

main;

Writeln (property

end

Using PlanSwift Object Model

o U W N

main;

36

Using litem Object Model

B W N

ift () ;

< o u

N O I I

o o

VB/VBA (OLE)

Using litem Object Model

N O R

o o

1

2

3

4 nameProperty ift -t] ateBookmarkH
5 le iteln (pror

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

BwW N

(&

37

Using the PlanSwift Object Model

38

DefaultAreaTransparency

DefaultAreaTransparency

Integer value that sets the Area transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultAreaTransparency controls in both the Settings screen and the U-T-H Settings / Advanced Properties.

#3) Wome Page Tods View Estmating Lists Tompiates | Settngs | Reports Help UTH F

Under-The-Hood
Settings

EX|E[+-*¥x7 070

Figure 1

API Calls
* Delphi
¢ CH

* VB/VBA (OLE)
* Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

[

main;

H O ©W ©® J o U W N

o

Using PlanSwift Object Model

[

ycedure main;

O O J o U W N

C#

Using litem Object Model

39

< o s W N

o U W N

VB/VBA (OLE)

Using litem Object Model

main ()
Dim plar
Di ttin

Dim proper

o U W N

uos W N

Pascal Scripting (OLE)

Item Object Model

BSw N

Pascal Scripting

40

Item Object Model

g o W N

41

DefaultCountTransparency

DefaultCountTransparency

Integer value that sets the Count transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultCountTransparency controls in both the Settings screen and the U-T-H Settings / Advanced Properties.

43) Home Page Tools View Estmatig Lists Tempiates | Setungs | Reports Help UTH F
Under-The-Hood
Settings.

X[+ - %7 ()0~

Takeoff Tools

[y —
I

Less

Vet ot hn ecadny
) Conom when ecording dimreion:

SroaCic - Detction S Advarced)

Figure 1

API Calls
* Delphi
¢ CH

* VB/VBA (OLE)
® Pascal Scripting (OLE)
* Pascal Scripting

Delphi

Using litem Object Model

H O ©W o J o U W N e

= o

Using PlanSwift Object Model

[

main;

©C W W oUW N

[

C#

Using litem Object Model

42

"DefaultCountTra

< o s W N

@"\Settings" , "DefaultCount

o U W N

VB/VBA (OLE)

Using litem Object Model

o U W N

uos W N

Pascal Scripting (OLE)

Item Object Model

BSw N

Pascal Scripting

43

Item Object Model

g o W N

44

DefaultCurrency

DefaultCurrency

String value that displays and controls the default currency (Figure 1). Options are those on the Default Currency drop-down menu below (see Figure 1). In the U-T-H
Settings (advanced properties) screen (Figure 2), click the Formula cell for Default Currency to open the DefaultCurrency Formula Editor window. The currency may be
edited here. Clicking on OK saves it, and it will be displayed in the Default Currency field in the Settings / General window.

#3) Home Page Tools View Estimating Lists Templates | Settings | Reports Help Ph
cense
Manages -
Dassion
General General
Conpery
= ﬁ
netace 51 Automtalycpenth s g of i when i
on?
] Atk s e it hon o
ity L1 amp opering a page
G
Tatel Tocks
Snapong
Notatars et
Dt Tobt Dy Erolsh T T
ooy s
oed iy Enoen
Largnse MessummentTyne WD Circy
g] [Ergon |
] DebugLangusce o
¢
¢
H
s
i
[Rp.
R
3
de v
Figure 1
Betw X[@|[+ =% 2 () O-|20[2 v 2] shownomal - 5 Fom
= Trormda. Tiptine it [Readt
o g
» -
w B
= I =
| @ Formul ator-DewutCuneney x
eviectrboney Sl S D O
- - 1
et ey 1
[zominzioer 1
Zenoutzoer]
Shon e T i o
o
T
i =
putopdate |l Resdt
Tosgleortrotier | ©
£ i
Snartore |
Soeetctoned = 5
ontoesd g
] gl 7 £
I s L4 s
SseTact o 3 oo
Figure 2

API Calls
* Delphi
* cH

* VB/VBA (OLE)

® Pascal Scripting (OLE)
® Pascal Scripting
Delphi

Using litem Object Model

[

IPlar
ITtem;

2 O W ©® J o U W N

=

Using PlanSwift Object Model

45

O W W U oUW N

-

C#

Using litem Object Model

VB/VBA (OLE)

Using litem Object Model

o U W N

oo W N

Pascal Scripting (OLE)

tring())

ttings

46

"oy
)

", "Default

Item Object Model

Pascal Scripting

Item Object Model

g W N

yultCurr

47

DefaultLinearTransparency

DefaultLinearTransparency

Integer value that sets the Linear transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultLinearTransparency controls in both the Settings screen and the U-T-H Settings / Advanced Properties.

43) Home Page Tools View Estmatig Lists Tempiates | Setungs | Reports Help UTH F

Under-The-Hood
B Settings

X[+ - %7 ()0~

D Teanspaency

I

Len v
[

Lese ()

Vet ot hn ecadny
) Conom when ecording dimreion:

SroaCic - Detction S Advarced)

Figure 1

API Calls
* Delphi
¢ CH

* VB/VBA (OLE)
® Pascal Scripting (OLE)
Pascal Scripting

Delphi

Using litem Object Model

H O ©W o J o U W N e

= o

Using PlanSwift Object Model

[

main;

s', 'DefaultLinearTranspare

©C W W oUW N

[

C#

Using litem Object Model

48

< o s W N

Settings" , "DefaultL

o U W N

VB/VBA (OLE)

Using litem Object Model

o U W N

uos W N

Pascal Scripting (OLE)

Item Object Model

BSw N

Pascal Scripting

49

Item Object Model

g o W N

50

DefaultMeasurementType

DefaultMeasurementType

String value that selects between Metric and English (Imperial) measurement types (see Figure 1). The U-T-H window allows the default measurement type to be changed
there (Figure 2). Enter English or Metric and click on OK. Figure 3 shows where the Measurement Type is set for a New Job.

43 Home Page Tools View Estimating Lists Templates Settings | Reports Help U-T

®

License
Manager *
Licensing

Data Storage
e General

Compary

KesboardH tomalicaly open the lastcb when PlanSuit opens

Intettscs tornaical open the fist page of & ob when spening

Zoam / Pan] Automatic jump to the last view when opering a pags

Annctations :

e] Automatically remove fcznse when exing

Takeolf Tocls] Use Intemet Esplorsr Prosy Satings

Snapping

Notifications English Metiic.

Dighizer Tablet Displey: Eniish v DefautUnis

Propety Groups i

Advanced N Bl Engish ~|
Language Measuement Type Defauit Curency
Engish v [Engish 3 v

Endi A

ittt raion

Figure 1

Hewiecbooter = =
Newtotroney 7 =
Zoarinzises 7 =

[+ =%/ ()0-

o =
-
fhes |
i
T
[
Figure 2
Tl e e =

24 QEEQ O w2 ol K

Sale Dimension | Area Lnear Segment

o Zo0m7an bessre i
Pages, Bookmarks <[newis - o x
LEXS S BB New Job
e o o nd dsrplr, oot et 0 s Fr o Trs e
s X0 | o s vt s !
1 A2.11 - Sample Commercl.. - 5. 4|
255 | wiwes: oeapon

N s ocaten: \.mmmw: -

=]
el s [1Pages] Not:Youhaveselected OCAL fo the catnof s b
a @
912 Rooteg s [1730s] ot om e eor
o=
50 S ik [3730e] s (5Pl aagesLocalte
o of [|| CPomen s bessPrs 00 St
@ seren @
l Founc *

B prcace Resdensl Pl - o demo
2 proctce armercs P - s forcer

121 sowmerow = ot

Figure 3

API Calls

* Delphi

cocH

* VB/VBA (OLE)

® Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

51

planswift: IPlanSwift;
settings: IItem;
roperty: IPropertyObject
g planswift := coPlanSwift .Create();
settings := planswift .getItem('\ y
:= planswift .GetProperty ('DefaultMeasurementType') ;

ResultAsString())

main;

ar
planswift: IPlanSwift;

:IPropertyObject;

', 'DefaultV rementType') ;

C#

Using litem Object Model

PlanSwift planswift = ew PlanSwift (),
ITtem settings = planswift.GetItem(@"\Setting) B
IPropertyObject property = settings.GetProperty("DefaultMes rementType") ;

console.Writeln (property.ResultAsString())

private id Main ()

PlanSwift planswift = new PlanSwift();

IPropertyObject property = planswift.GetProperty(@"\Settings" ,h "DefaultMeasurementType")

conso WriteLn (property.ResultAsString)

VB/VBA (OLE)

Using litem Object Model

main ()
Dim planswift = CreateObject ("PlanSw
settings = planswift.GetItem("\Setting
property = settings.GetProperty ("Defaultl
Console.Writeln (property.ResultAsString());

ul

Sub Main ()
Dim planswift = CreateObject("PlanSwi
Di nameProperty = plan ft.GetProperty("\Settings", "DefaultMeasure
Console.Writeln (property.ResultAsString)

End Sub

Pascal Scripting (OLE)

Item Object Model

=W N

Pascal Scripting

Item Object Model

g W N e

efaultMeasurementTs

53

DefaultNoteTransparency

DefaultNoteTransparency

Integer value that sets the Note transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultNoteTransparency controls in both the Settings screen and the U-T-H Settings / Advanced Properties.

43) Home Page Tools View Estmatig Lists Tempiates | Setungs | Reports Help UTH F
Under-The-Hood
Settings

X[+ - %7 ()0~

[y — £
I

(e v E)

Lone O
Lo v o

Seomert b
L [} e '

Cant o
Lo (] Moo

Limsin

oo

Lo (] Ve

Vet ot hn ecadny
) Conom when ecording dimreion:

SroaCic - Detction S Advarced)

Figure 1

API Calls
* Delphi
¢ CH

* VB/VBA (OLE)
® Pascal Scripting (OLE)
Pascal Scripting

Delphi

Using litem Object Model

H O ©W o J o U W N e

= o

Using PlanSwift Object Model

[

main;

©C W W oUW N

[

C#

Using litem Object Model

54

< o s W N

@"\Settings" ,"DefaultNoteTransy

o U W N

VB/VBA (OLE)

Using litem Object Model

o U W N

uos W N

Pascal Scripting (OLE)

Item Object Model

BSw N

Pascal Scripting

55

Item Object Model

g o W N

56

DefaultSegmentTransparency

DefaultSegmentTransparency

Integer value that sets the Segment transparency default. Values range from 0 to 255, with 100 being the default. Figure 1 shows the
DefaultSegmentTransparency controls in both the Settings screen and the U-T-H Settings / Advanced Properties.

#3) Wome Page Toois View Estimating Lists Tempiates | Setungs | Reporls He UTH F

Under-The-Hood
e Settings

X[a|+r-*/()0-

Takeoff Tools

Dol Tespaency See
[

Ie v oo W
Loee O
(o v Mo
e
Segnat
Lo v Mo v
Cant o
Lo (] o
Limsie
o v
o (] o

2 Vst poris vhen ey
2] Cofim whentecordng densions.

SigaCik - Detston Seigs e

Figure 1

API Calls
* Delphi
¢ CH

* VB/VBA (OLE)
® Pascal Scripting (OLE)
Pascal Scripting

Delphi

Using litem Object Model

= o
©C W ® J oUW N R B O © ® J o 0w N

[

C#

Using litem Object Model

57

< o s W N

o U W N

VB/VBA (OLE)

Using litem Object Model

main ()
Dim plar
Di ttin

Dim proper

o U W N

uos W N

Pascal Scripting (OLE)

Item Object Model

BSw N

Pascal Scripting

58

Item Object Model

g o W N

59

DigitizerSnap

DigitizerSnap

Boolean value that toggles digitizer Snap On and Off. Figures 1 and 2 show where Snap is controlled. When enabled (true), the Snap control is highlighted; when disabled

(false) it is not highlighted.

#3) Home Page Tools View Estimating Lists Templates | Settings | Reporis
License
Manager ~
Licensing
Data Storage i
General Snapping
[] Enable Snapping to points
- Snap to PlarSwit pointe
el Snp 1o CAD points
Annotations
Graphics Hover to Snap s
Takeoff Toolg Oithe - Snap to angles (hald Shift for temporary enable/disable)
Shaping Smart Ditha - Snap anly when close to angles
Notifications
-~ Advanced
Figure 1
| R I '
. @ ®
Search:

[4 Planswift Shortcuts Legend
[%] Shortauts Legend on dema
[a4.110a)

[4] sp1-22

[as11(0)

[spi-5

Pages, Bookmarks

i Takeoff Summary

& Attachments

BLDG-T1 FOUNDATIC

Notes

”

|-299.6, 30987 |

0ap | orna | Freetiona | verry pomts|

Figure 2

API Calls

* Delphi

¢ CH

* VB/VBA (OLE)

® Pascal Scripting (OLE)
Pascal Scripting

Delphi

Using litem Object Model

H O ©W ©® J o U W N e

o

Using PlanSwift Object Model

60

O W W U oUW N

-

C#

Using litem Object Model

< o U W N

o U W N

VB/VBA (OLE)

Using litem Object Model

o U W N

oo W N

Pascal Scripting (OLE)

61

Item Object Model

Pascal Scripting

Item Object Model

g W N

62

DigitizerSnapHotKey

DigitizerSnapHotKey

Integer value that returns an ANSI key code (default code 114, key F3). Figure 1 shows where the DigitizerSnapHotKey assignment is made. Figures 2 and 3 show where

Snap is also controlled.

) Home Page Tools View Estimaing Lists Templates

DataStorage

General Keyboard Hotkeys

Conpany

Kesbasd Holkes Primary

Ineace

Zoam /Pan ZoomtoF 7

Arectsion S

el Previous Zoom:

Takeal Tk

Snapein

Notfatons SalUn ¢
SerelDowr: [0

Serlleft 5
ScollAigh: |

Toagls Digicer Snap. 3

Toogle Angl Snap (Oithol: [Fa

Toggle Veily Fonts: [F&
Guick Search Space

ssssss

Settings | Reports Help _Plugins.

Socondary
[Nore |
[Nerw |
e
[bere]
[None |
[ere]
T
NowSscior [N |
Toggle nsge/Esmaing Windoe [F13

NewNate: |-

New Cour: (4

Figure 1

L= e

B a0 STIECT O ey U FTUIREYS U SO U8 REFO0ars ST TS

I Bookmark

Tap B once on the keyboard to create a Bookmark of the current view of the page

- Takeoff Summary

New Section

£ Attachments

Double Click to create a New Section when digitizing with the Area and Linear tools

| Wotes
- bl
2 B
~180.8, 23589 Snap Verify Points
Figure 2
'..'a,"l Home Pape Tools View Estimating Lists Templates @Settings | Reports
License
Manager =
Licensing
| . DataStorage i
. General Snapping
- Company . »
- Keyboard Hotkeys ’D Enable Shapping to points
- |nterface Snap to PlanSwilt points
- Zaom .-".F'an Shap to CAD points
-~ Annotations _
- Graphics Hower to Snap sz
- Takeoff Tool Ortho - Shiap to angles (hold Shift for temporary enableddisable)
- Snapping Smart Ortha - Shap only wheh close to angles
- Motifications
- Digitizer T ablet
-~ Property Groups
- fdvanced
Figure 3

API Call
* Delphi
c CcH

* VB/VBA (OLE)
* Pascal Scripting (OLE)
.

Pascal Scripting
Delphi

63

Using litem Object Model

[

main;

riteln (p

O W ® J o U Ww N

= o

end

Using PlanSwift Object Model

[

main;

©C W W oUW N

[

C#

Using litem Object Model

@"\Settings" , "D

o U W N

VB/VBA (OLE)

64

Using litem Object Model

o U W N

Pascal Scripting (OLE)

Item Object Model

=W N

Pascal Scripting

Item Object Model

g W N e

Enhancedimage

Enhancedlmage

Boolean value that controls whether an image is enhanced. Checked (true) enhances the image. Unchecked (false) doesn't enhance it.

65

API Calls

* Delphi

* CH

* VB/VBA (OLE)

* Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

O W ® J o U W N

=

Using PlanSwift Object Model

[

main;

© O J o0 U w N

C#

Using litem Object Model

VB/VBA (OLE)

66

Using litem Object Model

ift9.PlanCenter")

'

)

("EnhancedImage")

n());

o U W N

ift9.PlanCenter"

("\Setting

uos W N

n (property

Pascal Scripting (OLE)

Item Object Model

W N e

Pascal Scripting

Item Object Model

g W N

FullScreenCursor

FullScreenCursor

Boolean value controlling whether the cursor crosshairs extend fully up and down and left and right across the screen (see Figure 1). Checked (true) displays extended
crosshairs. Unchecked (false) displays shortened crosshairs.

67

ke

License
Manager ~
Licensing

- Data Storage
- [eneral
- Carmpat

- Interface

- Zoom 4 Pan

- Anmotations

- Graphics

- Takeoff Tools
- Snapping

- Motifications

- Digitizer Tablet
- Property Groups
- Advanced

A} Home Page Tools

- Keyboard Hotkeys

Estimating Lists Templates @ Settings | Re

Interface Settings

Calor Scheme:

Blue ~

[] Shaw Under The Hood Scresn
Show Types Tahin Templates Screen

Show Full Screen Cursar

[] Drraws Crozs Hairs Cursar on Image
[Large Scioll Bars

Show Flying Taol Hints

Shaw Hover Hints

[] Shaw Dev Taols on Plugins Tab

[Shaw Browse ForJob

Dizable Job Locking [requires Username when active].
Show ReportDesigner

[[] Dizable Estimage Grid O veityping

[Show duta Count Tool

[] Enable Extended DPI Range far TIFs

Figure 1

API Calls
* Delphi
* CH#

* VB/VBA (OLE)
® Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

main;

3
4
5
6
7
8
9
0

[

68

C#

Using litem Object Model

Main ()

1ft () ;

tItem(@"

~ o U W N

o U W N

VB/VBA (OLE)

Using litem Object Model

o U W N

ift9.PlanCenter")

ttin

uos W N

Pascal Scripting (OLE)

Item Object Model

(GetResult

BSw N

Pascal Scripting

69

Item Object Model

g W N

70

HideTypesTab

HideTypesTab

Boolean value that toggles the Type Tab in the Templates screen to show or hide. Checked (true) displays the Types Tab (Figure 1); unchecked (false) does not display it.

Figure 2 shows the Types tab.

-.'G‘. Home Page Tools View Estimating Lists Templates | Settings | R
License
Manager ~
Licensing
- D ata Storage =
o el Interface Settings
- Company)
- K.eyboard Hotkeys .Eolor [ohene
- |nterface | Bluie Vi
gl .-’.F'an Show Under The Hood Screen
- Annotations :
. Tirarhin Show Tupes Tab in Templates Screen
- Takeoff Tools
- Shapping Show Full Screen Cursor
-~ Notifications [] Draw Cross Hairs Cursor on Image
- Digitizer Tablet i e
- Property Groups [] Lerge Serall Bars
- Bidvanced Show Flying Tool Hints
Show Hover Hints
[] Show Dew Tools on Plugins Tab
[] Shaw Browse FarJab
Dizable Job Locking [requires Username when active).
[] Shaw RepartDesigner
[[] Disable Estimage Grid Overtyping
[Shaws At Count Tool
[] Enable Extended DP| Range for TIF:
Figure 1

) Home Page Tools

QR

New
Item ~

Folder ~ Area ~

View Estimating Lists | Templates

=

Linear ~

Settings Reports

—a ® >
v e W U N
New New New

Segment ~ Count~ Assembly ~

Q@ Sample Takeoff Templates | ﬁ Parts and Assemblies | &

[Name

[Color

[Description [Price Each

+

i) |Area Dropdown

+

Scripted Tools

Count Dropdown

Linear Dropdown

Segment Dropdown

Rubber Stamps

-

Revision Clouds

&

Sticky Tabs

Figure 2

API Calls

Delphi

CH

VB/VBA (OLE)

Pascal Scripting (OLE)

« Pascal Scripting

71

Delphi

Using litem Object Model

main;

Bw N

= O W ©® J o U

[ETN

C#

Using litem Object Model

N O R

Plan
IIte

IPropert

o o

W N e

o o

VB/VBA (OLE)

Using litem Object Model

N O R

o o

Using PlanSwift Object Model

72

Pascal Scripting (OLE)

Item Object Model

Pascal Scripting

Item Object Model

a o W N e

73

WriteLn (property.Re tring)

Icon

Icon

String value for the PlanSwift icon.

API Calls
* Delphi
L

* VB/VBA (OLE)
® Pascal Scripting (OLE)
* Pascal Scripting

Delphi

Using litem Object Model

[

main;

2 O W ® J o U W N

=

[

O O J o U W N

C#

Using litem Object Model

ain ()

@"\Settings",

VB/VBA (OLE)

74

Using litem Object Model

o U W N

ift9.PlanCenter"

" ttin

uos W N

Pascal Scripting (OLE)

Item Object Model

Pascal Scripting

Item Object Model

g W N

InstallGUID

InstallGUID

Read-only string value that is a unique identifier for installation.

75

API Calls

* Delphi

¢ CH

* VB/VBA (OLE)

® Pascal Scripting (OLE)
* Pascal Scripting

Delphi

Using litem Object Model

O ©W o J o U W N

= o

[

, 'InstallGUID') ;

©C W W oUW N

[

tring)

VB/VBA (OLE)

Using litem Object Model

~ o U W N

tring())

Using litem Object Model

ift9.PlanCenter")

o U W N

ift9.PlanCenter"

Settir

uos W N

Pascal Scripting (OLE)

Item Object Model

'InstallGUID')) ;

W N e

Pascal Scripting

Item Object Model

g W N

s', 'InstallGUID') ;

JumplastView

JumplastView

Boolean value controlling whether to jump to the last view of a page when reopening that page (Figure 1). For example, if a particular area of a page has been zoomed
in on, and then a different page opened, then, if the Automatic jump to the last view when opening a page box is checked, then the zoomed-in view will be visible
when reopening that page. If that box has not been checked, then the user will only see the default Fit-to-Page view when reopening that page. Checked (true) jumps to
the last view. Unchecked (false) jumps to the default view.

77

Home Page Tools View Estimating Lists Templates | Setlings | Reports Help U-T

he

License
Manager ~

Licensing

D.ata Storage

- General General

- Company

. Keyboard Hatkeys BSutomatically open the |ast job when PlanSwift opens

- |nterface Automatically open the first page of & job when opening

-~ Zoom H.F'an Automatic jump to the last view when opening a page

- Annotations .) .

. Graphics [] Autamatically rsmove license when exiing

- Takeaff Tools [] Use Intetnet Explarer Prosy Settings

- Snapping

- Notifications English Metric

- Digitizer Tablet Display: | English w Default Units: |"‘lI -

- Property Groups

- Advanced Entry: | English e
Language Meazurament Type Default Currency
Enaglish ~ | English ~ | % b

[] Debug Language

Figure 1

API Calls
* Delphi
* CH#

* VB/VBA (OLE)
* Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

main;

[O

e ()

Item ("'

O W ©® J o U

[ETN

78

O VW ® J o U

C#

Using litem Object Model

Main ()

o Ul W N

Bw N

o »

VB/VBA (OLE)

Using litem Object Model

Bw N

"

o »

ft9.PlanCenter"

[O

(&

BwW N

JumpLastVi

Pascal Scripting (OLE)

79

Pascal Scripting

Item Object Model

a o W N

80

Language

Language

String value that displays or changes the region language: Deutsch, English, Espafiol, Italiano, Frangais. It is also controlled from the Settings / General screen (see Figure
1). PlanSwift must be restarted for the change to take effect.

“'3_- Home Page Tools View Estimating Lists Templates Settings | Reports Help Ph
License

Manager *

Licensing

- Data Storage

[General. General

- Compary

- Keyboard Holkeys Automatically open the last job when PlanSwift opens

- |nterface Automatically open the firsk page of a job when opening

+~ Zaom a".F'an [Automatic jump to the last view when opening a page

- Anrotations ; : il

. Graphics [Automatically remove license when exiting

- T akeoff Toolz [] Use Internet Explorer Prosy Settings

- Shapping

.. Notifications Englizh et

~+ Digiizer Tablet Digplay: Enaglish w Default Units: | M w

- Property Groups

- Advarced Entry: | English b
Language Measurement Type Default Currency
Enalizh ~ | |English Rl v
Deutsch
E spafiol
Italiaho
Francaiz

Figure 1

API Calls
* Delphi
¢ CH

* VB/VBA (OLE)
* Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

main;

o U W N

8

10
11

81

O 0 J o U

C#

Using lltem Object Model

VB/VBA (OLE)

Using lltem Object Model

main ()

sub Main ()
Dim ¢

Dim namePrc

Pascal Scripting (OLE) Pascal Scripting

tring(

'

Settings', 'Language')) ;

82

Item Object Model

('Language') ;

ring) ;

g W N

, 'Languag

83

Last

ReportValidUntil

LastReportValidUntil

String value that the sets the number of days the last report is valid for.

API Calls

Delphi

Delphi

C#

VB/VBA (OLE)

Pascal Scripting (OLE)
Pascal Scripting

Using litem Object Model

=
©C VW ®J oUW NP H O W ® J o ;s W N

[

C#

main;

IPlan
ITtem;

Using litem Object Model

VB/VBA

(OLE)

Using litem Object Model

ift9.PlanCenter")

21idUntil")

o U W N

ift9.PlanCenter")

Settir

uos W N

Pascal Scripting (OLE)

Item Object Model

W N e

Pascal Scripting

Item Object Model

g W N

Read-only integer value that displays the left position of the Main Window.

API Calls

* Delphi

* CcH#

* VB/VBA (OLE)

® Pascal Scripting (OLE)
® Pascal Scripting

85

IPropertyOl
le

Delphi

Using litem Object Model

= o
©C W ® J oUW N R B O © ® J o 0w N

[

C#

Using litem Object Model

VB/VBA (OLE)

86

Using litem Object Model

o U W N

Using PlanSwift Object Model

Settir

uos W N

n (property

Pascal Scripting (OLE)

Item Object Model

W N e

ift9.PlanCenter’

ift9.PlanCenter"

Pascal Scripting

Item Object Model

g W N

MagnifierHotKey

MagnifierHotKey

Integer value that returns an ANSI key code (default code 77). The (default hotkey) letter M invokes the Magnifier command in PlanSwift (Figure 1).

87

700X 1100

tarted (3

Pr—

Chat
with us

b demo:

Figure 1

API Calls
* Delphi
* CH

* VB/VBA (OLE)
* Pascal Scripting (OLE)
Pascal Scripting

Delphi

Using litem Object Model

H O W ® o U W N

= o

[

© O 9 o U w N

C#

Using litem Object Model

88

< o s W N

@"\Settings" , "MagnifierHotKey

o U W N

VB/VBA (OLE)

Using litem Object Model

o U W N

uos W N

Pascal Scripting (OLE)

Item Object Model

BSw N

Pascal Scripting

89

Item Object Model

g W N

90

'

Settings', 'MagnifierHotKey');

91

MeasurementEntry

MeasurementEntry

String value that sets the Measurement Entry to English or FIS (Feet/Inches/Sixteenths) (Figure 1). The default is English.

“G_ Home Page Tools View Estimating Lists Templates | Settings | Reports Help U]
License

Manager ~

Licensing

- Data Storage

- General General

- Campany

- Keyboard Hotklys Automatically open the last job when FlanSwift opens

- |nterface Autamatically open the firzt page of & job when opening

-~ Zoom a".F'an [] Autamatic jump to the last view when opening a page

- Apnotations] : il

- Graphics [Autamatically remaove license when exiting

- Takeoff Tools [] Use Internet Explorer Prasy Settings

- Snapping

.. Notifications English M etric

- Digitizer Tablet Display: | English L Default Units: | M il

- Property Groups g

- Advanced Entry:
Language Measurement Type Default Curency
Enalizh ~ | |English v||$ ks
[Debug Language

Figure 1

API Calls
Delphi
CH
VB/VBA (OLE)
Pascal Scripting (OLE)
Pascal Scripting

Delphi

Using litem Object Model

1
2 main;
3
4 IPla
5 Iltem;
6
7
8
9

10

11

Bw N

o »

92

C#

Using litem Object Model

B W N

ift();

em (@"

< o u

tring())

W N e

o o

VB/VBA (OLE)

Using litem Object Model

W N e

o o

tring())

N

(&

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

93

Item Object Model

g W N

Using the PlanSwift Object Model

1

2 begin

3 property := PlanSwift.GetProperty('\Settings', 'MeasurementEntry');
4 ShowMessage (property.ResultAsString) ;

end

94

Name

Name

String value containing the property name.

API Calls
* Delphi
e

* VB/VBA (OLE)
® Pascal Scripting (OLE)
® Pascal Scripting

Delphi

Using litem Object Model

[

main;

O W ® J o U Ww N

= o

[

© O 9 o U w N

C#

Using litem Object Model

95

VB/VBA (OLE)

Using litem Object Model

Sub main ()

Dim pla 5 £ ("Pl)

o U W N

uos W N

Pascal Scripting (OLE)

Item Object Model

W N e

Root Object Model

Pascal Scripting

Item Object Model

oo W NP

NewAreaHotKey

NewAreaHotKey

Integer value returns an ANSI key code (default code 49, the number 1) for the New Area hotkey. Figure 1 shows where the New Area hotkey is assigned. Figure
2 shows where New Area is invoked on the Main Ribbon Bar.

96

Item Object Model

Using the PlanSwift Object Model

43) bome Page Toos Vew Estmatng Liss Tempates | Sotings | mepors o _pgms (1[I0]

B

License

R
Ty
DS
ol Keyboard Hotkeys
Com
Kgy:.::dkmkéﬁ-h. Primary Secondary Primary Secondary
e hun+_|
zm
Cmles, PrviousZoo Hone | oo %
s oo i O]
Digzr Tablt SaclbomD | New Count 4
Pepey raps seollets
scfgelr] pow] SetSeoPonfodlr |
NowSecton [
Meanieci | Toggl nage/E tinsingWow [F12_ |
CessBodnakcls | [nome T
Scachooknak e] e
Cone Vit e | [rors]
ToshDitemsrp 73|
Toggle Ange Snap (Oithol [H
Toggle Veriy Points: [F6
Quek Ssach s |
Figure 1
s s s s -_Search | Undo |
‘AN Home l Page Tools View E: Lists Settings Reports -TH Plugins

o w4 gamd) O S & & () e i

Yol i e %

New Open Print Emall Back Fwd Zoom Zoom Zoom Pan S:ale Dimension Area | Linear Segment Count Auto
ge In . < & X Count
Job Navigate | Zoom /Pan Measure Takeoff

Pages, Bookmarks « ||

Figure 2

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model

CH
Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)
Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)
Item Object Model

Root Object Model

Pascal Scripting

97

NewCountHotKey

NewCountHotKey

Integer value returns an ANSI key code (default code 52, the number 4) for the New Count hotkey. Figure 1 shows where the New Count hotkey is assigned. Figure 2
shows where New Count is invoked on the Main Ribbon Bar.

) Home Pegs Toos View Estanating _Lists_Tomplates | Setinus | Reports Help uTH_pugis <][U]
o
Mirese
i
Duesioem
Genersl Keyboard Hotkeys
Caromy
KepoudHobkes Prinary
e o]
Bvvoisins SnoohZoon 0t N
ity : e
ool Toos o e %
e -
Noicaons SealUple] NewSegrent[3 |
Digize Tablet Serol Down: [Nore | NewCout [t |
Papey Graps <,
o soollets] [l] ¢
Eo P W Stsip Pt oo 3|
NowSesior]
G T (ETEE o
CovsSookmaies | [rn | =]
Seach Bookna: e o
Continue Wik [Nore |
Tooge Dtz Srope 73|
S
Tosgo ety Ptz [r5 |
QuickSeach [spaee
Figure 1

A) Home | page Tools View Estimating Lists Templates Settings Reports Help U-T-H Plugins =

A @4 @D QEQQ) v A ly K e R

New Open Print Email Back Fwd Zoom Zoom Zoom Pan Scale Dimension Area I.mear Segment Count Auto
Job Page In Out ~ 24 N Count
Job Navigate Zoom / Pan Measure Takeoff
Figure 2
API Calls

Delphi

Using lltem Object Model > Expand source

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model > Expand source
VB/VBA (OLE)

Using litem Object Model > Expand source

Using PlanSwift Object Model > Expand source
Pascal Scripting (OLE)

Item Object Model > Expand source

Root Object Model > Expand source

Pascal Scripting
Using the PlanSwift Object Model

2 Unknown macro: 'sp-tabs’

Item Object Model Expand source
Yo

NewLinearHotKey

NewlinearHotKey

>

Expand source

Integer value returns an ANSI key code (default code 50, the number 2) for a New Linear hotkey. Figure 1 shows where the New Linear hotkey is assigned. Figure 2

shows where New Linear is invoked on the Main Ribbon Bar.

40) Home Page Toos View Estimating Lisis Tempiates | Setngs | Reports Help UTH Phugina
License
Manager~
Tk
DutaStoe
Gened Keyboard Hotkeys
Conpary
—
-— Soconday Prinay Seconday
e Zaamto SmoohZoonin [im | [Nore |
Boncsicns Zom[Fo | SroohZom 0t [um- | e |
Gophcs .
Tfm”m‘ Previous Zoom: None [None N-wlhms
S S
Nolfcatons SoolUg(E__] NewSements
Ditee Tablt st D | s | Wil
PpeyGros S i
SolAE | Jaustop Pt Fecodng [|
NewSesion 1|
Mot} o | o i e]
e — Newhota[-]
Sosch Bk lere |
Conu it Vo] [ere
Toage i S [F7]
Togge Angle Snap (Orthol: [F&
Tosde Vo [
QuikSeach[spoce |

Figure 1

ﬂ Home | Page Tools View Estimating Lists Templates Settings Reports Help U-T

{Seard'x 1 Undo I

- s s 3 o—a
g, B > SO @ I:I Lt ¢
=4 QG O i~ e %
New Open Print Email Back Fwd Zoom Fit Zoom Zoom Pan Scale Dimension Area Linear Segment Count Auto
Job Page In Out N i ~ ¥ ~ Count
Job Navigate Zoom / Pan Measure Takeoff
Figure 2
API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model
Root Object Model
Pascal Scripting

Using the PlanSwift Object Model

Item Object Model

99

>

>

>

>

>

>

>

>

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

NewNoteHotKey

NewNoteHotKey

Integer value returns an ANSI key code (default code 187, the character =) for the New Note hotkey. Figure 1 shows the Note tool on the Main Menu ribbon bar. Figure 2
shows how a Note is created: click on Note (or the hotkey for Note), then click and drag in the area of the plan where you want the note to be inserted.

0) Home Page Tools View Estmating Lists Templntes | Sotogs | Reports Help UTH pigins F0 | Unto

License
Manager =
Licensing

Data Storsge

Propeny Groups
Advanced

Magifer

New Count

Stat/Stap Pt ecording:

NewSecion

N eaton

Gereral Keyboard Hotkeys

Conpy

KeboarHitiers Goh e i
ey

nmis \ O SnoothZoon lore]
fesdidi e T Smoat Zoen0ut e
aprict prevous Zoor [None [Nore. outreall |

Takeoff Tocks o [T e NN lm =

napping. e Lineat

Nosons s [Nore] NenSegoer

Oigvr Tablt SorolDowrs [0 ™ [Nane

—
Create Bonkmak:
one

Search Bookmatks: i
Continue Wit Nene

Togele Digtes: S 73
Toage Ange S Dbl 1|
Toage ey Pans |

Quisk Search [Space.

Figure 1

PIanswWitt Essional 10,1 = sample Plan

tnnotations Highlighter Mote Owverlay Image

Annotatio

— AJ

|| Click Mote Point

q ("’D

Figure 2

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model
Root Object Model

100

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Expand source

> Expand source

Pascal Scripting

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

101

NewSectionHotKey

NewSectionHotKey

Integer value returns an ANSI key code (default code 78, the letter N) for the New Section hotkey. Figure 1 shows where the New Section hotkey assignment is made.
Figure 2 shows where the New Section command is invoked on the PlanSwift Main Menu ribbon bar. Figure 3 shows where New Section may be invoked by right-clicking

on a selected selection.

20) e Toon vom comatny o Tengnn | et st 0 pugme o9 [0]
| vicense
Mianager -
|| Licensing
Data Sarsge
eneral Keyboard Hotkeys
anpr
Keyoad Holke Secondary Pinaty Socondary
b \ Smooh Zoom :[Nun+ | [None.
‘nnottions SmoshZoom Ok o | [Nore |
Gieptics e
Tool Tode beselt |
Srippig. NewLinear: ﬁ
Notcator New Segnent:
Digizr el [i ¢
Prapety Gioups I St
Advarced
SculFigh: [F Nare] top ot Fecardng (R |
= New Sectors [
o vl
SRl Newhow[|
Seach Booknaks: [None. B
Contre Witk Nore |
Tosge Digize Snape[F3
Toade e Srip (Ot [H___|
Togge Veiy Poits [F6 |
Quik Seatch [Space |

Figure 1

A)j Home | page Tools View Estimating Lists Templates Settings Reports Help UTH Plugins “———

NJe 4 oD QEEQ 0w B g

New Open Print Email Zoom Fit Zoom Zoom Pan Scale Dimension =~ Area
J Job Page In Out % 2

Back Fwd

Job Zoom/ Pan Measure

Navigate

(Search

It

Linear

Segment

Count

Takeoff

Auto
Count

Single
Click ¥

Send
Data

New
Section ~

Record

l Digitizer
Record ~

Figure 2

[Properties

¥ Hide

< Move

B Lock

& Show Label

@ AddMogePoints
[NewSection &

] Subtract From Section (°2)

Subtract from Section (B0X)
Single Click Subtract Section
- Copy
[0 aste
K pelete
Add Arc Point
L Oder ,
T it Hyperink.
© sendData »
&% GoTolkemin Estimating
B GoTo tem in Tokeoff Summary.
=22 Continue With

 Undo

Figure 3

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

102

> Expand source

> Expand source

> Expand source

Expand source

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

103

>

>

>

>

>

>

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

NewSegmentHotKey

NewSegmentHotKey

Integer value returns an ANSI key code (default code 51, the number 3) for the New Segment hotkey. Figure 1 shows where the New Segment hotkey is assigned. Figure 2

shows where New Segment is invoked on the Main Ribbon Bar.

#3) Wome Page Toos View Estmating Lists Templates | Settings | Reports Help UTH Puugns 7%

| e~
|| Licensing
DataStaage
Gerersl Keyboard Hotkeys
ary
KesboardHotkeys Pimary Socondary Piimary Secondary
et ZomtoF[F7 | [Nowe | SnothZoom i [Num | [None
Sovetsions o Smooth Zoom Ouk -]
Grphict = e
o Pz et o
by o Liar
Nobeons L New Segrent
Oigizer Tablt SciolDoum Newcount[s |
Py oros Soollek[s | [Newe |
e Seolfight [f | Stat/Stop Paint Recordng [|
NewSectioe [N |
o . Teoe g i (12—
Coseockmaics___] [Nooe] T |
SeachBooknatksNare | [None |
Contae it e
Toos Dgtem Srap (73|
ToogeArgleSrap Okl |
ToogeVerly Paes [F6__|
Spoce
Figure 1

‘. :
#3) Home | page Tools View Estimating Lists Templates Settings Reports Help UTH Plugiiy """ [Unde]

9 = Ld CQEQQ O w1 ol

— D
1 o® %

New Open Print Email Back Fwd Zoom Fit Zoom Zoom Pan Scale Dimension Area Llnear Segment Count Auto
Job Page In Out e 2 > Count
Job Navigate Zoom / Pan Measure Takeoff
Figure 2
API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

CH

Using lltem Object Model

Using PlanSwift Object Model
VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting
Item Object Model

Using the PlanSwift Object Model

104

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

NoAskBreaklnheritance

NoAskBreaklnheritance

Boolean value that allows selecting whether a confirmation box should be displayed asking the user to confirm an Inheritance Break. Checking the box (true) will cause
the confirmation box not to appear. Unchecking the box (false) causes the confirmation box to appear. This boolean value is also controlled when a template's advanced

properties are edited in the Settings / Notifications window (Figure 1).

To see a confirmation box:

Click on the Estimating tab on the Main Ribbon menu.

Double click on an Estimating template (Figure 2) to show the Template's Properties window

Click on Advanced.

In the Advanced window (Figure 3), click on the formula cell for the Linear Total takeoff and wait a second

Click on the same cell again. This opens the window asking Editing this property will cause it to no longer be inherited. Do you want to continue?

Click on the Do not ask again box in order not to be asked the question again: Clicking on the Do Not ask again box sets the

NoAskBreaklInheritance boolean value to true.

#3) Home Page Tools View Estimating Lists Templates | Settings | R
License
Manager -
Licensing
Data Starage -
General Notifications
KesbomdHalkeys Updale Natfiations
Inteface O Do ot nolfy me of upclales
Zoonlren @ Nolity me of al ecomended updates
Graphios O oty me of all pcates:
Takieolf Tools
Snapping
Noiicatons Eelotr
Digizer Table [] Wi i ciesling aLOCAL job
Py B] W if crsaing an ARCHIVE oy
Wern i ot nstaled property
[Corfim when deleing obiects
Show Disclaimesr when Auto Scaing a page:
k10 delete the e when th lat section s dletec
sk 1o copy diiizer peint when copying lems
sk 1o bresk propetyrhertance.
[D ot wern when mperting POF fies.
Figure 1
) ome page Toos View | Estmating | Lsts Templetes _Settngs Repors Hep UTH _pigins =
s, ° Y | & = % & . | Xt [
A0l K @ 0N (XSGE TS 4 = (= I
New New New New ew New New NewFrom | Delete | Prnt Columns Fiter Refresh Properis Epand Collpse | Export Import | Copy Paste
Folder~ ltem~ Atea Linear~ Segment~ Count™ Assembly~ Part~ - ! - A Al | Tobcel Template -
Estimate Clipbosrd
| Estimating Layouts «‘ Default
BeXoE Name Desarpton ay s Conteach Varkp % price Each Price Total o
= 23 Sample Plan Takeoffs 200
T 5 by 1 05.7/5aFT o) [
ke & 57 [Open Office 106 378.74|SQFT 0.00] 0|
63 Warehouse 107 154 75[5QFT 0.0 o
% 53 [offce 102 396/50T .00 o
@ Properies - [Lobby 101] x R 0.0 o
.00 o
Name r 0.0 o
] @0 o
Color FaType 20 o
o (E——)] =
Py EX o
0 o
& 2.0 o
Input | Advance ok || cancel .00 o
=r @0 o
£ Womens AR 108 i oA s1lsQFT o) o
5 [Open Office 106 1488.07[SQFT $0.00] 9|
£ Warehouse 107 7656.65|SQFT 50.00] 9|
L& Ex) o

Figure 2

) Home Page Toos_View | Estmatig | Lists

Templates Setings Reports elp uTH pugns 2% [U]

—— z - & |§ = Fa -
A Ol K 3 9 0N X ! E R | ,
New N New New New New NewFrom | Delete | Pint Columns Fiter Refresh Properies Bpand Colapse | Eor Impot | Copy Paste
Folder~ hem~ Area- Linesr Segment~ Count- Assembly~ Pat- Type- - Al Al | Tobcel Template -

Estimate Clipboard__|_ Adjust
| Estimating Layouts «| Default

i@+ xss = @ o

52 [sample Plan Takeoffs @
— i £ [Lobby 101 HelE X|E[+ - %/ () O- B a v 2| show:Nomal - = M Events -
© rsayous e | =] | | | et
& i = Trormia Tirpotonis _[Agust___[Resit | T I |
163 [offee 102 Takeoff Data
53 |womens R 104 Deoth r o0 Gl &[e
0 [[Exterr wals Voume ves] * Depth] s oo arr &
63 [Mens RR 105 Wal Height T 0.00 P &
2 vl Area nearToal - i recrgll | [sarT oo serr &)
i Takeoft [avea] \ [1,200.20 sQFT @
= \ om L. saFT @e
= fnteror wals Dunear o) al &9
3 [Mens RR 105 £
Ioq [Exterior vials Point Count [Point Count] B EA @0
g:ﬁm m\ik = Defauit ([Takeoff] ! inherited. B[V |C
e o Dsecton Com] Do you want to ontinue? K
£ |arehouse 107 el 1= &9
| oS ‘Work Breakdown Structure in Yes
4 | Jowisien { I T T I I
Figure 3

105

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

NoAskCopyPoints

NoAskCopyPoints

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

’> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Boolean value that allows selecting whether a confirmation box should be displayed asking the user whether the digitizer points should be copied when copying a takeoff.
Checking the box (true) will cause the confirmation box not to appear. Unchecking the box (false) causes the confirmation box to appear. This is also controlled in the
Settings / Notifications window (Figure 1). The confirmation box is shown in Figure 2. Selecting "Do Not Ask Again" from this confirmation window to confirm that the

digitizer points should be copied when copying a Takeoff also sets the NoAskCopyPoints boolean variable to true.

(® Notiy e of ol recamended updates

Wainif not installed properly
] Corfiim when deleing objects

iow Diselaimer when Auto Scaling page

 to delete the tem when the last sestionis deleted

K to copy digiizer paints when copying fems.

] Do not warn when importing PDF fies.

#3) Home Page Tools View Estimating Lists Templates Settings | R|
Manage -
Licensing
DataStorage —
General Notifications
Company.
Keyhoard Hotkeys Update Notifications:
ntrtoce O D ot rf me of updles
Zaom / Pan
Annotations
Graphics. (O Notity me of all updates
Takeof Took
Snapping
Beta Testr
Notifications
Dighze Tabie] Worni creaing s LOCAL b
BopetyGroupe ‘Wan if creating an ARCHIVE job.
Advanced u i L
Figure 1

Using litem Object Model

Using PlanSwift Object Model

106

> Expand source

?> Expand source

|4) tome page oo view | Estmaung | Lsts

O e - W
O 0N X®E T & F

—
A Oglr X oo
R N N et o | WA i ki hion b
B o B e e W i 5 v
[Estimate.

Sl [oener

Estimating Layouts

=

Figure 2

API Calls

Delphi
Using litem Object Model

Using PlanSwift Object Model

c#
Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)
Pascal Scripting (OLE)

Item Object Model

Pascal Scripting
Item Object Model

Using the PlanSwift Object Model

107

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Root Object Model ?> Expand source

NoAskDeleteltemOnLastObject

NoAskDeleteltemOnLastObject

Boolean value that allows or disallows the display of a Delete Items confirmation popup screen to ask whether to delete the last section of a multi-section item.
When the box is checked (true) in the Notifications area (Figure 1), the display of the Delete Items confirmation window is enabled. When the box is unchecked (false), it
is disabled. Clicking the Do not ask again box in the Delete Items window disables the display of the Delete Items window. Leaving it unchecked, allows it to be displayed

(Figure 2).
#3) Home Page Tools View Estimating Lists Templates | Setings | Re
e
Mandoei =
Licensing
B
General Notifications
Comparg
Interface O Do nat notify me of updates
oomire @) Moty me of ol rcomended updates
Graphics. () Motify me of all updates
Takeol Tods
St
Notieais e
Digizer Tablef [Wam i creating & LOCAL job
Pioperty Groups [Wannif creating an ARCHIVE job.
w Advanced
Wam f not installed properly
[Confiim when dslsting obiects
Shaw Disclaimer when Auto Scaling a page
Ask to delete the item when the last section s deleted
sk to copy digiizer pointe when copying lems.
sk to break property inheritance.
[] Do not wam when importing POF fiis.
Figure 1
D
Pt
| AN |
Delete ltems. x
Al sections have been deleted from the following
X Estimating Items. If these items are no longer needed,
. they can be deleted now.
Check the items you would like to delete and dick 'es'.
& Area
; Chedk Al || Uncheck All 0 —=
Are you sure you want to delete? | | ”77
G PLAN / |
sl | %o mﬁ;x
| LY R B PR s £ L
Figure 2
API Calls
Delphi
Using lltem Object Model > Expand source
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
VB/VBA (OLE)
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
Pascal Scripting (OLE)
Pascal Scripting
Item Object Model > Expand source

108

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

109

NodeSize

NodeSize

Integer value that sets the Node Size. Values range from 0 to 20, with 10 being the default. Figure 1 shows the corresponding screen areas of the Settings

screen and the U-T-H area.

=
e e w.m...,...m. L I

Uein
M~
e
Suason [
General Takeoff Tools
Compry
i WO S e
ey s P
Zoom /Pan Less |} More. L)
it
s
T o Lon O
Sy 0 Yoo
obeames
Dot ot
Propety Gioups i (]
[| o
cant o
(e — s
s
e v
Leas [} Moe
2 Vet g
] Confim when recordng dmenions
Sk Do St e

Figure 1

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

110

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Ortho

Ortho

Boolean value that toggles Ortho on or off. Checked is true (on) and enables it (highlighting) the Ortho toggle control. Unchecked is false (off) and disables (unhighlights)
Ortho. Ortho is also controlled in the Main / Settings window (Figure 1). If Ortho is disabled, then Smart Ortho (right below it) is also disabled, although in the U-T-H
Settings Advanced Properties, Smart Ortho will show as enabled even though Ortho is disabled. Ortho may also be toggled on (highlighted) and off (un-highlighted) at
the bottom of the PlanSwift main window (Figure 2).

e’) Home Page Tools View

Lists | Settings | Reports

License

[P
|| Licensing |

~ Data Storage

- Company
~ Keyboard Hotkeys
- Inteitacs

- Zoom / Pan

~ Annotations

- Giaphiss

i Takeumnu-\s_______,.
& *D‘-SFE“\ -

- Nolifications

- Digitizer Tablet
- Property Groups
- Advanced

-~ General Snapping

Enable Snapping to points
[Snap to FlanSwilt points
[Snap to CAD points
Hower ta Shap fwis
[Ottho - Snap to andles (hold Shift for temporary enable/disable]
Smart Ditha - Snap only when close to angles

Figure 1

~ N

|4399,7&2n

‘ FreeHand |Veﬂ'13r Foints

Figure 2

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model
Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

1M

v

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

PanHoverSpeed

PanHoverSpeed

Integer value that controls the Hover Pan Speed (Figure 1). Value ranges from 5 to 100. Figure 2 shows the light blue transparencies (and darker blue arrows) at the edges
of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse in any of those blue areas makes the plan scroll quickly
in the direction of the arrow. Pressing the keyboard space bar reverses the scrolling direction.

hb) Home Page Tools View Estimating Lists Templates Settings | Reports Help UTH _Plugins
License
Manager~
e
Data Storage
i General Zoom /Pan
Conpiy
s e Pan Speed (Mouse] Hover Pan/Zoom
Interface G [] Fast [Enable Hover Pan/Zoom
- Zoom /Pan S— [Activate ol when dragging
; /;nnntannnx M
taphlcs SRS Pan Speed:
i o= v Ty —) ot
| E““"”“““ Zoom Speed (Mouse]
igitizer T ablet
o — o
Zaom Speed (Keyboard) i
Slow (] Fast erpeensy v
Delay:
Enable speed panning with middle buiton
Figure 1
' B @ O = W =
» 7] L/ =
o | singe end | Digtizer| New | Anntations igniighter Nets Overly Imsge
nt | Cick- Dats - || Record~ | secion - - -
Rediit A
) \
@
=
5]
Ol
3 /
=i
i —
23]
g —
{©) E
- f]
i
Ve I
Figure 2
API Calls
Delphi
Using lltem Object Model > Expand source
Using PlanSwift Object Model > Expand source
C#
Using lltem Object Model > Expand source
Using PlanSwift Object Model > Expand source
VB/VBA (OLE)
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
Pascal Scripting (OLE)
Pascal Scripting
Item Object Model > Expand source
Using the PlanSwift Object Model > Expand source
Item Object Model > Expand source
Root Object Model > Expand source

112

PanSpeed

PanSpeed

Integer value that controls the mouse Pan Speed. Value ranges from 1 to 9 (see Figure 1).

fa
#3) jome Page Tools View Estimating Lists Templates | Settings | Reports Help UTH Plugins
e
Manager
Licensing N
DSt
e Zoom | Pan
1 aond Wt Pan Speed (Mause) Haver Pan/Zaom
Interface Slow Fast Enable Haver Pan/Zoom
i N) [Activete orly when chagging
recimiors
Graphics Pan Speed [Keyboard)
. = L e
Snapping Show [] Fast
i Natifications S 3
Digitizer T ablet “oom Speed (Mouse) et S
Propey Groups
By fe ' | G Fat
Zoom Speed (Keyboard)
o ¢ L T
L}
Delay: | 500 5
Enable speed panning vith midclle button
Figure 1
API Calls
Delphi
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
CH
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source

VB/VBA (OLE)

v

Using litem Object Model Expand source

v

Using PlanSwift Object Model Expand source

Pascal Scripting (OLE)

v

Item Object Model Expand source

v

Root Object Model Expand source

Pascal Scripting

v

Item Object Model Expand source

v

Using the PlanSwift Object Model

PanSpeedKeyboard

Expand source

PanSpeedKeyboard

Integer value that controls the keyboard Pan Speed. Value ranges from 1 to 250 (see Figure 1). Keyboard keys E, S, D, and F pan the image Up, Left, Down, and Right,
respectively.

113

]
#3) jome Page Tools View Estimating Lists Templates | Settings | Reports Help UTH Plugins
e
Manager
Licensing -
B
General Zoom /| Pan
i Company
Kesboard Holkeys Fan Speed (Mouse] Hover Pan/Zoom
Interace Slow (] Fast Enable Haver Pan/Zoom
+Zoom /Pan \ [] Activate only when dragging
rnciatons
Graphics Pan Speed [Keyboard)
Takeol Todk Slow (] | R
- Snapping Slow [] Fast
- Naticaions
Digitizer T ablet Zoom Speed (Mouse]
£ Advanced Slow [| Fast
P Seoe) —
Slow [] Fast v
Delay 500
Enable speed panning with midclle buttor < HEDE
Figure 1
API Calls
Delphi
Using litem Object Model > Expand source
Using PlanSwift Object Model ’> Expand source
C#
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
VB/VBA (OLE)

v

Using litem Object Model Expand source

v

Using PlanSwift Object Model Expand source

Pascal Scripting (OLE)

v

Item Object Model Expand source

v

Root Object Model Expand source

Pascal Scripting

v

Item Object Model Expand source

v

Using the PlanSwift Object Model

PanZoomHover

Expand source

PanZoomHover

Boolean value enabling or disabling Hover Pan/Zoom (see Figure 1). Checked (true) enables Hover Pan/Zoom. Unchecked (false) disables it. Figure 2 shows the light blue
transparencies (and darker blue arrows) at the edges of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse
in any of those blue areas makes the plan scroll quickly in the direction of the arrow. Pressing the keyboard space bar reverses the scrolling direction.

114

- DataStoage.
- General

£ Company
- Keyboard Hotkeys

Property Groups
* dvanced

Figure 1

Figure 2

API Calls
Delphi

[Using litem Object Model

~

Expand source

[Using PlanSwift Object Model

Expand source

C#

[Using litem Object Model

v

Expand source

\ Using PlanSwift Object Model

v

Expand source

VB/VBA (OLE)

\ Using litem Object Model

v

Expand source

\ Using PlanSwift Object Model

v

Expand source

Pascal Scripting (OLE)

[Item Object Model

Expand source

\ Root Object Model

Expand source

115

Pascal Scripting

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

116

Root Object Model > Expand source

PanZoomHoverDelay

PanZoomHoverDelay

Integer value that controls the Delay for the Hover Pan/Zoom. Value is in milliseconds (see figure 1). Figure 2 shows the light blue transparencies (and darker blue
arrows) at the edges of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse in any of those blue areas makes

the plan scroll quickly in the direction of the arrow. Pressing the keyboard space bar reverses the scrolling direction.

5
#3) Home Page Tools View Estimating Lists Templates | Settings | Reports Help U-TH Plugins

kS

License

Manager -
Licensing
Data Storage
General Zoom /Pan
- Company
Kebosd Hlkae Pan Speed (Mouse] Haver Pan/Zoom
Interace o v Fast Enabie Hover Par/Zoom
Zoom / Pan [Activate orly when cragoing
Arrotatons
S Giaiies Fan Speed [Keyhoard] I
Takeolf Tools Sow (] Faet
- Srapping Siow (] Fast
Notfiatons
Digiizer Tablet
Zoom Speed:
£ Properly Groups Fix i
Advanced Slow [] Fast
Zaom Speed (Keshoard 7
ansperency
Slow (]
v
Delay: [500 /%]
Enable speed panning with midle button

Figure 1

5|3 @® Lo mm T
o | singe Digter | New | Ammofstions Fighiighter Note Overlay Image
nt | Click - Record * | Section - * 2
Recora Annotations
a \ /NA
= 2
=
o
Qi
Esh \\
© |2
I ol
Ve I
Figure 2
API Calls
Delphi
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
VB/VBA (OLE)
Using litem Object Model > Expand source
Using PlanSwift Object Model >

Expand source

Pascal Scripting (OLE)

Item Object Model
Pascal Scripting

> Expand source

17

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

118

Root Object Model

PanZoomHoverTransparency

PanZoomHoverTransparency

> Expand source

Integer value that controls the Hover Zoom/Pan Transparency. Value ranges from 0 to 100 (see Figure 1). Figure 2 shows the light blue transparencies (and darker blue
arrows) at the edges of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse in any of those blue areas makes

the plan scroll quickly in the direction of the arrow. Pressing the keyboard space bar reverses the scrolling direction.

kS

License
Manager -
Licensing

5
#3) Home Page Tools View Estimating Lists Templates | Settings | Reports Help U-TH Plugins

Data Stoage
General

- Company
Keyboard Hotkeys
Inteftace

+ Zaom /Pan
Arnctations

1 Graphics
Takeolf Tools

-~ Srapping
Natfications
Digiizer T ablet

£ Properly Groups
Advarced

Zoom /Pan
Pan Speed (Mouse]

Siow (] Fast

Fan Speed [Keyboard]

[] Fast

Zoom Spes

Siow v

Zaom Speed Keshoard)
Slow [} Fast

Enable speed panning vith midlle bion

Hover Pan/Zoom
Enabie Hover Par/Zoom
[Activate orly when cragoing

Pan Speed

Slow] Fast

Zoom Speed:
Slow [] Fast

Transparency

Delay: [500 /%]

Figure 1

L 24

B3 ®

Single
Click ~

Digitizer
Recard ~

Record

B =RV
Section - * 2

Annatations

\

WARE MALCOMB

Ve I

<

Figure 2

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

CH

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model
Pascal Scripting

119

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

120

PLUGINDEVTOOLS

PLUGINDEVTOOLS

Boolean value that toggles whether Plugin Developer Tools are displayed on the Plugin ribbon bar (Figure 1). This variable is also set in the Main / Settings / Interface
window (Figure 2). Checked is true and displays the Plugin Developer Tools; unchecked (the default) is false and does not show them.

'fQ) Home Eﬂi . Tools View Estimatinui Lists Templates Settinqi ieports __Help U-T-H

& =

Tools Import Plugin Uninstall
Manager Package Plugin

Plugin Tools

X 2@ 9

Refresh

=31

Export Plugin Upload to
Package Plugin Store

Developer Tools

Figure 1

“#3) Home Page Tools View Estimating Lists Templates | Settings | Re

ko)

License

Manager *
| ticensing
- Data Storage
Geneial Interface Settings
Conpany
Keyboard Hotkeys ik
Inteface Ble v
Zoom /P 2] Show Uinder The Hood Screen
Aerciations
faohis 2] Show Types Tab n Templates Screen

] Show Ful Sereen Cussor
] Draw Cioss Hais Cusar on Image:

] Large Sl Bars

A Shon Fiing Tool Hints

2] Show Hover Hints

Show Dev Tools on Phagins Tab

[Show Browse ForJob.

7] Disable Job Locking(equies Usematre when activ).
Show RepartDesigner

(] Disable Estiage Gid Overtying

] ShowAuto Count Tool

Noffations
Digiizer Tablet
Property Groups
Advanced

] Enable Extended DPY Range for TIFs

Figure 2

API Cals
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

121

v

v

v

v

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Using the PlanSwift Object Model

PointSize

PointSize

1192

Integer value that sets the Point Size. Values range from 0 to 20, with 10 being the default. Figure 1 shows the corresponding screen areas of the Settings

screen and the U-T-H area.

Takeoff Tools

Dl Tarpency
L]
(e
)
Seoment
L]
Cant
Lone ()
Note
L)

A Vesty ports when s
0 ot e oo e

%) o s v s et e e e vt S pepr- g
L BEE X[- *
Ao = —

HEIEES

BB

Figure 1

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Property Groups

Property Groups

String value that controls the grouping order of properties in Property Groups (Figure 1 shows an example of properties indicated by red arrows). Figure 2 shows where
to click to select the cell (left arrow). After clicking in the cell, click on the Up and Down arrows in the cell to move the selected property in priority. Clicking on the Elipsis
to the right of the arrows opens the U-T-H Formula Editor - Property Groups window (Figure 3). The U-T-H Property Groups property is shown in Figure 2 (note that the
elipsis disappears when the Formula Editor window opens). The Property Group items may be added, deleted, reordered, or edited in this window. After making any
changes, click on OK in the Formula Editor window, and then on OK in the Properties window, and the changes will be reflected in the PlanSwift Settings tab / Property
Groups window (Figure 3) and in the PlanSwift Property Groups window shown in Figure 1.

“ Properties - [Office 102]

et X[&+ - * 7 (
Name e— |Formula
Item

-t Name Office 102

Item # e

Estimating 4%

S0ty [Takeoff]

! Cost Type

-t Cost Total [Qty] * [Cost Each]
[Markup Each [Cost Each] = ([Marl
Markup Total [Qty] * Markup Eac
| Price Each [CostEach] + Mark

Price Toti/ [Qty] * [Price Each]

Al

£ Transparency) E—
| Texture Height — 1
Takeoff Data #7

1 Volume [Area] * [Depth]
Wall Area [Linear Tatal] = [Wa
Takeoff [Area]

Area [tarea]

i) Linear Total [ILinear Total]
Segment Count [ISeament Count]
~}Point Count [IPaint Count]

i Default [Takeoff]

Section Count [1Section Count]

Work Breakdown Structure 4%

‘1 Zone
| Folder path [ITakeaffPath]
1 Folder [ITakeoffrolder]
Other ="
Icon
1 IsItem
L DoubleClickAction Record
DragDropaction Subltem
5 LaunchAction Record
: 1 IsArea
t Subitem Type Assembly
o TakeoffSummary_Expanded
Audit Trail g
; ITIITIE Stamp i1f23,|’2013 2:05:16
Videos ="

i b SwiftTube VideoID

|11z

Inheritance path: _AllY Ttem\ Takeoff Item_Area\

Input . Form | E-E

Figure 1

123

{@ Properties - [Settings]

el FEX|@|+ =% 2 () O~ 20| 2~ 2| show:Nomal ~ f;:st [
jame Formula Input Units. Adjust. Result q
B)
0 ©
NewLinearHotKey 50 50
51 51
NewCountriotkey 52 2
v 52 a2
NewSectionHotiey B »
ToggleImageEstimatingHotkey | 123 123
187 187
Zoominiotkey 17 7
ZoomOutHotkey 189 9
Show Under The Hood Screen [True [True
Language Englsh Endish
SummaryFormDockSide Richt N Right
NotesColumns e 307) |
NotesGridlayout (Size: 608)
Parts and Assembles) [Parts and Assembiies
il b Fil

Figure 2

@ Properties - [Settings X

EefE X|@|+ - % 2 () O-| DB~ 2| shownomsl - = O™ Events -

[Name Formula [adust [Resut [output units T 1] [
NewFromTemplaterotsey (8% | ea | BREE
Skt d 2 @ Formula Editor - Property Giouips X

st G+ =%, ()OO~
Newcountriotkey 2 = =
Recordrotkey 2 sinains
™ Fi
Data
TogglelmageEstimatingHotiey | 123 lreakdouin]
NewoteHotier -
Zoominzotey
ZoomOutzrotkey
Show Under The Hood Screen
Language
SummaryFormDodSide | |
NotesColumns Lo
NotesGridLayout Resuit:
Templates Scebar Selected Ie[Parts opdfAssemblis -
| ol |
¥ T T T Te TV T
| Toageorthoriotiey Y 112,00 R EE
Figure 3

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

124

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

PropertiesWindowHeight

PropertiesWindowHeight

Read-only integer that displays the height of the Properties window.

API Calls

Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

125

>

>

v

v

v

v

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

PropertiesWindowLeft

PropertiesWindowLeft

Read-only integer value that displays the left position of the Properties window.

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

126

Item Object Model > Expand source

Root Object Model > Expand source

Pascal Scripting

PropertiesWindowTop

PropertiesWindowTop

Read-only integer value that displays the top position of the Properties window.

API Calls

Delphi

>

Using litem Object Model Expand source

>

Using PlanSwift Object Model Expand source

C#

>

Using litem Object Model Expand source

>

Using PlanSwift Object Model Expand source

VB/VBA (OLE)

>

Item Object Model Expand source

>

Using the PlanSwift Object Model Expand source

127

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

PropertiesWindowWidth

PropertiesWindowWidth

Read-only integer value that displays the width of the Properties window.

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

128

v

Using litem Object Model Expand source

v

Using PlanSwift Object Model Expand source

VB/VBA (OLE)

v

Using lltem Object Model Expand source

v

Using PlanSwift Object Model Expand source

Pascal Scripting (OLE)

v

Item Object Model Expand source

v

Root Object Model Expand source

Pascal Scripting

v

Item Object Model Expand source

v

Using the PlanSwift Object Model Expand source

129

Using the PlanSwift Object Model

RecordHotKey

RecordHotKey

> Expand source

Integer value returns an ANSI key code (default code 82, the letter R) for the Stop/Start Point Recording hotkey. Figure 1 shows where Stop/Start Point Recording

hotkey is assigned. Figure 2 shows where Stop/Start Point Recording is invoked on the Main Ribbon Bar.

Takeoff Tools
NewLinear

New Segrent
New Court

Wil

Notfcatos
Digize Tablet
Propery Groups.
Advanced

f

==y
SerlLett 5
SeiolAght -

Mo
Create Bookmark:
Seatch Bookmarks:
Continge Wit

Sta/S1op Point Fecording

H

Toogl Imsge/Estinaing Window:

i
T

Toggle Digicer Srs
Toagl Ange Snsp Ortol
Toge Verly Pois:
Quick Search [Space

FLTL

NewSectin:

Newhots |-

) Wome Page Toos View Estmatng _Lists Templtes | Settngs | Reports Hew uTH _plugins |
"
[utoge
=
T
General Keyboard Hotkeys
oy
KeboudHors e Secondary
otees
bt \ Zomori(rr | SroahZomin |
Sracind 2 Sroat Zoon Ot ene
- Newea 1

Figure 1

Welp UTH Plugins e [Undo

Measure Takeoff

B ol e %

Dimension Area Linear Segment Count Auto
- > 24 ¥ Count

Single
| Click ~

Figure 2

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Expand source

Expand source

Expand source

> Expand source

Root Object Model

ReportValidUntil

ReportValidUntil

> Expand source

String value that sets the number of days report is valid for. This value is changed in the Reports / Settings / Company Information area, shown in Figure 1. Click on
Reports (red arrow #1), and then click on Settings (red arrow #2): this opens the Company Information screen where the Valid Until value may be set. Figure 2 shows

an example of where this value is implemented in a report.

1
N e ST ,,m,u‘,s}m-mm T e
F} H (B Y5 G 3§ 8 ©
A e e : e o
& e e s
2
Report Layouts <] prevew | Grdview settngs |
R N “’""“"*”""“”"/

Figure 1

Lists Templates _Settings | Reporis | Help U-TH Pugins =" || Undo

= P e |
+) b fa) & & 4 8 &
xpand e | Expe Bxport Expott Exportto Export Export ToExcel Print

Export

G view | setngs |

<na>

<na><na>

<naz<na=<na>

Phone:<n.a>

P UOTE

Prepared By

DATE:

<na> QUOTE #:

<na><na> CUSTOMER ID:
VALID UNTIL: 3005

Qty__Price Each __Pprice Total

200 si2s00 $100000

1980 sizE siaze

IrsallCeiling Grid and Tits a2t s sw7as
Irstal Wl Ties 2700 sz siz1s8

Figure 2

API Calls
Delphi
Using lltem Object Model

Using PlanSwift Object Model

c#
Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)
Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)
Pascal Scripting

Item Object Model

131

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

132

SalesTax1

SalesTax1

Integer value that allows for a sales tax rate to be entered. These rates are utilized in the properties windows for Parts and Assemblies Templates (Figure 1 is an

example).

API Calls
Delphi

Using litem Object Model

@ rro folding (priced per SQFT; 3
L X[EH|+ - % 2/ () O] 20| v 2| showNoms - = oM Events -
fame Trormde Trpotinis _[adst__[Resut T =]
tem
Type [Equpment [Equpment HEE :
Scafeidng Gresdper AP Scafldng Gresdper EIEE v | Templates
Descrption [centalper month) lark and Scaffold only per REE B
fitem = | FE
Estimating
CostType [Eaupment [Eavoment &
Qty Formula [avea] saFT 0.00 sqFT EE
Qty |Roundup([Qty Formuia] * ([Waste %1/100+1|SQFT l0.00 sQFT)
CostTotal Q] = [CostEach] B 000 B B
Markup Each [Cost Each] * (Markup %] / 100) 0.00 @ {DyRental Eauip. (Linear/Se¢
verk Total Q) = Mk Each] g g ® 15 ;:_‘;Ef:.‘?:?nf:g:: o
e Esch CostEach] + Merkup Eaci] 12 g 89 5 O MateriaPats OragDrop)
Wedie o P> M o % 9 D subcontrct arts Orag D10
costesn] 71 s g 03 aserties
erkn % o P> 1 % o0 - &
Sales Tax 1 [Vob\Sales Tax 1) ~ [Taxable] | % 0.00 %
Sales Tax 2 [ob\Seles Tex 2 = [Taxable] | % 0.00 % r
Taxabe 8] False
Toxt (@01 Prie Each) = (isses Tax 11/ 100) 000 &
Tax2 Q] fPrice Each]) * ([Saes Tax 2/ 100) 0.00 K
Price Total i1 * Price Each] B 000 s B
Figure 1

Using PlanSwift Object Model

CH

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

133

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

SalesTax2

SalesTax2

Integer value that allows for a second sales tax rate to be entered. These rates are utilized in the properties windows for Parts and Assemblies Templates (Figure 1

is an example).

(@ Properties - (scafolding (priced per SAFTI] E
S X[=|+ - % 2 () O-| 20| v 2| showlomal - = oM Events - u
e Formda Tiputints[adust _ [Resit Towwatone [T =]
item
Type |Equipment [Equpment 90 —
Scaffading (rced per SQFT) = v | Templates »
Desaripton (rental per month) Plank and Scaffold oy per REIE FeHE®O
frten = [BEE
Estimating
CostTyoe easment ETE LIl <o
5 o ok y
Qo Fams = B o sarr LI &t b
Qty [RoundUp(IQty Formda] = ((Waste %]/100+1]SQFT 0,00 saFT EEE || e B
|) Cost Total [Qty] * [Cost Each] s 0.00 s 8[vic "7 (2 Rental Equp. (Count Tak
erkup Each }E«a Each]* (arkap %1/ 100)) o 7 Orenateas. e
= = . par
ki Tord e ¢ : 89 0 i ol
Price Each CostEach] 12 s R0 o maiirats b
| viaste % o)4 M ° % 9|0 5 2 SubcontractPars (Orag Dro
CostEach) Z1 e 5 I 2 Assembies
varp % o Z 1 % oo % GE
SdesTox 1 oo iglfoos | % om 0 S
| |sdlesTax2 [Vob\Sales Tax 2] * Texable] | % 0.00 % EIEE
Taxable [= Faise &[9|0
Tax1 | Q] "Price Each]) * ([Sales Taxfl]/ 100) 0.0 Fl[E
Taxz | @@t Price Each = (sales Tax 21 / 100 o0 IS
- {price Total | Q6 * [Price Each] s 0,00 s alv|o|
Figure 1

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

134

> Expand source

> Expand source

> Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Pascal Scripting

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

ScrollIDownHotkey

ScrollDownHotkey

Integer value returns an ANSI key code (default code 68, the letter D) for the Scroll Down command. Figure 1 shows where the Scroll Down hotkey is assigned.

#3) jome Page Tools View Estmatng Lists Templates | Setings | Reports e uTH pugns P [U]
r="
|Cuesniog
Oostima
General Keyboard Hotkeys
Koot e iy o
e \ o W e
s Zooe[F10__| [Nore |
Tt Tods e [T ot %
i 8 Sootliale | [l] i
Ot Tt scotbowlo | et —]
pirisiia S Em T
Seclig: L |
O |
e OOy T
S o
Conbe it Nore] [rore
ToggeDigen S [F7 |
Togole Arge Srop (Othol (|
Togole Ve Paints [F5__|
Ok Seach (s
Figure 1
API Calls
Delphi
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
VB/VBA (OLE)
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source

Pascal Scripting (OLE)

135

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

ScrollLeftHotKey

ScrollLeftHotKey

> Expand source

> Expand source

> Expand source

> Expand source

Integer value returns an ANSI key code (default code 83, the letter S) for the Scroll Left command. Figure 1 shows where the Scroll Left hotkey is assigned.

W

License
Manager -
Uicensing

#O) ome Page Toos View Esimaing Lists Tomplates | Setings | Reporis e UTH _pugins E=

Data Storege
General Keyboard Hotkeys

i

]

t
5.

Graphic: e

TakeclfTook Cieran e

Snepring

Notfcaions Sl

Digize Tablel ScrollDov:

Elopary. Gioves: SerolLet

Advanced

Sciol Right

Maifer
Create Bockmak:
Search Bookmarks:
Continue Wit

i

Tooge iicer o
Tosge Ang S Ot
Yoo ety Fort:
sk Semch

LN

¥
§

Figure 1

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

ScrollRightHotKey

ScrollRightHotKey

> Expand source

> Expand source

> Expand source

> Expand source

Integer value returns an ANSI key code (default code 70, the letter F) for the Scroll Right command. Figure 1 shows where the Scroll Right hotkey is assigned.

#) Wome Page Tools View Estmatng Lists Tempates | Settngs | Reports Help UTH _Plugns

W

License
Manager =
‘‘‘‘‘‘‘‘‘

Data Stosge
Gerel Keyboard Hotkeys

Corpary

Kejoosd Hakess Piimary
neface :
oy ZoomoFi 77
Doretaions Zoom 0|
Gushics Frvios Zoor s |

Notficatons el
Digizer Tablet SeollDovn:
SerolLeft
el Fight

F
H
{
g

i

i

|
(TN

Now tres:
NewLinesr:

New Count:

Sta/Stop Point ecording

New Secin:
Magifer

Create Bockmak:
Seatch Bookmarks:
Continue Wit

Toogle Imoge/Estimsing Window:

TR LT

LT

NewNote:

3

Toggle Digizes S
Toogle Ange Snap (Dol
Toggle Verly P
Ok Seach

1]

il

g

Figure 1

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

137

> Expand source

> Expand source

> Expand source

> Expand source

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

ScrollUpHotKey

ScrollUpHotKey

API Call
Delphi

) Womo_page Toos View Estmating _Lists _Tempates | Setngs | Reports Welp uTH pugins =@ |[U]
Leense
Manager -
Licensing
DaaSinae
General Keyboard Hotkeys
Canpery
Kesbod Hoke: Pimary Socondary Punary Secondary
ooy e e | e = |
Arnotaicns Zoom:[F10__| SmoothZoom Ot [N | [Noe |
G, oo Zon e | L -
S — entear
Nofosons S o s
Dt Talt e Newcark [|
Fropety Groupe satet[s | e |
E N StaSiop PoritRecadog [3 |
I NewSeston [N |
Moarer (M| [Nore] g etmting o [F12
ek s |
T .|
Coniue it fore | [None |
ToogeDiteeSnep (7|
Toggle Angle Snap (Orthol: [H]
Tosge VrParts[Fs |
ik Sench [Space

Figure 1

Using lltem Object Model

Using PlanSwift Object Model

C#

138

>

>

>

>

>

>

>

>

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Integer value returns an ANSI key code (default code 69, the letter E) for the Scroll Up command. Figure 1 shows where the Scroll Up hotkey is assigned.

Expand source

Expand source

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

SendErrorReport

SendErrorReport

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

Boolean value controlling whether error reports are sent to PlanSwift. Checked is true and sends error reports. Unchecked is false and does not send them.

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

139

> Expand source

> Expand source

> Expand source

> Expand source

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

SendScreenShot

SendScreenShot

>

>

>

>

>

>

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Boolean value controlling whether screenshots of errors are sent to PlanSwift. Checked is true and sends screenshots. Unchecked is false and does not send them.

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

140

>

>

>

>

>

>

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

Show Overview

Show Overview

> Expand source

> Expand source

> Expand source

> Expand source

Boolean value that controls the Show Overview function. Checked is true and enables it; unchecked is false and disables it. Show overview is activated in PlanSwift

software by clicking on the small arrow, which opens the overview box (shaded blue); see Figure 1.

[A1 0 OVERALL SITEFLANT K3
- A4_11BUILDING 11_EXTERIOR ELEVATL... 4
F#1I) Structural Plans [3 Pages]
1) Blectrical Plans [4Pages]
4113 Plumbing Plans [1 Pages]
¥ Mechanical Plans [1 Pages]
EI)

i) Residential Sample Plans [7 Pages]
/i) Single Click [3 Pages]
+ll Floor Plan

R4
@
A4
ractice Residental Plan - Use for demo
@l Practice Commercial Plan - Use for demo
= @ tero w i ¢
o X
Search: | |
[l Pl 3 egend ra
Pages, Bookmarks

<

15426, 16115

[Snep |@atho,| Freettand [Verity Ponts |

Figure 1

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

141

> Expand source

> Expand source

> Expand source

> Expand source

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

Show Under The Hood Screen

Show Under The Hood Screen

> Expand source

> Expand source

> Expand source

?> Expand source

> Expand source

> Expand source

Boolean value controlling whether the U-T-H (Under-The-Hood) Main Menu tab is visible. Figure 1 shows that it is not visible. To make it visible, click on Settings, then on
Interface, and then on Show Under The Hood Screen. Figure 2 shows where the password is entered. Figure 3 shows the U-T-H tab after the password is successfully
entered. Figure 3 also shows how clicking the U-T-H tab, then the Settings advanced properties, displays the Show Under-The-Hood Screen. When enabled, the value in
the Formula field shows as True displaying the tab. If False is entered and the screen closed by clicking on OK, then the UT-C tab is no longer visible. To obtain the U-T-H

password, contact your PlanSwift representative or send an email to takeoff@constructconnect.com..

ho)

License
Manager -
Licensing

Data Storage
General

#0) Home Page Tools View Estmatig Lists Tempiates | Setungs | Reorts Help Pugins

Interface Settings
Color Scheme:

Interface Blue.
S — e

Srvciaions
raphics ‘Show Types Tab in Templates Screen
Takeof Toos
Snapping Show Full Screen Cursor
g;‘;:‘g:;m] Draw Cross Hais Cursor on Image
Popety Grops] Lo ScrtBars
Advanced show Flying Taol Hints
o Hover Hins
show Dev Taols on Plugins Tab
how Biowse For Job
isable Job Locking (requires Usetname when active).
(] Show ReportDesigner
(] Disable Estimage Grid Ovetyping.
Show Auto Count Tool
7] Ensbl Evended OP| Range o TIFs
Figure 1

Using litem Object Model

Using PlanSwift Object Model

142

> Expand source

?> Expand source

Under The Hood >

Enter Password For Under The Hood

[&Pox || 8 conce |

Figure 2

y T Search Undo PlanSwift Professional 10.1 - Sample Plan|
#3) Home Page Tools View Lists Settings_Reports_Hoip LT | Pugins 2| 7

@ﬂ\\r\xé e

Properties Copy Paste Delete | Refresh Bulk Update
Properti

/A Waming: Making changes to data Under The Hood can cause data

corruption/loss, and could even cause PlanSwift to crash. Use at your own risk.
Doc

- Editor | PlanSwift will not be resposible for lost or incorrect data.

Custo; Developers | Warning / Disclaimer |

e Pmperhg- [Settings] bl =

’!‘.HD"JEFX|3I|+—*/()()v['r;lAv’c|5hnw:NomnI- Events ~ P |
Name [Formula InputUnits | Adjust Result Output Units | al |
75 S0 i
True REE b

Figure 3

API Calls
Delphi

143

CH

v

Using lltem Object Model Expand source

v

Using PlanSwift Object Model Expand source

VB/VBA (OLE)

v

Using litem Object Model Expand source

v

Using PlanSwift Object Model Expand source

Pascal Scripting (OLE)

v

Item Object Model Expand source

v

Root Object Model Expand source

Pascal Scripting

v

Item Object Model Expand source

v

Using the PlanSwift Object Model Expand source

144

ShowWelcome

ShowWelcome

Boolean value determining whether the Welcome to PlanSwift screen (Figure 1) is displayed. The Welcome screen requires the user to enter a Customer # and a PIN
#in order to log in to the PlanSwift Professional mode (Figure 2) and not be in Viewer-only mode (Figure 3).

When checked (true), the Welcome screen will be displayed when the software starts up, whether the software has been activated or not.

If it is not checked and the user has activated PlanSwift, then the Welcome screen will not appear at startup.

If it is not checked and PlanSwift has not been activated, then PlanSwift will load in the Viewer mode (Figure 3). Any attempts to command the software will cause the
Activate PlanSwift Professional window (Figure 4) to appear, requiring the entry of the Customer # and Pin # before PlanSwift can be put into its Professional mode.

Welcome to PlanSwift

To activate FlanSwift Professional, enter the
Customer # and Pin # that was emailed to you, or
provided on the web site:

Customer #: | c#E858£%

Activate

Figure 1

Templates

nsing

Settings Reports | Help | piugins 52> [[unse]

v 8 4 & 2

€@y o
Eheckfor Remote | About = Report Feature
Updates Assistance aBug Request

Your Customer #: dave.hansen@planswift.com

About Beta Tools Support

Figure 2

Tomplatos_ Setings Reports | Hetn Plugins

Vour Customer # : dave hansen@planswift.com

Check for Remote About Report Feature

Updates Assistance aBug Request

nsing About Beta Tools Support
Figure 3

Your software is not currently activated.

The action you are trying ta perform is not available in the Viewer Only
version of the softveare. If you have valid activation codes, please enter

them novr.

Forgot Codes?

the following links.

I you do not have activation codes and would like to download a free
14 day triol of PlanSuift or would like to purchase, please select one of

Free 14 Day Trial

Shaw Me How

Purchase

Figure 4

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

145

> Expand source

> Expand source

v

Using litem Object Model Expand source

v

Using PlanSwift Object Model Expand source

VB/VBA (OLE)

v

Using litem Object Model Expand source

v

Using PlanSwift Object Model Expand source

Pascal Scripting (OLE)

v

Item Object Model Expand source

v

Root Object Model Expand source

Pascal Scripting

v

Item Object Model Expand source

v

Using the PlanSwift Object Model Expand source

146

SmartOrtho

SmartOrtho

Boolean value that toggles Smart Ortho on or off. When enabled (True), Smart Ortho operates automatically when close to angles. When disabled (False) it does not
operate. Figure 1 shows where Smart Ortho is controlled in the Main Menu Settings / Snapping window. Smart Ortho cannot be enabled if Ortho is disabled.

ke

License
Manager =
Licensing

Data Storage
General
Company
Keyboard Hotkeys
Intertace
Zoam / Pan
Annotations
Graphics
Takeoff Tools

Noifications
Digiizer Tablet
Properly Graups
Advanced

#C) Home Page Tools View Estmatng Lists Tempiates | Settings | Reports

Shapping] ————

Snapping

Enable Shapping to pairts
Snap ta PlanSwift paints

napta CAD points
Haver to Snap Axis
ith - Snap to angles (hold Shilt or temporary enable/disable]

[Smait Dithe - Snap only when close ta angles

Figure 1

API Call
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

147

v

v

v

v

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

SuppressAutoScaleDisclaimer

SuppressAutoScaleDisclaimer

Boolean value that suppresses or allows the "Do not show this again" Auto Scale Disclaimer. This is controlled in the Settings/Notification screen (Figure 1) and can also
be turned off on the Auto Scale Disclaimer window (Figure 2). A check in the Settings/Notification screen enables the Auto Scale Disclaimer; a check in the Auto Scale

Disclaimer window disables the disclaimer.

#) Home Page Tools View Estimating Lists Templates | Settings | R

ko

License
Manager -
Licensing
Dats Storsge =
General Notifications
Compan
pany i
Intrface © oot oty me of updates
Zoom /Pan
L) ety me o llrecomended Lpdates
Graphics O Notiy me of al pdaies
Takeal Tools
bt Beta Tester
Notficaons
Dighzer Tablel [Weri cieating aLOCAL job
Fiooe Gioes Warif creating an ARCHIVE ob
Advanced

Wamni natinstaled propery
\D Confiim wher: deleting obiects
Show Disclaimer when Auto Sealing a page

Ask to delete the em when the last section is deleted

sk to copy digizet points when copying tems.
Ask to break property inheritance
[] Do ot wam when impoting POF fles.

Figure 1

0) Home | Page Toos View Estimating _Usts _Tomplates _Sotings _Reports _Help_Pugins

Y= g QN ol v o B

New Open Pimt Emal Bak fwd | Zoom Ft Zoom Zoom Pan | Sale Dimension Area lnear Seoment Count | Single Send
Job Poge n Out E B g =" | ik~ pat
sob Navigste Zoom /pan essure Tokesit

Pages, Bookmarks « ‘| 41923000

L EXF S EBE

Search: =

= [L
5@l A2.11 - Sample Commercil Foor Plan

Lovby 101 055
& Open Office 106 mInm -

Auto Scale Disclimer

5J Warehouse 107 #8485 M
G Office 102 1967 l
Womens RR 104 s20%m DISCLAIMER: Automatic setting of scale is only as
stemm accurate as the scanned in drawings.
9287 i

MAKE SURE YOU DOUBLE CHECK SEVERAL DIMENSIONS
ON EACH PAGE TO MAKE SURE THE SCALE WAS SET
-} ACCURATELY.

1 £ Archtectural ians [5 Pages]

s o WE WILL NOT BE HELD RESPONSIBLE FOR ANY LOSS

| ASSOCIATED WITH IMPROPERLY SCALED PAGES.

£2-110 1STFLOOR AMEZANDIELEVEL OFF... 6>
] £2-11 WAREHOUSE PLAN SINGLE LINE DIAG...
@ sasc

(912 Pumbing Pl [1Peges]

(51 mecharicl o [1oges]

[51CaRoofing lns 1 Pages]

Donotshow thi agan

Figure 2

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Root Object Model

Pascal Scripting

Item Object Model

148

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

149

TogglelmageEstimatingHotKey

TogglelmageEstimatingHotKey

Integer value returns an ANSI key code (default code 123, the character F12) for the Toggle Image Estimating hotkey (which selects the Estimating tab). Figure 1 shows
the Main Menu / Settings / Keyboard Hotkeys window, which allows for the hotkey to be selected. Figure 2 shows the Estimating tab.

he

License
| Manager -
Uicensing |

) Home Page Tools View Estimating Lists Templates | Settiys | Reports Help UTH pugns =0 |[U]

Digtze Tablet
Prcpery Gioups

DataStorage
Geneal Keyboard Hotkeys
ry
Keybosd Halkeys
Inetace
Zoom /Pan ot
Zoon:

Previous Zeom:

Sol Fight [

Magpier

Create Bookmaik [&

Seatch Baoknarks:

Prnay Seconday e
F] [e (|
G| SnaohZzomOt |
=3 P
Nontiear [z

Nowsegnnk[3—]

NewCome[s |

tatstoport Recarog |

NowSector [y

Toae ogsEsinsingWovow [F12—|

Noatiiel= —]

Confire Wit 1

Toagl Dighize Snapi
Toogle Angle Snep (Dol
Toggle Veiy Poris:

Guick Sexch [Space

Figure 1

#O) tome Page Tools View |Estmatng | Lists Templaes Setings Reports Help UTH Plugins S Undo PlanSwift Professional 1
— = 2 | - & = [Xz i ﬁ‘
J O ED I:I Y e® ﬁ O ™~ x @) f L—E L-S: o
New New New New New New New New NewFrom | Delete | Print Columns Fiter Refresh Properties Expand Collapse | Export Import | Copy Paste
Folder~ Item~ Area~ Linear~ Segment~ Count> Assembly~ Pat® Type~ - Al Al ToExcel Template =
Estimate Clipboard
1 Estimating Layouts « | Default
"y n + x 0 D; Name Description Qty Units Cost Each Markup % Price Each Price Total Color
() [sample Plan Takeoffs $0.00. —
B & 57 |Lobby 101 305.47|SQFT $0.00 [} 0 $0.00
Y @
W Felots 1 63 |Open Offce 106 378.74/sQFT $0.00 o o .00
Warehouse 107 1948.75|SQ FT. $0.00 0] 0 $0.00 | I—N
Office 102 139.6|SQ FT $0.00 0] 0 gml_
Womens RR 104 52|SQFT $0.00 0] 0 Q)Wl
Exterior Wals 192.77|FT .00 0 0 $0.00 | m—
Mens RR 105 51.58[SQFT $0.00 0 0 $0.00| I—
8lea 50.00) 0 0 50,00 m—
135.55|FT $0.00 0] 0 $0.00 | M—
—

Figure 2

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

150

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

v

Expand source

Pascal Scripting

Item Object Model > Expand source

Using the PlanSwift Object Model > Expand source

151

ToggleOrthoHotKey

ToggleOrthoHotKey

Integer value returns an ANSI key code (default code 115, the key F4 in hotkey window) for the Toggle Angle Snap (Ortho), shown in Figure 1). This is controlled in the

Main Menu / Settings / Snapping window (Ortho Snap to Angles, Figure 2) and at the bottom of the PlanSwift window (Figure 3).

#3) home Page Tools View Estmatng Lists Templates | Settngs | Repor
e
e
el Keyboard Hotkeys
o
Katmadiokes Pinay Soconda
TP Zmnwre[F7__|
Annotafions Zoom F10 | [None
Graphics revious Zoor | None lone
Takeoff Tools & <o i
oo setile | [|
Digtize Tablet SerolDowre D |
Preperty im(ScolLeft |
Selfight F | [Neno
T
CrestoBockmak 5 | [Noow |
e ok o |
Continue Wit &
Togok Digtees S [
cogleArgle Srap it 78|
Tooge Verly Pt [F5___|
. m
Figure 1

4} Home Page Tools View Estimating Lists Templates Settings | Reports
License
Manager *
Licensing
~ Data Storags .
. General Snapping
- Campany .
- Keyboard Holkeys Enable Snapping to points
- Intertace [Snap to PlanSwilt points
- Zoom / Pan [Snap to CAD points
- Annotations i
- Graphics Haver to Snap Asis
T akeaff roo-\S________q. [Ottha - Snap to angles (hald Shift for temporary enable/disable]
plhchical
‘Snapping. Smart Oitho » Srap arly when close to angles
Motifications
Digitizer Tablet
Preperty Groups
Advanced
Figure 2
Al Practice Residential Plan - Use for demo Fahd = |7
L ige
o 4 REFF -
) 2 | select Stop
Bearch: | | » i
o shen digitizing

| PlanSnift Shorteuts L

yboard shortcuts

Pages, Bookmarks d|
3 Takeoff Summary | tview of the page
_ Notes li = reaanduneann’{
1820.5,2811.0 [snsp ‘m‘ FreeHand |Ve'nfy Points
Figure 3

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

CH

Using litem Object Model

Using PlanSwift Object Model
VB/VBA (OLE)

152

> Expand source

> Expand source

> Expand source

> Expand source

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

153

>

>

>

>

>

>

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Top

Top

Read-only integer value that displays the top position of the Main Window.

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model

CH#
Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)
Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)
Item Object Model

Root Object Model

Pascal Scripting
Item Object Model

Using the PlanSwift Object Model

Verify

Verify

Boolean value that toggles Verify Points On and Off. Figure 1 shows where Verify is controlled in the PlanSwift Main Menu / Takeoff Tools screen. Figures 2 and 3 show
Verify Points in its highlighted and un-highlighted state in the PlanSwift window. When highlighted, Verify Points is True (on). When un-highlighted, Verify Points is False
(off). When it is on, the Verify Entry popup window (Figure 4) is displayed after each takeoff is entered.

154

) ome Page Toos View Estimatg_Lists_Tempates | S0t | Reports_Hep_Pugins

Takeoff Tools.

Kapouatioteys Deta Tsspaency s
s
Zoom /P s 5 el |

.
To Tok Lo ®

Py Grops Segrent 0
Advarced Lo [l Hare

Comt o

Verty poris hen ecores
1 Confim vt ecdingdinensions.

SnghCick Detection Seings(dvenced)

Figure 1

e

Tap B once on the keyboard to create a Bookmark of the current view of the page

Pages, Bookmarks

New Section | Double Click to create a New Section when digitizing with the Area and Linear tools

~ [l

Measurel

|7152 1,31137

[sep e Sgesiand | verity Foits|

Figure 2

to Stop the digitizer or Right Click and select Stop

ward to create an Arc or & Curved Line when digitizing

iact the Keyboard Hotheys to see the keyboard shortcuts

T
Z! ta create a Bookmark of the current view of the page
<

‘ 1013.4, 22825 ‘

i v o

Figure 3

Verify Entry n'

Horz. &Vert, Distance . Angle & Distance
(52
F |7
[&]

—

Figure 4

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model
VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

155

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

156

> Expand source

> Expand source

> Expand source

> Expand source

Width

Width

Read-only integer value that displays the width of the Main Window.

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

WindowState

WindowsState

v

v

v

v

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Read-only integer value that shows whether PlanSwift program window is minimized or maximized. A value of 0 is minimized and 1 is maximized.

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

157

>

>

>

>

Expand source

Expand source

Expand source

Expand source

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

ZoomHotKey

ZoomHotKey

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Integer value that returns an ANSI key code (default code 121, Function key F10). Figure 1 shows where the Zoom hotkey assignment is made. Figure 2 shows where the

Zoom command is invoked.

#3) Home Page Tools View Estmaing Lists Templates | Sotungs | Reporis Help UTH Pugins 2O

Sl Aight

H

(LML

TR AL

Magaer.
Create Bookmark:
Search Bocknatks:
Contiue Witk

Toogl igize Srap:
Toggle Angl Srap (Otho}
Toggle Veily Points
Quick Search:

H

e
e
| Licensing

OoaSaa
o Keyboard Hotkeys
Caroy
Kabond ok fee

idace Primy. - Secon

Zoom 1P Nm -

Sorasion Zoon 15

s

Gt Py o i
‘Snapping e
Notiications St

Do Tt SectDow oo
Pt Graps L

Stat/Stop Point Aecording:

Toggle InageEtimaing Wedow

HewSecton

Nowtots: [~

Figure 1

Mew Open Print Email Back Zoom Zoom Pan
Job Page In Out
l Job | Navigate Zoom/ Pan
Figure 2

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Item Object Model

158

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

Using litem Object Model > Expand source

Using PlanSwift Object Model > Expand source

Pascal Scripting (OLE)

Item Object Model > Expand source

Root Object Model > Expand source

Pascal Scripting

Using the PlanSwift Object Model > Expand source

159

ZoomHoverSpeed

ZoomHoverSpeed

Integer value that controls the Hover Zoom Speed (Figure 1). Value ranges from 5 to 100. Figure 2 shows the light blue transparencies (and darker blue arrows) at the
edges of the window and the darker triangular transparencies (arrows) in the corners. Hovering (not clicking) your mouse in any of those blue areas makes the plan scroll
quickly in the direction of the arrow. Pressing the keyboard space bar reverses the scrolling direction.

®
) Home Page Tools View Estimating_Lists _Templates | Setings | Reports Help U-TH _Pugins

kS

License

Manager -
Licensing
Dala Storage
£ General Zoom/Pan
- Campany
Keyboard Hotkeys Pan Spesd Mouse] Hover Pan/Zsom
Interface Slow [] Fast Enable Hover Pan/Zoom

+ Zoom /Pan [] Activate orly when dragaing
- Annotations

Graphics i Speed (Keyboard))

Takeolt Tools - PSP

Snapping Slow (] o
i Natifications

Digitizer T ablet Zoom Spesd (Mouss] i

Property Groups Slow (] ol

Advarced Stow (] Fast

Zoom Speed [Keyboord)

Trsnsparency
Slow v Fast

]
Deley: [500 2]
Enable speed panning with midde bution
Figure 1
B =
5 @ O R L]
o Digitzer | New Annotations Highiighter Note Overiay Imsge
nt Record - | Section ~ - -
Record Annotations
a \
@
>
o
Ol
._1‘5
gui
i
= \
g
=
e -\C/‘ 3)
i ol
&/

Figure 2

API Calls
Delphi

v

Using lltem Object Model Expand source

v

Using PlanSwift Object Model Expand source

C#

v

Using lltem Object Model Expand source

v

Using PlanSwift Object Model Expand source

VB/VBA (OLE)

Using litem Object Model > Expand source

v

Using PlanSwift Object Model Expand source

Pascal Scripting (OLE)

v

Item Object Model Expand source

v

Root Object Model Expand source

Pascal Scripting

v

Item Object Model Expand source

v

Using the PlanSwift Object Model Expand source

160

ZoomInHotKey

ZoomInHotKey

Integer value returns an ANSI key code (default code 107, the number pad "+" sign). Figure 1 shows where the Smooth Zoom In hotkey is assigned. Figure 2 shows where

the Zoom In command is located along the PlanSwift Main Menu bar.

#3) Home Page Tools View Estmating Lists Templates | Setings | Reports Help UTH Plugins = || U
)
s
s
s
Daasioase
Generd Keyboard Hotkeys
Cangors
Priauiy | Secondy Prmary| Seosndany
e
Lol E S s |
s Zee[F10__| SnoothZoom Ot [N | [Nors
Graphice revious Zoom: [Nore. lew Area:
il Fieious ot Nare__| Newnres ||
Snapping. A e bz
Notifications e New Segment:
Do Tt saalDom foe
Poety G e
e Seroll Right: Stat/Stop Point Recording: | R
v Nowsecin i
onder
emb o
‘Search Bookmarks: |Nor -
N
Toh DS [
Toogle Verify Points:
Quik Seact[spoce
Figure 1

View Estimating Lists Templates Settings Reports Help

€ QEEQ M |

Back Fwd Zoom Fit Zoom_ Zoom Pan Scale Dinl
Page In Out '
Navigate Zoom /Pan Measu
Figure 2

API Call
Delphi

Using lltem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Using the PlanSwift Object Model

Item Object Model

161

v

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

ZoomOQOutHotKey

ZoomOQOutHotKey

Integer value returns an ANSI key code (default code 109, the number pad "-" sign). Figure 1 shows where the Smooth Zoom Out hotkey is assigned. Figure 2 shows
where the Zoom Out command is located along the PlanSwift Main Menu bar.

) Wome Page Tods View Estmatng Lists Tompatos | Sotngs | Reports Holy UTH pagins P9 |[Urio]
License
| g -
e
Ot Sorage
Genessl Keyboard Hotkeys
Canoy
Primary Secondary Prmaty Socondary
Inedoce Ll
Zoem /P PP ——piticre |
Aoootens Zoom 10 None |
?i’;:;’w: Previous Zoom [None None. New drea:
o Nowlimsis]
Notresins seolUple | [Nore] NowSsomert[s—
Oigier Tabet SeoDowc0 | [None | NewCourk (s |
::vwng SerlLeft |5 None
pores scotfigef | Stat/Siop Pont Recang [7|
NewSecion [N |
ot | Tooge Inge/Esmaing Vndow [F12 |
CosteBockmakc 5| o —
Conire VA ore | [Nore]
Teage Dt S
ToggeAnge S 0o} |
‘Toggle Veerdy Points: [F§
Quick Seac [Spoce

Figure 1

Tools View Estimating Lists Templates Settings Reports

e QREQ O n

Email Back Fwd Zoom Fit Zoom Zoom _ Pan Scale
Job Page In Out >
Navigate Zoom / Pan
Figure 2
API Call
Delphi
Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Obje

ct Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Obje

ct Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Mod

el

Root Object Model

Pascal Scripting

Using the PlanSwift Object Model

Item Object Model

162

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

> Expand source

ZoomSpeed

ZoomSpeed

Integer value that controls the mouse Zoom Speed. Value ranges from 0 to 10. The Main Menu / Settings / Zoom/Pan window (Figure 1) also controls Zoom Speed. Zoom
is controlled by the mouse's wheel.

fa
&) Home Page Tools View Estimating Lists Templates = Settings | Reports Help U-TH Plugins
e
Manager
Licensing
Data Starsge
e Zoom | Pan
1 aond Wt Pan Speed (Mause) Haver Pan/Zaom
Interface Slow (] Fast Enable Haver Pan/Zoom
: inam JPan [Activate only when dragaing
recimiors
Graphics Pan Spesd (Keyboard)
Snapping Show [] Fast
i Natifications
Digilzer T ablet ™ Zoor Speed (Mouse] et
Propey Groups
By e ' L) Fat
Zoom Speed (Keyboard)
o i L T
L}
Delay: | 50015
Enable speed panning vith midclle button S
Figure 1
API Calls
Delphi
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source
CH
Using litem Object Model > Expand source
Using PlanSwift Object Model > Expand source

VB/VBA (OLE)

v

Using litem Object Model Expand source

v

Using PlanSwift Object Model Expand source

Pascal Scripting (OLE)

v

Item Object Model Expand source

v

Root Object Model Expand source

Pascal Scripting

v

Item Object Model Expand source

v

Using the PlanSwift Object Model Expand source

163

ZoomSpeedKeyboard

ZoomSpeedKeyboard

Integer value that controls the keyboard Zoom Speed. Value ranges from 5 to 100. Figure 1 shows where is value is controlled in the Main Menu / Zoom/Pan window.
Controlled by +/- on keyboard's ten-key keypad.

jo

License

Manager -

Licensing

- DataStorage
General

- Keyboard Hotkeys

Zoom | Pan

Pan Speed Mouse)

i
#3) Home Page Tools View Estimating Lists Templates = Settings | Reports Help U-TH Pugins

Hover Pan/Zaom

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Interace Slew (] et Enable Hover PanZom
£+Zoom /Pan [] Activate only when diagging
Anrotations
i Pan S peed Keyboard
ez s Pan Speed:
T akeal Tooks Slow (] Fast
Snapping Slow (] Fast
- Nofications
Digiizer Tablet Zaam Speed (Mouse] e
- Propey Groups e (] Fast
Advanced Slow (] Fast
Zaom Speed [Keyboard)
. i 5 Transpatency:
o st
L]
Delay: | 500 %
Enable speed paning wit e button
Figure 1

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

ZoomToFitHotKey

ZoomToFitHotKey

v

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Integer value that returns an ANSI key code (default code 118 or function key F7). Figure 1 shows where the Zoom To Fit hotkey assignment is made. Figure 2 shows
where Zoom To Fit is invoked on the Main Menu Ribbon bar.

164

Item Object Model

hc

License
Manager -
Licensing

) Mome Page Tools View Estmating Lists Templates | Settngs | Reports Help UTH_Plugins

=

Data Storage

Digize Tablet

Advanced

Fropeny Gicups

Keyboard Hotkeys

-
Koo e vrinnr
M

Scol U
ScullDaun
SenlLeft
Scol Right.

Mgt

Creste Bosknak:
Seatch Bookmatks:
Continue Wit

Toggle igizerSrsp:
Toogle Ange Snap (Ditho)
Toggle Verty i
Ok Seach

PR TR

Socondary Primary.
Srcoi Zoom o s |
o Zoom 0t |
[-
Newtiesr |2 |
LT New Segment.
[|
SttSiop PortRecordrg [|
Neweciore 1|
Teae g EvinsivgWrow [12|
O

g
2
H

Figure 1

N

New

“3) | Home | page Tools

g

Estimatin ists Templates

Setftings Rep

o =
Open Print Email
Job

lob

Figure 2

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Using the PlanSwift Object Model

D O

Back Fwd Zpom

L0

Pan

Fit Zoom Zoom
Page In Out |
_ Mavigate | Zoom / Pan |

165

> Expand source

v

v

v

v

v

v

v

v

v

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

[tem Structure Overview

Item Structure Overview

This section describes the internal structure of the APl and how to enable the Under-The-Hood tab.

Before working with the API, a good understanding of the internal structure is recommended. To review the structure, the under-the-hood (U-T-H) tab needs to be enabled.

CAUTION

By modifying or changing anything in the back end, you may adversely affect the operation of the application. Modifications should be done in a read-only mode. If any
modifications are done to the back end, those modifications will be lost when the application is re-installed.

Follow these steps to enable the Under-The-Hood tab.
1. Open PlanSwift.

2. Click on Settings along the top ribbon bar (see #1 on Figure 1 below).

3. Select Interface from the options on the left (see #2 on Figure 1 below).

4. Click onShow Under the Hood Screetfsee #3 on Figure 1 below).

49) oms Page Toos View Estmatnn Lsts Templtes | Seioss | Reports e Pugns 5
1
Dt
ki Interface Settings
Gy
Comatbinon e :
ioacs v
e~ (e
Guphes 3 Show Types Tab i Templtes Scieen
T Too
S 2 Show it een i
::w.r'.:u (1] Drawe Cross Has Cussor on mage
Py B Dt setten
e 2 Shou Tt
2 Sromtov e
(0 Shomev T on e Tab
(] Show Browse For Job
[Disable Job Locking lequires Username when aclive]
] Shou Aeotdesonn
(0 Dbl Esimage i verpios . [A—————
0 ShowhutoGart Tod —F
(0 Entio Edendd 0P Rrgefr T
8 o
Figure 1.1-1
Figure 1

5. For the password, please contact your PlanSwift representative. Enter the password (see number #4 of Figure 1) and click on Ok.

6. An U-T-H (for "Under the Hood") now appears on the top ribbon bar (see number #1 of Figure 2). Click on U-T-H to display the screen resembling Figure 2.

anges todats Under The Hood can cause dats

£0) Home Page Toos View Esimateg_Uists Templates_Setiags Roports o | U | phgies

r x & - b War
e il . « oo
woputies Copy Pasie Deete | Refrsh BulkUpdste Browseto oc

i " operes PnswinForder | ¥ R —

 could even cause PlanSwift o crash Useat your own ik

Fdse[ine
e e
ok ke
ot ke
Fose Fae
FobeFake

(G Toant (Changeloded: Fake
Name: Messogesoced: Fase

Figure 1.1-2

Figure 2

7. This window shows the complete back end of the PlanSwift structure, which shows everything from your jobs, your storages, your plug-ins, and your types. These are
the most commonly utilized items when you're developing against anything within PlanSwift. The structure always starts at PlanSwift, which is the parent, or the root
object, for everything that you want to access (see 1 of Figure 3). Each of the folders beneath PlanSwift is a child of PlanSwift. Click on the + to the left of Job folder
(number #2 of Figure 3) to open the Job folder, which will display the Pages, Takeoff, and Bookmarks (see number #3 of Figure 3). This Job folder contains the current
active Job that is loaded into PlanSwift. When programming, in order to access job information in the Job folder, use the relative path of \Job to access the Job folder.
Under the \Job folder, you will see Pages, Takeoff, and Bookmarks. If no job is loaded, then the job's value will be Null. Pages items reside in the \Job\Pages;
Bookmarks items reside in the U-T-H \Job\Bookmarks folder. The PlanSwift Pages information resides in the U-T-H \Job\Pages folder. The PlanSwift Estimating tab
information resides in the U-T-H\Job\Takeoff folder.

166

Figure 1.1-3

Figure 3

8. Figure 4 shows an example of the Estimating screen.

Tempister g
EEEECE]
r—

[

I

Figure 1.1-4

Figure 4

9. Note the similarities in the red rectangular areas in Figure 5 (U-T-H screen) and Figure 1.1-6 (Estimating screen). When you are developing, you will not be writing to
an estimating screen; you will be writing into the U-T-H \Job\Takeoff folder, which is the back-end structure. As you update this back-end structure, it updates the rest
of the screens.

Figure 5

Figure 6

10. The Pages tab works similarly (see figure 7). If a page is added on the back end, then it will reflect in the screens.

167

R A T
: = e

e« S ODRIS LS

AEXF O HEE Fropertes Planuet Felder ¥ e | P

e i
PlanSwift Page Tab S
et
PlanSwift U-T-H Pages Back End
Figure 1.1-7
Figure 7

11. If you need to access templates, they can be accessed via the Storages (\Job\Storages). The example in Figure 8 shows only a Local storage being set up. If you have a
LAN, that would show up as well. Templates can live anywhere on your network. Right-click on the Local to open the Properties box for Local.

rx ¢

Propeies Copy P Dete | R GukUpde _ Bromseta
Bropenes lns foder

Figure 1.1-8

Figure 8

12. Figure 9 shows the properties box for Local: Click on Advanced.

Properties - [Local] X
Name | value [units
Local

|color |536,870,911.00 |

AdvancedJ Form ‘ Ok Cancel
Figure 1.1-9

Figure 9

13. Clicking on Advanced opens the Advanced Properties window (Figure 10), which will tell you exactly where your storage is physically located on the computer. If you

have a network set up, then a property will be set up called network.path. Use the item.fullpathproperty within the API. Use the full path if you need to copy files to
that network location.

@ Properties - [Local] X
HEeEe X[@]+ - % 2 () O] 2|4 v 2| shownomal - = FOM Events -
[Name: [Formdla. [inputnits Tadyst [Resut Joutput Units 11
Item
iocd | I

Color I] [
Other

[1e [prrege I I [Stoage I SEE

Jieon [['] I [|] [S

[torge tcon [- I I [e] SR
Audit Trail

[crestediy [[settige\oeer I [[EIElE

| Tme stamp | rDate] {Tme] | | [17272018 1z:3v:a1m | LEE
Inheritance path: _All_Storage\

Input Form Ok || Cancel

Figure 1.1-10

Figure 10

14. This completes the overview coverage of the COM and Scripting capabilities and how data is stored.

1244
Property Object Structure Overview

Property Object Structure Overview

This section describes the object structure of Items and Types and how a _Type can be modified into a new Type.

Understanding the structure of Items and Types is important to developers. Type is a very specific word that PlanSwift uses. A folder (in the Under-The-Hood window) is a
physical Item of the Type "Folder." Everything in a Folder is considered to be an Item. Items are the "building blocks" of PlanSwift.

There are two types of Items in a Folder: one is "Types" and the other is "_Types." These are the two identifiers for what that Item is. The "_Types" is the base class (a
master template containing the default properties) of all Items in PlanSwift. The Type allows the user to inherit a ”_Type" and customize it into a new custom Type.

For example, the Area Item Type in PlanSwift can be modified to produce new measurement types, such as Roof Area, Joist Tool, Grid Tool, and more. Each of these new
measurement types are built upon the base type for an Area Item. Figure 1 shows these custom area item types added to the Area drop-down menu on the takeoff ribbon
group on the home tab ribbon-bar. The drop-down menu contains only some of possible modified Area Items that can be created. Users can create their own custom types
and even add them to the drop-down menu if desired. Some modified types, like the Roof Area, have only simple modifications to their properties. Other modified types, like
the Joist Tool and Grid Tool, have more complex modifications to their properties, such as scripted properties and custom sub-item section types. Regardless of the complexity,
each of these custom types is built on the foundation of the original area item type. The Area item type along with the other takeoff types (Linear, Segment, and Count) are
some of the essential "building blocks" of PlanSwift.

Help Plugins '%

=Rl s o F

Dimension |Area | Linear Segment Count | Sing
= = s i Cliel
easure | %, singleClick Area Eoff
| Roof Area 36.00 x 24.0
$ Price Per SQ FT
ﬂ Area CubicYards
8§ Grid Tool
@l Joist Tool
L3 Mew Area

Figure 1

169

_Types (Property Object)

_Types

This section describes the object structure of _Types, how to access and view the properties of _Types, and how to configure the default setup configuration of Items
within PlanSwift.

1. If you do not have PlanSwift open, follow steps 1-6 in the previous section (Item Structure Overview) to open PlanSwift and display the U-T-H tab; then click on the U-T-
H tab to open the U-T-H window (see Figure 1 below). The two red arrows point at _Types and Types. Any new Types that you create will be visible here. Click on the
Settings tab on the top ribbon menu.

20) vome Page Toks viow cstmatng_Usts Tomphtes_sotogs_repara_np | 14

B ORX $ —E T
Pt Comy P B [B pbwitrode | v || e |
— —

Figure 1

2. Right-click on the Open Job Dialog folder in Figure 2.

:.'Q Home Page Tools View Est

2 XK

Properties Copy Paste Delete = Ref

|Name

& Planswift
=& |Settings

i} Open Job Dialog

#-2) |Recent Jobs
Notes

Show Me How
Docking
Scripting
Reports

New Job Dialog

[+

060600

Figure 2

3. Select Properties (Advanced) from the drop-down menu in Figure 3.

170

Add .|
Delete |
1 @ [Notes | Copy .
®Olpodkng [
©saipting oste |
@ Reports Load Tree
@ ew:Jol Unload
©3propert
{5 |Estimatit Break Link |
{2 |Add Pag .
® Job Properties (Advanced) |
[|Storages Test ‘
2 |Plugins Rebuild
_Units
[+ | _Types
#-£3 [Tvpes
Figure 3

Click on Advanced in Figure 4.

| | @ Properties - [Open Job Dialog] x

i Name —

| Input ||MEmced|| Form | | Ok || Cancel |_

Figure 4

This opens the Advanced Properties screen in Figure 5. Note that the Type of the Open Job Dialog is "Folder" (see #1 in Figure 1.2-5). Note that the "Inheritance path is
shown by arrow #2. Click in the Folder field to display a down arrow, then click on the down arrow.

@ Properties - [Open lob Dislog] X
el FE XR[@[+ - % /() Q-] 2F|a v 2| shownoma » 5™ Events -
e [Formi [rpwtnts _[adist___Jresit |
Ttem
oo I | I [—
(Open J0b Disog I 1 | (Open J0b Disog
Other
e Fader ? e BEE
icon =) a S0
width 747 - HEE
et aw 0 &0
e B EEE] REE
) fE 0 Gl
Dragpropictan Sibtien subiten 20
| loaton Local oca 90
Columns (Sze: 470) =]
GrdLayout) GIE]
Audit Trail
created sy [Dsetings\ser] [[[DEE
|Time Stamp |[pate] [rrme] [| [/27018 31038 Pm | [EI[E]
Inheritance path: _AIl_Folder| 2
Input “ Form ok || cance
Figure 5

Figure 6

171

7. This opens the screen shown in Figure 7. Selecting Item changed the Folder Item type to a generic PlanSwift Item type. Note that the properties of a generic Item are
significantly different than the properties of a Folder Type. Note also that the Inheritance path at the bottom of the screen now displays as
"_AII_Item". The Type controls the functionality of an Item and what that Item does. Click on Cancel at the bottom of the screen, and select No from the warning window
that asks if you want to save any changes.

Figure 7

8. If you aren't at the U-T-H window, click on the U-T-H tab on the top ribbon menu. Now click on the + box next to _Types, then open the _All box the same way, and then
click on _Item. You should see the same information as displayed in Figure 8. Types, then, are the general types of Items that we have. When we specify a Type with an
underscore (_), we are specifying a base class of an Item or Item _Type. At the arrow 1 in Figure 8 you will see that _Item is broken down into three different _Items:
_Takeoff Item, _Part, and _Assembly. Each one of these has a different configuration. A _Takeoff Item is a specific digitizer Item, meaning you're going to have an area,
a line object (linear or segment), or a count object. Their primary function is to perform very specific actions to record data onto images. They are completely separate
from any other Item type in PlanSwift and are the only items that can be used to record digitizing information. Click on the + next to _Takeoff Item.

Figure 8

9. Now click on the +'s next to _Line and _Part so that your screen resembles Figure 9. Here you can see the _Linear and _Segment configurations for the _Line takeoff

item. The _Linear and _Segment items are inheriting the parent's Item properties. The same applies to the
_Material, _Labor, _Equipment, _Subcontract, and _Other configurations for the _Part item. Right-click on the _Line type in Figure 9.

Figure 9

10. Click on Properties (Advanced) in Figure 10.

172

Delete
Copy
Paste
Load Tree
Unload
Break Link —
, | == (Advmd)w
[, |_Report Test
b | Estmatnglayout po g
#-[Z] |_Development
) | _Hatch Pattern
[| _Texture
Figure 10
11. Click on Advanced in Figure 11.
' Properties - [_Line] e
Mame
Color Fill Type
| iRandomcolor] - | |So|id - |

| Input “||Adra.nced|| Form | [Ok [Cancel ‘

Figure 11

12. The Properties for the _Line are shown in Figure 12. The properties' rows may be shaded in blue, green, white, orange, yellow, and gray (not all shading colors are shown
in this particular figure).

Blue Fill: The blue fill on the row indicates that the property on that row was inherited from the system (somewhere along the inheritance path)—as both a result and a
formula (every value is available).

Green Fill: The green fill on the row indicates that the property on that row was inherited--as a result only--from the system.

White Fill: The white fill on the row indicates that the property on that row was created by the user or was green (no longer inherited) and was modified and turned
white.

Orange Fill: The orange fill on the row indicates that you modified an inherited property but that you want to maintain the inheritance.

Yellow Fill: The yellow fill that you have locked the property.

Gray Fill: Gray fill indicates that the property is hidden.

Figure 12

13. Note that the Show mode you are currently in is "Normal." Click on the All selection from the Show: drop-down menu (Figure 13).

173

[© Properties - _Line] X
!'-E"':[‘_"‘l"x|3[+ = % 7 €) ()'l T|A v 3‘ Show: Normal ~ fT.nggL‘t Events ~
e [Formula [inputunits | Input [ouputums [| | =
ftem +~ Normal
tine Hidden &

Description All @

Item # &

Type Takeoff Item Takeoff Item 8

Default Properties View Form Form R

Figure 13

14. Scroll down to the bottom of the window. A grayed row is now visible (see the red arrow in Figure 14); this row is gray because the item is hidden.

Padlocks: The column of padlock icons on the right allows you to lock or unlock whether the property Name, Formula, Input Units, Adjust,
Result, and Output Units values (listed in the column headers) can be edited. Click on the padlock to toggle between locked and unlocked.

Lightbulbs: The row of lightbulbs to the right of the padlocks allows you to select whether the property for each row is visible in the Show: Normal mode.

Clicking on a yellow bulb when in Show: Normal view causes the property on that row to disappear and be hidden. Clicking on a yellow bulb when in Show: All turns the
bulb blue; a property row with a blue bulb will not be visible in the Show: Normal mode. Clicking on a blue bulb when in Show: All mode, turns the bulb yellow and
allows the property to be shown again when in Show: Normal mode.

Other

leuD [65FEASFC-4963-4-C5-9C31-3C4E85TDEFF 5 {65FEASFC-4863-4FCE| ‘g

ien I iC] E

-1 IsItem vl True &
 {Ordertndex 1 * 100 }E

| DoubleClckaction (Record Record i

[ShowChidinputs [True }ﬁ

| Dragbropaction Subltem Sibitem £

| LaunchAction Record Record &

e p— <l version="1,0" encoding="50-8853-17> il version="1.0" &1 &
HIstine vl True |y
 {alowbragoroporrage ®] True B[y

| AllonDragDropOnTakeoffltem ™ True £

| IsTakeoffltem) True o

| subitem Type assembly assembly 9]
Audit Trail

[createany | isettings\user] I I R
[Time saro |1oate] [Time] | | | sa018 10:27:33 | FIEE=
Inheritance path: _AlI\ Ttem\ Takeoff Item)

Figure 14

15. Click on Show: All and select Show: Normal for the mode (see step 13, but select Normal from the drop-down menu) (Figure 15).

@ Piop Line] X

el X|@|+ =%/ () O-| 20| a~ 2| showa- =0m gvents -

Name [Formila [tnput Units__ [Adjust. [Resuit [Output Units [=]

Ttem

“INane ne Lre e
Descrpbon EE

e Takeoff Item Tekeoff Ttem FIE
Tiem £ EIEIE]
DefoultProperbes View _|Fom Form EFE
aty [Takeaff] T 0.00 T IEIE
Cost Each B 0.00 < FEaE]

|Markup % % 0.00 % R
Cost Type &9[0

|Cost Total Q] * [CostEach] s 0.00 s (=]
Markup Each [Cost Each] * (Markup %] / 100) 0.00 o]]
Markup Totel Q] * Mariup Each] s 0.00 s v|O
Price Each [Cost Each] + Markup Esch] s 0.00 B Fl[m]
Price Totel Q] * Price Each] B 0.00 s olim}

Fill

~Jeolor [[tRandomColr] I [[EEE
Fil Type [seid | [sotd FIEED
= i i i i i ol

Figure 15

16. Click on Cancel to cancel out of the Properties - [_Line] window so that you do not save any changes. Now double-click _Area under _Item in Figure 16.

49) Wome Page Toos Vow tstmatng Usts Tompates Setngs apors hop | T | pugns | [U z
® X e = b Waing: kg chnges ot Undes To oo cncue
. o g o B "
Propetie Copy Pae e | Rerah BuliUpdate _ frowseto B
e o e I R e e e
e [WaingDichimes
[ame.
@ poperies L] 2
=
-) R
o e H
Tredincio] <] o 2 K
nput | Agiancea (5] ok || cancsl
Figure 16

174

17. This opens the Properties - [_Area] window. The _Area item is derived from the _Takeoff Item and has had additional properties added for that Item. All of the blue
shaded rows of properties have been inherited from _Takeoff Item. Click on Cancel (Figure 17).

Figure 17

18. Double-click on the _Part Item, then click on Advanced (Figure 18).

0 tame pace Toos view Estmatng_usts_Tomptaes_Sottogs_noports_ i | w34 | pugins £ [0o]

@ B x ‘\ = 1 b Wrming: Matingchanges to da Undes The Hood can cusedot
= « = e
Propeties Copy Pute Deete | Refieh BulkUpdste Browseto Do
s puonnioder | v | o | PlnSwftul notbe resposibie for st orincorectdats.
Cuntom | Devdopert Waring/ Dischimes
(=

e =
o= o= o

=

T

i

o
e
| [ooa] pamncas | ram o || cann

Figure 18

19. The _Part Item is the base class of _Material, _Labor, _Equipment, _Subcontract, and _Other. All of these inherit from _Part. Now double-click on the _Assembly Item

) [_Assembly

Figure 19

20. The _Assembly Item (see Figure 20) doesn't have any child items, because _Assembly is basically a container of parts. It only inherits from _Item in the same way as
Part inherits from _Item.

8

HEHHERH
EECE e

T e

Figure 20

175

21. In summary, PlanSwift uses the _Types Items to configure the default setup configuration of Items within PlanSwift.

Types (Non-Underscore "Custom" Types)

Types (Non-Underscore "Custom" Types)
This section describes the object structure of Types, how to access the advanced properties, and how those advanced properties may be changed.

1. The next steps will cover the Types (without the underscore) Items. These Types are custom types that are added by customers or developers who needs to add
additional functionality to the default class Items without having the need to go in and change the default properties. When working with Types, developers would not
use the Under-the-Hood (U-T-H) tab, but would instead go to the Templates tab, then the Types tab. Types may not be visible from the Templates tab ribbon menu
(Figure 1); if it is not, then first click on Settings on the Main Menu ribbon bar.

“#3) Home Page Tools View Estimating Lists | Templates | Settings Reports Help U-TH Plugins

d Oglt im 2« @ QN X A4

Mew Mew New Mew New Mew New Newfrom | Delete | Columns
Folder~ Item~ Ares™ Linear~ Segment~ Count™ Assembly~ Pat~ Type< !

Template Tools

‘0 Sample Takeoff Templates |ﬁ Parts and Assemblies | Custom | Links | My Tab | I I

Mame [Description Price Each Color [wal Height |
o)

D |Conaete
4 53 | Masorry ©iv 4 |

Figure 1

2. After clicking on Settings (#1 arrow of Figure 2), click on Interface (#2 arrow), then click the checkbox for Show Types Tab in Templates Screen (#3 arrow).

[0) Home roge Toots view estmatog_sts vauis Sotings | o

License
Manager ~
Licensing

DataStarage

General Interface Settings

Conpary

Keyboard Hotkeys Coloschanes

Inteface e v

Zoom P

nvotsons =R
Guaphics Tabn Tempis
Takeof Tocks

Sneppi 22 Show FllScien Gusr
Notcatons :

il (] Drew Cross s Cussor o mage
Prapety Groups (] Lago Scrd Bars

[Show Fiing Tool Hints
‘Show Hover Hints
] Show Dev Tooks on Piugins Tab.
] Show Browse ForJob
] Disable Job Locking (equites Usetname when active).
(] Show RepotDesigner
] Disable Estinage Giid Dvetyping
[Show Auto Count Tool
] Enable Extended DPY Range for TIFs

Figure 2

3. Now click on Templates tab (Figure 3) and you will see the yellow Types tab, which is orange in color and has a cog to the left of it. Click on Types: yours will look similar
to Figure 3, except that the window shown below has most of the + boxes clicked on to display the sub-Items. PlanSwift comes with several custom Items. These items
are categorized according to the base digitizer class type. Open Scripted Tools, then Items, then double-click Joist Tool to see its properties.

1@ S el Tt [s o s | oo | |y 0
= - —

HHH

Figure 3

4. The Joist Tool properties are shown in Figure 4. The Joist Tool template has been configured to completely handle a joist tool layout of various sizes. Click on Advanced
to see the advanced Joist Tool Properties.

176

@ Properties - [Joist Toc X
Name
[20istTool
Joist Type
i =
Lenath Calcuiation Joist Direction
[None v | [select paralel side -
0.C. Spacing Pitch
| -k =
Min Length New Length
[=] | =
Color Fill Type
|[RandomColor] - [soid -
¥4 Group Sections [Automatically Generate
V Generate Parts ¥ Show Labels
‘ Input || Advanced || Form E -E Ok Cancel
Figure 4

5. Every Item has a Property Structure, which remains the same for all Items, because all Items inherit from their parent-class Item. Based on the Type you have selected,
various properties may be added. Each property for an Item has columns (see Figure 5) specifying the property's Name, Formula, Input Units, Adjust, Result, and
Output Units.

EeliE

TEE

It

Figure 5

Name: The Name column identifies the name of the property. When coding, a developer will access this property either via the name or via an index.

Formula: The next column, Formula, allows the developer to input a formula and/or a numerical value. Variables are placed in brackets; operators, such as +, -, /, and *
(and others, such as sin, cos, tan, etc.) may be used to operate on any variables or numerical values. The operators that are available for use in formulas are the same
ones that would be available in a calculator or in the scripting language being used.

Input Units: The Input Units column allows the developer to select the input units. This can be inches (IN), feet (FT), yards (YD), miles (MI), millimeters (MM),
centimeters (CM), meters (M), and kilometers (KM), each (EA), square inches (SQ IN), square feet (SQ FT), square yards (SQ YD), square miles (SQ MI), square
millimeters (SQ MM), square centimeters (SQ CM), square meters (SQ M), square kilometers (SQ KM), cubic inches (CU IN) through cubic miles (CU MI), cubic
millimeters (CU MM) through cubic kilometers (CU KM), and dollars represented with the dollar sign ($). The Input Units calculation operates on the value developed by
the Formula column.

Adjust: The Adjust column allows the developer to enter an adjustment, such as a waste percentage or a numerical value, to the number developed in the Formula
column. Percentage numbers are followed by a % sign.

Result: The Result column takes the adjusted value and displays it as the Result in the units that are specified in the Output Units column.

Output Units: The Output Units specifies the units that the Results column displays in the same units listed in the Input Units column. Changing this to a different unit,
such as inches, will convert the result to the selected unit. Of course, if you attempt to convert yards into cubic yards, you will get a conversion error since it is not an
"apples to apples" conversion.

To see this in action, enter 10 in as the value of the New Length in the Formula column (red arrow #1 in Figure 6.

Enter [New Length]/2 in as the value of Min Length in the Formula column (red arrow #2 in Figure 6).

Click on the down arrow next to the parentheses pointed to by arrow #3 in Figure 6), and select RoundUp() (arrow #4).

Properties - Jorst 10ol] ’3 X
Bete X[@|+ - % 2 ()]0 |« v 2| showNomal - &= FM Events -
me TFomda 0 TadestJResut o[[[] =
em RoundUp()
[Type [ares RoundDown() féee &9
Desaription &9
&£ 9
Name ot Tool 3ot Tool BEIE
[MinLength [New Lengthl/2 ‘ 2 500 REE
[NewLength 10 % 10.00 LEE
Figure 6

177

9. The equation Min Length/Formula equation will now be displayed as RoundUp([New Length]/2). The result will appear as 5.00 in the Result column. Click on the Min
Length value in the Input Units column and select FT for feet (Figure 7). Note that the OutPut Units columns in the Min Length row changes to FT as well. If you want
Output Units displayed in yards, click in the field where Min Length and Output Units meet, and select YD. For this exercise, however, keep the output set to FT.

@ Properties - [Joist Tool] X
elFE X|@|+ - % 72 () - |~ v 2| show:Nomal - = Lzero'st Events ~
Name [Formula [input Units— TAdjust [Result Joutput nits [T1 [4]
Item
Type Area Area kel
Description kel
Item # R Q[0
Name Joist Tool Joist Tool I
RoundUp([New Length]/2) 1l v 5.00 FT IEIE
New Length 10 N - 10.00 REIE
|Estimating YD
Qty [Takeoff] e 0.00 SQFT BEIE
Cost Each cM 0.00 $ I
Markip % a1 ~ 0.00 % BT
Cost Type ’I_ EslEell
Figure 7

10. Now enter 10% in the field intersecting the Min Length row and the Adjust column to add a waste factor of 10% (Figure 8). Note that the Result now reads 5.50 since
the 10% waste factor has been added. If you want a non-percentage value added, simply enter the numerical value without the percent sign.

& Prope ist Tool] X
Eelm R|E|+ - % 2 () O-] D]~ v 2| shownomel - = 0N Events -
jame. [Formuta [inputunits — Jadjust [resuit Joutput Units [T1 [«]
Ttem
-{Type Area Area &
{ Description a ‘@
Ttem # 2
Name Joist Tool Joist Tool &
| Roundup(ew Lengthi/2) FT 10% 5.50 & FT &
10 10,00 &

Figure 8

11. Selecting the padlock allows you to either lock or unlock the property.
12. Clicking on the light bulb either hides (blue) or unhides (yellow) the property.

13. Selecting the box (a check in it) will cause the property to be shown on the Form when the application is started. Note that Name, Min Length, and New Length have
check marks in the check boxes. Click on Form at the bottom of the Joist Tool window (Figure 9).

@ Properties - [Joist Tool] X

Joist Type

Length Calaulation Joist Direction
[None v | [select paralel side -
0.C. Spacing Pitch

~ -/
vin Length New Length

| o 5|

Color Fill Type
[iRandomEolor] v | soid -
¥ Group Sections [Automatically Generate
¥ Generate Parts 1 Show Labels

Input iAmanceu ‘ E_.g Ok Cancel |

Figure 9

14. Now note that the Name, Min Length, and New Length fields, along with their values, are displayed in this form, because the boxes for the same fields in the Advanced
properties window are checked.

15. All of these properties are also available in the COM object.

Object Property Model

Object Property Model

This section describes how to create new items and how to set up and modify attributes to properties of Items.

178

1. If you are not still on the Advanced Joist Tool Properties window, then click Templates tab, click Types tab, open Scripted Tools folder, open Items folder, double-click
Joist Tool, then click on Advanced. This window is divided into ten different groups: Item, Estimating, Fill, Takeoff Data, Work Breakdown Structure, Other, Audit Trail,
Joist Properties, Videos, and Events (Figure 1).

@ Properties - oist Tooll 3
BEFR|@[+ - x /2 () O~ |« v 2| Show:Nomal - = Fom Events -
fame Trormia Trostone _[gwst__ [reait T I I
Ttem
Tioe s fwea
Descoton T
= [ostToa I ostTool I0E
Ten = I
i Length 000 CIE
[Newtegh | i | .00 IFIE
Estimating
ay Takeof] saFr o0 [seFT v
CostEach g 000 g v
Varan % B 000 * Q
CostType [i 9|
ST : o : e
Wrkup Each CostEach] * @oeckup %4 100) B 000 B BE
| Markup Total. [Qty] = Markup Each] s 000 s B
Prce Each (CostEach] + Darup Ex] < 000 g aly
price Total [Qty] = Price Each] s 0.00 s 8|V
testmne - 3 B
il
Coor [ERendomcaor] —_— 1E:
FiType [sold jsoid. v
= e U
Hotch Pattem scie f 10 v
Trersparency 00,00
Figure 1

2. Double-click on the Cost Total field under Estimating. This opens the Edit Property window (Figure 2) for the Joist Tool's Cost Total property, which is grouped under
Estimating. Developers can use this window to modify the physical property settings (or attributes) of the property model. Everything that is in the Edit Property
window is available through API. This is where a developer will spend a lot of time setting up attributes to properties of Items, so it's very important to understand
what the functions of these properties do. Note that the descriptions that follow are modeled for COM rather than for scripting. Click on Cancel to close the Edit
Property window, then click on any item in the first column of the Estimating group.

@ ooy =
e
Type: Number - o |Smple List .
Group: [Estmatig = oy slow choasing from the st
Tool Hint: [Jrarse formuas.
[ORemenber Valve EAparse Formila
nput Optons
[input Condition:
Complled Options
[JDenyRead [7] Deny Write [] Deny OLE/Saript Access
InputUnsts: (1G] ~] Dlticden
Uns: e ~] Bltoded
cecmalioes: 2
When atngnew s of 6t
O Normal @ tnherit O Ignore:
© Formua
O Resut Calauate before inherit
trrom
P 8 cancel
Figure 2

3. Now click on the Add Property icon as shown in Figure 3.

@ Pro s - [Joist Tool]

=

HelF X|@|+ - % 7 (
lName |Formula

Item
Type
Description

Area

Figure 3

4. This opens a new Edit Property window (Figure 4). Notice that the Name: field is blank in this window, allowing you to give it a name of your choosing. The Type:
field's down-arrow opens a drop-down menu that allows you to specify the type of value assigned to the
field: Number, Color, Text, Memo, CheckBox, Path, Image, Large Image, Type, Script, File, Large File, File Name, Folder, Font Name, Connection String, Slider, and
Dimension. The Type: field's default is Number. The attributes a developer would most commonly use are Text, Memo, or Number. A few others, including CheckBox
and Slider could also be useful. Selecting CheckBox would display a checkbox, which represents a boolean value (true or false):
if it is checked, it is true; if not checked, then it is false. Enter the name Test Property in the Name: field; click on the Type: field's down-arrow and select
CheckBox from the menu, and then click on OK.

179

e e
=—
Type: fumber = el st >
2k Fkn -l Coriy sbow choosng fram the st
o[] [Cleusetmus
DClrenenter e~ Blsae Famda
Input Options:
Dt Condon: —
Compiled Options
[CloenyResd] oeny e [ey LSt Acss

InputUrit: | Dlrsdden
s *] DClteces

DednalPlces: [2

When creating new temsof s type:
@ tiomal O 1hert O tgrore
® Formua

O Resut Caleul

B

Figure 4

5. You will now see "Test Property" at the bottom of the first column in the Estimating group (Figure 5). The next column to the right is the checkbox. Since the checkbox
is not checked, its value is False, as seen in the 5th column (Result) to the right. Once checked, its value shows as True.

Estimating
Qty [Takeoff] SQFT 0.00 SQFT D
CostEach s 0.00 $ IEIE
Markup % % 0.00 % IEIE
Cost Type rolkelin}
Cost Total [Qty] * [Cost Each] s 0.00 s 8[20
Markup Each | Cost Each) = ((varkup %] / 100) s 0.00 s 8|90
Markup Total |[Qty] * Markup Each] s 0.00 $ B8[9]|0
Price Each | [Cost Each] + Markup Each] $ 0.00 $ 8[90
Price Total |[Qtv] = [Price Each] s 0.00 $ EFlE
test mine 0.00 IEIE

S[9]0

Figure 5

6. Double-click on Test Property to open its Edit Property window again (Figure 6). This time select the Slider tool from the Type: drop-down menu. This opens the Slider
Options (see red arrow). The Slider function is very useful and has its own properties, which is the minimum value and the maximum value. Enter "1" in as the
minimum value and "100" in as the maximum value; set the Tick Frequency: field to 10 so that the ticks will show up every tenth time; and check the box Show Ticks.
Now click on OK.

Figure 6

7. The Test Property property will now show a slider bar with eleven tick marks. Click and hold on the slider on the bar, and drag it to anywhere on the bar; as you drag it,
the value will be displayed in the 5th column (Result). The Slider function can be valuable in cases where you might have an image transparency function, or you need
a finite number based off a value, or you need any type of minimal adjustment. Click on Type: again and select Number.

8. The other Type: field values may be useful but will not be covered at this time.

9. The Group: field shows that Test Property is assigned to the Estimating group. Clicking on the down-arrow allows you to assign it to one of the ten available groups in
the Joist Tools Properties window: Item, Estimating, Fill, Takeoff Data, Work Breakdown Structure, Other, Audit Trail, Joist Properties, Videos, or Events.

10. The Tool Hint: field allows you to enter a short description of the tool, which will be visible in the Form window when the cursor is hovered over the property. Such a
hint can be helpful to explain the functionality of a property to a user. To see this in action, type "Joist Tool Hint" in the Hint: field; then click on OK to close the Edit
Property window.

11. At the Joist Tool Properties window, click on the box for the Test Property property you created (see arrow in Figure 7) so that it can be displayed in the Input and Form
windows.

180

Figure 7

12. Scroll to the bottom of the Joist Tool Properties window and click on Form, then hover over the Test Property text until the "Joist Tool Hint" appears with a yellow
background as shown in Figure 8.

@ Properties - [Joist Tool] F4
Name
ot Tool =
Joist Type
Length Calculation Joist Direction
None v | [Select paraliel side -
0.C. Spacing Pitch
~l b -
Min Length New Length
Color Fil Type
['RandomColor] v | [soid -
Test Pﬁert‘l
/ Joist Tool Hint i
™ Group Sections Automatically Generate
W Generate Parts W Show Labels
Input | | Advanced || Form | |fof Ok Cancel
Figure 8

13. Click on Advanced again to return to the Joist Tools Properties window, double-click on the Test Property property you created previously, and delete the Tool Hint:
text. The Edit Property window for the Joist Tool should look similar to Figure 9.

 Edt Property X
Nl o I s
—
Types famber =Y vkt -
Group: Esmatn -l [l sow chaosng i helst

Todl H: [parse formuias:
CRemember valve []parse Formula
Input Options.
oot Condition: | —]
Compiled Options.
[JbenyResd [Deny wrte [] Deny OLEfSorpt Access

InputUrits: | [Olvdden
s ~] Dliodes

Dednalplces: [2

When areatng new tems of this type:
@ tlomal O whert O ignore

PullFroms |

Do | [Ko

Figure 9

14. The Remember Value: checkbox has no functionality at this time.

15. The Parse Formula: checkbox, when checked, causes anything within brackets to be read as a variable. If this box is not checked, then the text inside the brackets is
read as a text string, not as a variable. By default in COM, this box is checked automatically.

16. Inthe Input Options area of the Edit Properties window, there is an Input checkbox and a Condition: field. When the Input checkbox is checked and the condition in
the Condition: field is satisfied, then the property will be displayed in the Form window. If the Condition: field is not satisfied, then the property will not be displayed in
the Form window. If the Input box is checked but the Condition: field is blank, then the property will show up in the Form window. If the Input box is not checked, then
the property will not be displayed in the Form window. As an example, enter [New Length] = 10 into the Condition: field.

Also, make sure the Input box is checked. Click on OK to close the Edit Property window. Click on Form at the bottom of the Joist Tools Properties window. You'll see in
Figure 10 that there is no Test Property field. You will also notice that the New Length field is blank. Now put the value of 10 into the New Length field and press the

Tab key to invoke the changed value.

181

17. The Test Property field

18. Click on Advanced to return to the Joist Tool Properties window (Figure 11), and double-click on Test Property. The Compiled Options are shown in Figure 12 and will

@ Properties - (o X
Name
[3oist Tool -
Joist Type
\ =]
Length Calculation Joist Direction
hone v | [pelect paralil side -
0.C. Spacing Pitch
[-l -
Min Length New Length
\ = | el
Color Fil Type
|(Randomcolor] - | [soiid -

v Group Sections

¥ Generate Parts

Input HAmmceu

[] Automatically Generate

[Shew Labels

ok || Cancel

Figure 10

@ Properties - [J] X
Name
3ot Tool -
‘JmstTVDE |
L Joist Drection
ore <] eect paralel sde =
0.C. Spacing Pitch
[-l b =)
Min Length New Length
[-] [0 5|
Color Fil Type.
|[RandomColor] =] fsoid -
TestProperty

¥ Group Sectons

¥ Generate Parts

Input || Advanced

[] Automatically Generate

¥ show Labels

ok || Gancel |

Figure 11

not be discussed at this time.

e?i}‘uvv

Nare: [estPropery

S T—
2k Fkn =]

Toott: []

[CJRemember Value [Fparse Formula

nput Optons————————————————
St Candon:

Complled Options
CJvenyResd (] eny Vit (] ey oL/t Access:

InputUrits: | Dlrsdden
s ~] Dlioded
Decaipisces 2

When creating new temsof s type:

@ tlomal O 1hert O tgrore

® Formua

O Resut (Calulate before nherit

e

P Bonal

LstType:
Bwetee ¥

[Jonly allow choosing from the ist.
Clparse formuss:

Figure 12

now appears (Figure 11). If you change and invoke the value to anything but 10, then the Test Property field will disappear.

19. The Input Units and Units (Output Units) area allow you to specify the Input Units and Output Units columns in the Joist Tool Properties window (see Figure 13). You
may specify whether they are to be hidden or locked by clicking the check boxes for Hidden or Locked. You may also specify the decimal places by entering a decimal
value in the Decimal Places: field.

YT
Nae: Testrapery tetType:
Type: fumber < CIEe (et =]
oo Estmating = Doy s chaosng fam thelot
Tt it To it | ClPorse fmios
ClRenerber Vobe Plpase rormia
Input Optons
Giut Condon:
‘ ‘Compiled Options.

[CJDenyResd [Deny Wite (] Deny OLEscrpt Acess
nputunits: | ~| Oividgen

s -] Dliodes
Places: (2]

e
Otom Omer Ome

© Forma
OResut Calcuiate before nhert
Pul From:]
& x 88 concel
Figure 13

182

20. The When creating new items of this type: area can be set to Normal, Inherit, or Ignore (Figure 14). The Normal setting allows for inherited properties to be editable.
The Inherit setting allows properties to be modifiable but only by permission. The Ignore means that "anytime | inherit a property, | specifically do not

want this property to be on that inheritance of that derived item.

@ EditProperty

x

Nome: [festProperty tType:
Tipe: lmber =0 = =
Group: Estmoting - oy alon choosin fom thelst

TodiHe: st Todlrnt Clrase formins

ClRenerberVobe Dlpase Fomia
Input Optons:
Dt Condon:
Compild Options:
] eny Resd [oeny e [] Deny OLEfScrpt Access

It ~] Oseten
Unis:] Dtosed I

Decimal laces: [2

Vihen reating new tems of s type:

/@»«m O bt O tgore

© Formua.
Orestt sl

Pul From:

Figure 14

21. Checking the Formula checkbox allows the formula and the result to be inherited. Checking the Result checkbox allows only the result to be inherited. The Pull From:

field is not commonly used. It allows you to inherit the actual result from a completely different item from either the same estimate or somewhere else by providing

the relative path of that item and the property. The List Type: field allows the developer to provide a list that acts as a drop-down list to the property (see Figure 15) but
will not be discussed at this time.

& EditPropery

X

Name: [TestProperty LstType:
[Expression

Type: |Number - |Smole Lst
i
Group: Estimotng = 3
e st
T [t oo vt Ercate Prgn
oy
ClRenerberVoke Hlpase Formia
Input Options:
Bt Condton:
Compied Options
[0y Resd [0 deny it (] Deny OLEfcrptAccess

ot -] Onaien
ws: *| Dltodes
Decmalpisces: 2

When creatig new tems of ths type:
@ tomal O et O gnore

© Formua
O Resut

PulFrom:

Figure 15

22. This completes the coverage of what you need to know to get started using the API.

Job

Job

Accessing the Active Job

Job is the current active job in PlanSwift. If there is no active job open, then Job will be null (empty). Once a job has been opened, this job property will update to the current
job's pages, links, takeoffs, remembered values, autolist, bookmarks, and notes.

\Job is the relative path to access the Job folder. Under the \Job folder are folders for Pages, Takeoff, and Bookmarks. Pages items reside in
\Job\Pages, Takeoff items in \Job\Takeoffs, and Bookmarks items in \Job\Bookmarks.

183

‘-‘?) Home Page Tools Viey

® X

Properties Copy Paste Delete

E-JQ Settings

- Pages

Links

Takeoff
RememberValues
Autolists

[*-12) | Bookmarks

= l]:_a Motes
[J-lfﬂ|5torages

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

Using PlanSwift Object Model

184

>

>

>

>

>

>

Expand source

Expand source

Expand source

Expand source

Expand source

Expand source

Storages

Storages

Accessing storage locations

Storages are the job storage locations. Storages are PlanSwift's job storage locations. They are unloaded by default and only accessed when opening a job.

Through the API, the parent's folder of each hierarchy must be loaded before accessing the children. Templates are accessed via the Storages (\Job\Storages).

B R X e
>

Propenies Copy Paste Delte | Refrsh B

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

1262

Plugins (2)

185

Plugins

Accessing Plugins

This directory houses all installed plugins. Plugins can be created, modified, updated, and deleted.

%»’ Home Page Tools View Estima
s =t =y
Eguiay m Jip-
Properties Copy Paste Delete Refresh

Cust

API Calls
Delphi

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Coming soon

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

Coming soon

187

_Units

_Units

Accessing _Units

_Units are conversion units. _Units should not be modified.

%.' Home Page Tools View Estima

2 X O

Properties Copy Paste Delete Refresh

Cust
MName
| & |Settings
+ |Job
3 sorages
|23 | Plugins
o E T e—
: | EIN]]
|FT
1D
ML
[ama
M

API Call:
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CH

Using litem Object Model

VB/VBA (OLE)

188

Using PlanSwift Object Model

1
Coming soon

Using litem Object Model

1
Coming soon

189

_Types
_Types
Accessing _Types

_Types are the default types of all PlanSwift items. _Types should not be modified. Modifying any _Type will have an adverse effect on PlanSwift. Any modifications will be
overwritten when PlanSwift is reinstalled or updated.

A?,‘ Home Page Tools View Estimating L
= ..::..;J =~
d x L)

Properties Copy Paste Delete Refresh Bulk

Proj
Custom 1

Mame
o
B g Settings

+ |Job
2 |Storages

- [4 | _Bookmark
+ EI._I_mage File
i _Job

)| Folder
_Pags

+ _Page Item
I+ _Item
B8 _Storage

bt |_Report

|, |_Estimating Layout

_Development
B | ratch Pattem.
B Texture
+ _List
.. & |_Attachment
[+ O [rypes 3

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Coming

Using PlanSwift Object Model

190

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

191

Types

Types

Accessing Types

Types are derived from _Types. Special caution needs to be taken when modifying Types because modifying Types can cause an adverse effect on PlanSwift's operation. The
Types are listed below.

Types
Area Dropdown
Roof Area
Area Cubic Yards
Price Per SQ FT
Count Dropdown
Labeled Count
Scaled Count
Circle
Square
Diamond
Plus
Triangle
Scripted Tools
Sections
Beam Section
Grid Section
Joist Section
Joist Line
Scripted Tools
Items Beam
Tool
Grid Tool
Joist Segment
Joist Tool
Joist Material
Beam Material
Linear Dropdown
Wall Area
Linear Cubic Yards
Segment Dropdown
Segment Cubic Yards
Hip-Valley Tool
Wall Area
Rubber Stamps
Approved
As-Builts
Bid Set
Canceled
City Approved
Confidential

Construction Set

192

Draft

Field Set

Final

Not Approved

Not for Construction
Pending

Preliminary
Received

Revised

Priority
Update
Mine
Revision Clouds
Revision Cloud
Sticky Tabs
URGENT
URGENT
URGENT
URGENT
URGENT

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Cominc

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

193

‘&) Home Page Tools View Estimating

‘Pmpem'ﬁ. Copy Paste Delete | Refresh Byl

Py
| Custom 1|
|Na'me

Bl B | _units
..@ Types
El'{J [Types fi—

= uﬁ |Area Dropdown

¥ |Roof Area

Area Cubic Yards
Price Per SQ FT
ount Dropdown
Labeled Count

Scaled Count

Cirde

Square

Diamand

Plus

A |Triangle

=45 [seripted Tools

[+ |Sections

[+ | Thems

EHD Mear Dropdown

B \wall Area

i:

Linear Cubic Yards

3

gment Dropdown

Segment Cubic Yards

1@

Hip-Valley Tool

H
o

E wall Area

FHED |Rubber Stamps

=8l |Rev'|sion Clouds

(i) |Revision Cloud

EHED |Sﬁcky Tabs

URGENT

URGENT

LRGENT

&
&#
& |URGENT
&
'é

URGENT

- [] |Lists

Lists

Lists

Accessing Lists

Coming soon.

'n) Home Page Tools

Edg -“T*X

Properties Copy Paste Delete

Settings

| {Job

Storages
Pluginis

: |_Units
_Types

Types

Lists
PlansSwift

e [|Reports

194

Coming soon

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

195

Reports

Reports

Accessing Reports

Coming soon

Home Page Tools View Estimating

2 P X|$

Properties Copy Paste Delete Refresh Bu
Pi

Custom 1

Iname
=

e} Settings

[fQ.U Reports
_:'| .Reporm for ALL Ttems
3 Reports for ALL Parts
+-|7) |Reports for Parts
[Lz_ag_acy Reports_
I |Basic Takeoff Reports
) |Detail Reports
=5 :Réﬁ;art.s-sl.ﬂb;n'ing All Ttems
| | Vendor R-eques.ts
; 1.| |Quote Summary
"Il |Quote (by Division)
i, |Bid Cost
r,.| {Quote
¥ [Z] De.\;'éiopers

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Coming

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

197

Developers

Developers

Accessing Developers

M Home Page Tools View Estimating List

IS ae SR

Properties Copy Paste Delete | Refresh Bulk Up

Custom 1

Settings

| Job

Storages

Plugins

_Units

_Types

Types

Lists

Reports

5 Developers Si——

E@ | _Planswift Help

=112) |com Object Model

=F [tPlanswift

B Q_JIScripﬁng

E!g Forms

&t # |Math Functions

& # |Update Methods

- | Window Controls

Elg User Input

FF Ttems

5—1? Sections

-- g’;’ Froperties

- F Diglogs

-4 |Global Variables and Constants

- (@) | Additional Help

H@ |Hatd1es

Coming soon.

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Using litem Object Model

198

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

]
Coming soon

Using PlanSwift Object Model

1
Coming soon

199

Hatches

Hatches

Accessing Hatches

%‘) Home Page Tools View Estimal

Properties Copy Paste Delete Refresh

Storages
Plugins

§ | _Units
_Types
Types
Lists
Reports

Developers

Fl 12 [Hatches '—
= |Efault Hatches

4 |Carpet

4 Carpet Waste

4 |Horizontal Lines

4 |Squares
A | Brick
4 | Sguares Angle

1 |Vertical Lines

4 |Diagonal Lines

IEIlfﬂ iEsh'maﬁng

Coming soon.

API Calls
Delphi

Using PlanSwift Object Model

1
Coming soon

Using litem Object Model

1
Coming soon

200

Using litem Object Model

Using PlanSwift Object Model

Coming soon

201

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

202

Estimating

Estimating

Accessing Estimating

40' Home Page Tools View Estin

g P SR

Properties Copy Paste Delete Refre

) Hatches
Estimating < sseses——
'..l fraining layout

|Waste Yo

,|Basic Layout

| Takeoff Data

o {Takeoff View

e

,\Round Qtys

il |Multiply and Location
i [otyand Qty 2

[+ [Textures

Coming soon.

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Coming soon

Using PlanSwift Object Model

VB/VBA (OLE)

203

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

204

Textures

Textures

Accessing Textures

b4 _,J Home Page Tools View

E¢

Properties Copy Paste Delete
|

= R X

R

| |Storages

Plugins
| _Units

Types

Lists

o]
ki
‘g4 |_Types
1
=]

Reports

Developers

|5 [Hatches

E'l IEB Estimating

El--[[j Textlres Si—

=15 | _Default Textures

= O Brick
i brickn0s

=] Ibricko11

brick13

brick015

] |bricko21

“{3) |Carpet

e
= |ﬁooring
£

'wood007
[[woodn 18

-—-l_ﬂ@ound

[

B |natfos4

4] iwoodooz

B |natflz17

[|Contacts

Coming soon.

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

205

VB/VBA (OLE)

Using litem Object Model

Coming soon

Using PlanSwift Object Model

Coming soon

206

Connecting to PlanSwift
Connecting to PlanSwift

Connecting to PlanSwift may be done with OLE and COM. This section describes methods of connecting to PlanSwift and how to hook into active running processes.

[Z]1 PlanSwift does not provide technical support for this function.

Connecting with OL E

Connecting with CO M

207

Connecting with OLE

Connecting with OLE

Code examples in VB / VBA OLE and Pascal Scripting OLE below show examples of OLE access to the API.

208

API Calls

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

209

> Expand source

> Expand source

> Expand source

> Expand source

Connecting with COM

Connecting with COM

C# and Delphi code examples below show how APl is accessed via COM.

API Calls
Delphi

210

Using litem Object Model

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

21

> Expand source

> Expand source

> Expand source

> Expand source

Developer Documents

Developer Documents

This section describes Page, Section, and Item creation, and adding a new Property.

PlanSwift does not provide technical support for these functions.

212

Page Creation
Section Creatio n
Adding New Propertie s

Item Creation

213

Page Creation

Page Creation

This allows the ability to create Page objects, such as notes, annotations, etc., through the API.

214

Annotations

Annotations

This allows the creation of annotation objects.

Syntax:

Procedure: Coming soon

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Item Object Model

1
Coming soon

Root Object Model

215

Coming soon

Pascal Scripting (OLE)
Pascal Scripting
Item Object Model

1
Coming soon

Using the PlanSwift Object Model

1
Coming soon

216

Section Creation

Section Creation

This allows the creation of new sections on a parent item. Sections are children of a parent item. Each time an item is digitized, a new section is created as a child of
the item.

Syntax:

Procedure: Coming soon

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

217

Adding New Properties

Adding New Properties

This allows a new IPropertyObject to be added to an item. Items are composed of properties. Properties are details that describe an item or a manipulation of that
item.

Syntax:

Procedure: Coming soon

API Calls
Delphi
Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

218

Using litem Object Model

Coming soon

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Item Creation

Item Creation

The Item Creation options allow the creation of new lltems, which includes Jobs, Estimating items (Parts, Assemblies, or Takeoffs), Types, Reports, and Estimating Layouts.

219

Jobs Jobs

This creates a job object.

Syntax:

Procedure: Coming soon

API Calls
Delphi
Using litem Object Model

Coming soon

Using PlanSwift Object Model

Coming soon

C#

Using lltem Object Model

VB/VBA (OLE)

220

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

221

Estimating Item

Estimating Item

An Estimating item is a part, assembly, or takeoff.

222

Assembly

Assembly

An assembly is an item that is composed of multiple parts; parts may also have sub-assemblies.

Syntax:

Procedure: Coming soon

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

223

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

]
Coming soon

Using litem Object Model

Coming

VB/VBA (OLE)

Part

Part

A part is an item with the part as the type.

Syntax:

Procedure: Coming soon

API Calls
Delphi

224

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

]
Coming soon

C#

Using litem Object Model

Coming soon

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

225

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Takeoff Item

Takeoff Item

C#

A takeoff item is an item of the types: area, linear, segment, or count.

Syntax:

Procedure: Coming soon

API Calls
Delphi

Using lltem Object Model

1

Coming soon

Using PlanSwift Object Model

1

Coming soon

226

Using litem Object Model

Coming soon

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Type
Type

The type is a property of an item.

Syntax:

Procedure: Coming soon

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

Coming

C#

227

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Using lltem Object Model

Coming s«

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Reports (1) Reports
Adds an item of the report type.

Syntax:

Procedure: Coming soon

API Calls
Delphi

228

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

]
Coming soon

C#

Using litem Object Model

VB/VBA (OLE)

Estimating Layouts
Estimating Layouts

An estimating layout is a view that allows modification of columns in a view.

Syntax:

Procedure: Coming soon

API Calls
Delphi

229

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

]
Coming soon

C#

Using litem Object Model

Coming

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

230

API

COM Reference

API COM Reference

IPlal

nSwift
About
BeginUpdate
BeginFormulaUpdate
CancelTool
CloseJob
CompareVersion
Copyltem
CurrentVersion
CurrentViewport
Deleteltem (1)
DeleteProperty (1)
DrawOneWayLayout
DrawTwoWayLayout
Edition
EndFormulaUpdate
EndUpdate
Getltem (1)
GetLine
GetOneWayLayout (2)
GetProperty (1)
GetPropertyFormula (1)
GetPropertyResult (1)

GetPropertyResultAsBoolean (1)

GetPropertyResultAsFloat (1)

GetPropertyResultAsInteger (1)

GetPropertyResultAsString (1)
GetRect

GetTwoWayLayout
GetJobTotal

GetZoom

Handle

litem
« CanRecord

e ChildCount

¢ Childitem

¢ Delete

« Deleteltem (2)

* DeleteProperty (2)

¢ DoRecord

« Edit

« FullPath

¢ Getltem

* GetltemByGUID

« GetPoint

* GetProperty (2)

« GetPropertyFormula (2)
* GetPropertyResult (2)

* GetPropertyResultAsBoolean (2)

GetPropertyResultAsFloat (2)
GetPropertyResultAsinteger (2)
GetPropertyResultAsString (2)
GUID
ItemType
IPoint

¢ X

o Y
Name (2)
Newltem

NewltemEx

NewPoint

NewProperty

231

NewSection
Parentltem
PointCount
PropertyCount
Propertyltem
SetPoint
SetPropertyFormula

232

IPropertyObject Adjust

233

CalculateBeforelnherit
CompileDenyOLE
CompileDenyRead
CompileDenyWrite
DecimalPlaces
EditScript
ExecuteScript
Expression

Formula

Group
ImageTransparent
InheritAction
InheritPullFrom
InputCondition
InputType
InputUnits
Isinherited

IsInput

List
ListColumnAutoWidth
ListFromProperty
ListPropertiesToSet
ListResultColumn
ListReturnFullPath
ListShow1Level
ListShowOnlyTypes
ListShowSearch

ListType

ListVisibleColumnsinDropdown

MeetsInputCondition
Name (3)
PluginToExecute

PluginToExecuteButtonCaption

PropertyType
ResultAsString
ResultAsInteger
ResultAsFloat

ResultAsVariant ScriptType

ScriptLanguage
ScriptParameters
SimpleList
SliderMax
SliderMin
SliderShowTicks
SliderTickFrequency
SystemHidden
SystemLocked
Treelist
ExecuteScript (2)
Units
UserHidden
UserLocked

IsBeta

IsJobOpen

IsUnlocked

NewBlankPage

NewChangeGroup

Newltem (2)

234

* NewltemEx (2

* NewlobEx

* NewpPoint (2

* NewSection (2

* OnClose
OnDoneRecordingDigitize
OnCopyltem

* OnDigitizerSectionChangel
OnDoneRecordirg
OnltemChang:

® OnltemDelete

* OnlJobClo®

* OnJobOpen
OnNewltem

* OnNewldb
OnSelectedPageChang
* OnSelectedSelectionChangel
* OnSelectionChanged

* Openlob

* OpenJobEx

* PointCount (2
PostChanges

Root

SaveScreenSha
SelectedItem
SelectedPage
SelectltemDialgg

* SelectionlLis

* SetPoint (2
SetPropertyFormula (2
* SetSelected

* SetZoom
* ISelectionlLig
* Count
® Items (1)
* SetActiveTab (TabName: String
* IsLoaded

IPlanSwift

IPlanSwift

This represents the root object of the Document Object Model.

This interface can be accessed from most development IDEs. It can also be used in the PlanSwift script IDE by using the always available "PlanSwift" object. You should

never attempt to create or free the PlanSwift object from script.

While most IDE packages will include the PlanSwift DOM for early binding use, the following shows a late binding example.

API Call
Delphi

Using litem Object Model

Using PlanSwift Object Model

CH

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

235

> Expand source

> Expand source

> Expand source

> Expand source

Using PlanSwift Object Model > Expand source

236

About

About

Shows the About PlanSwift Dialog.

Syntax:
Procedure: IPlanswift.About; Code
Reference:

1. Create a New Forms Application

2. Add a PlanSwift to the References (Planswift_Tlb)
3. Add a button to the form

4. Copy code below to the onclick event of the button

5. Compile and run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

BeginUpdate

237

> Expand source

> Expand source

> Expand source

> Expand source

BeginUpdate
Signals the beginning of a formula change operation.

Syntax:
Procedure: BeginUpdate; Code
Reference:

1. Create a New Forms Application

2. Add a PlanSwift to the References (Planswift_Tlb)
3. Add a button to the form

4. Copy code below to the onclick event of the button
5. Compile and run

API Calls
Delphi

Using PlanSwift Object Model

CH

Using litem Object Model

VB/VBA (OLE)
Using litem Object Model
Using PlanSwift Object Model

BeginFormulaUpdate

BeginFormulaUpdate

Signals the beginning of a formula change operation.

23¢

Syntax:
Procedure: BeginFormulaUpdate; Code
Reference:

1. Create a New Forms Application

2. Add a PlanSwift to the References (Planswift_TIb)
3. Add a button to the form

4. Copy code below to the onclick event of the button

5. Compile and run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CancelTool

239

> Expand source

> Expand source

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CancelTool

Cancels the currently active tool in PlanSwift.

Syntax:

Procedure: CancelTool; Code

Reference:
1. Create a New Forms Application
2. Add a PlanSwift to the References (Planswift_Tlb)
3. Add a button to the form
4. Copy code below to the onclick event of the button
5. Open PlanSwift and select a digitizer object
6. Compile and run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

24(

VB/VBA (OLE)

Closelob

CloselJob

Closes the currently opened job.

Syntax:
Procedure: Closelob;
Code Reference:

1. Create a New Forms Application

2. Add a PlanSwift to the References (Planswift_TIb)
3. Add a button to the form

4. Copy code below to the onclick event of the button

5. Compile and run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

241

> Expand source

> Expand source

VB/VBA (OLE)
Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CompareVersion

CompareVersion

Compares two different versions of PlanSwift.

Syntax:
Procedure: CompareVersion; Code
Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model

24;

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soo0

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

243

Copyltem

Copyltem

Creates a copy of /ltem under Parent and returns the ID of the new item.

If IncludeChildren is true, child items will be copied also.
If SkipSections is true, digitized sections will be duplicated also.

Syntax:
Procedure: Copyltem(Item: String; Parent: String; IncludeChildren: boolean; SkipSections: boolean): String;
Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CurrentVersion

244

CurrentVersion

Returns the current version of the active PlanSwift application.

Syntax:

Procedure: CurrentVersion; Code

Reference:

1. Create a New Form application
2. Add a button to the form
3. Add PlanSwift to reference (Planswift9_tlb in the uses)

4. Copy code to button onclick event

API Calls
Delphi
Using PlanSwift Object Model
1
2 //PlanSwift code:
3 var
4 sVersion: string;
5 begin
6 sVersion := PlanSwift .CurrentVersion;
7 end;
8
9 //FreshDesk code:
10 procedure TForml.psCurrentVersion (sender: TObject) ;
11 var
12 ps: IPlanSwift;
13 begin
14 //Create Planswift Interface
15 ps := coPlanswift .Create;

16 //Show Current Version of Planswift
17 ShowMessage (ps .CurrentVersion);
18 //Free the Planswift Interface

19 ps := nil;

C#

Using litem Object Model

245

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

246

CurrentViewport

CurrentViewport

Gets the Upper right and lower left points of the viewport.

Syntax:

Procedure: CurrentViewport; Code
Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

247

Deleteltem (1)

Deleteltem
Deletes the item specified by ItemPath from the system.

Syntax:
Procedure: Deleteltem(ItemPath: String): Boolean;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

DeleteProperty (1)

DeleteProperty
Deletes PropertyName from ItemPath.

Syntax:

248

> Expand source

?> Expand source

Procedure: DeleteProperty(ltemPath, PropertyName: String): Boolean,; Code
Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor

4. Press run
API Calls
Delphi
Using PlanSwift Object Model > Expand source
CH
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

DrawOneWaylLayout

DrawOneWaylLayout

Function used to perform segment layouts at a specified span, horizontal run, as well as spacing.

Syntax:
Procedure: DrawOneWayLayout(const Altem: WideString; const SpanLine: ILine; const RunLine: ILine; bincludeFirst:

Arguments:
Altem: WideString
Specifies the area section to assign the layout segments to.

SpanLine: ILine
Direction span start and endpoint.

249

RunLine: ILine
Horizontal (side to side) run direction of area to populate. Requires a start and endpoint;

bincludeFirst: WordBool

Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludeLast: WordBool

Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (optional parameter)

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID (globally unique identifier) to the area section.
Or, empty double-quotes for no trim/extending required.

Code Reference:

1. Create a New Form application
2. Add a button to the form
3. Add PlanSwift to reference (Planswift9_tlb in the uses)

4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model

CH#
Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

250

tCom ng soon

Using PlanSwift Object Model

Coming soon

251

DrawTwoWaylLayout

DrawTwoWaylLayout

Function used to perform segment layouts (in 2 directions) at a specified span, horizontal run, as well as spacing.

Syntax:

Procedure: DrawTwoWayLayout(const Altem: WideString; const SpanLine: ILine; const RunLine: ILine; bincludeFirst:

Arguments:
Altem: WideString
Specifies the area section to assign the layout segments to.

SpanLine: ILine
Direction span start and endpoint.

RunLine: ILine
Horizontal (side to side) run direction of area to populate. Requires a start and endpoint;

bincludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (optional parameter)

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID (globally unique identifier) to the area section. Or, empty
double-quotes for no trim/extending required.

Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model

> Expand source

C#

Using litem Object Model

@0 J o U W N

252

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

253

Edition

Edition
Returns the current PlanSwift Edition.

Syntax:
Procedure: Edition;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

254

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

EndFormulaUpdate

EndFormulaUpdate

Signals an end to the formula update operation.

Syntax:
Procedure: EndFormulaUpdate; Code
Reference:

1. Create a New Forms Application

2. Add a PlanSwift to the References (Planswift_Tlb)

3. Add a button to the form

4. Copy code below to the onclick event of the button

5. Compile and run

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

255

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

EndUpdate

EndUpdate

Signals the end of update operations.

Syntax: Procedure:
EndUpdate; Code Reference:

1. Create a New Project
2. Add PlanSwift Reference Usage

API Calls
Delphi

Using PlanSwift Object Model

256

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Getltem (1)

Getltem
Returns the item given by FullPath. Returns Nil if the object is not found.

Syntax:
Procedure: Getltem(FullPath: String): litem;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

257

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

258

GetlLine

Getline

Prompts the user to click 2 points on the active plan to define a line then returns the coordinates in p1 and p2.

Returns 1 if the function is successful or 0 if the user cancels.

Syntax:
Procedure: GetLine(const ToolHint: WideString): ILine;
Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetOneWaylayout (2)

GetOneWayLlayout

Function used to perform segment layouts at a specified span, horizontal run, as well as spacing.

259

Coming soon

Syntax:

Procedure: GetOneWayLayout(const Altem: WideString; const sSpanHint: WideString; const sRunHint: WideString; bincludeFirst: WordBool; bincludeLast: WordBool;
nSpacing: Double; const AArea: WideString): WordBool;

Arguments:
Altem: WideString
Specifies the area section to assign the layout segments to.

sSpanHint: WideString
Hint to user on mouse cursor specifying to select the span line.

sRunHint: WideString
Hint to user on mouse cursor specifying to select the run line.

bincludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludelast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (optional parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area section. Or, empty double-quotes for no
trim/extending required.

Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

260

GetProperty (1)

GetProperty

Returns the IPropertyObjectspecified by IltemPath and PropertyName. Returns Nil
if the Item or Property is not found.

Syntax:
Procedure: GetProperty(ltemPath, PropertyName: String): IPropertyObject; Code
Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyFormula (1)

GetPropertyFormula

Returns the formula string for the property specified by ItemPath and PropertyName. Returns an
empty string (") if the item or property is not found.

261

> Expand source

> Expand source

Syntax:
Procedure: GetPropertyFormula(ltemPath, PropertyName: String): String; Code
Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor

4. Press run
API Calls
Delphi
Using PlanSwift Object Model
1
2 // PlanSwift code:
3 Result := PlanSwift .GetPropertyFormula (ItemPath, 'Name') ;
4
5 //FreshDesk code:
6 procedure psgetPropertyFormula;
7 var
8 ps: IPlanSwift;
9 itm: IItem;
10 propvalue: WideString;
11 begin
12 //Create the Planswift Interfacev
13 ps := coplanswift .Create;
14 //Get the selected Item
15 itm := ps.SelectedItem;
16 //Set the property value
17 propvalue := ps .GetPropertyFormula (itm .GUID, 'Name');
18 //Chece if Property value is empty
19 if propvalue <> '' then
20 ShowMessage (propvalue) ;
21 //Free Planswift Interface
22 ps := nil;

end;

C#

Using litem Object Model

262

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

263

GetPropertyResult (1)

GetPropertyResult

Returns the calculated result from the given property.

Syntax:
Procedure: GetPropertyResult(ItemPath, PropertyName: String): Variant; Code
Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor

4. Press run
API Call
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResultAsBoolean (1)

GetPropertyResultAsBoolean

Attempt to return the result of the given property as a boolean value. If the calculated result cannot be converted to a boolean value, the default value is returned.

264

Syntax:
Procedure: GetPropertyResultAsBoolean(ItemPath, PropertyName: String; Default: Boolean = False): Boolean;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Calls
Delphi

Using PlanSwift Object Model > Expand source

C#

Using litem Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResultAsFloat (1)

GetPropertyResultAsFloat

Attempts to return the given property value as a floating point value. If the calculated property value cannot be converted, the value supplied by Default is returned.

265

Syntax:
Procedure: GetPropertyResultAsFloat(ItemPath, PropertyName: String; Default: Double = 0): Double;
Code Reference:
1. Navigate to Plugin Store->Tool Manager and create a new Plugin

2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor

4. Press run
API Calls
Delphi
Using PlanSwift Object Model ?> Expand source
C#
Using litem Object Model ?> Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResultAsInteger (1)

GetPropertyResultAsinteger

Attempts to return the property value as an Integer. If the calculated value cannot be converted to an integer, the value given in Default is returned.

Syntax:
Procedure: GetPropertyResultAsinteger(ltemPath, PropertyName: String; Default: Integer = 0): Integer;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

266

API Calls

Delphi

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResultAsString (1)

GetPropertyResultAsString

Returns the result value of the given property. Returns Default if the property is not found.

Syntax:
Procedure: GetPropertyResultAsString(ltemPath, PropertyName: String; Default String = "): String;
Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model > Expand source

267

C#

Using litem Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

268

GetRect

GetRect

Prompts the user to click 2 points on the active plan to define a rectangle and returns the coordinates in p1 and p2.

Returns 1 if the function is successful or 0 if the user cancels.

Syntax:
Procedure: GetRect(Var p1x: double; Var ply: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

269

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetTwoWaylLayout

GetTwoWaylLayout

Function used to perform segment layouts (in 2 directions) at a specified span, horizontal run, as well as spacing.

Syntax:

Procedure: GetTwoWayLayout(const Altem: WideString; const sSpanHint: WideString; const sRunHint: WideString; bincludeFirst: WordBool; bincludeLast: WordBool;
nSpacing: Double; const AArea: WideString): WordBool;

Arguments:
Altem: WideString
Specifies the area section to assign the layout segments to.

sSpanHint: WideString
Hint to user on mouse cursor specifying to select the span line.

sRunHint: WideString
Hint to user on mouse cursor specifying to select the run line.

bincludeFirst: WordBool
Delphi
Using PlanSwift Object Model > Expand source

CH

Using litem Object Model

> Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

270

Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (optional parameter)

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area section. Or, empty double-quotes for no
trim/extending required.

Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
GetJobTotal

GetJobTotal
Retrieves the total number of items of a certain type in the entire opened job.

Syntax:
Procedure: GetJobTotal(const Propertyname: WideString; const ItemType: WideString = "): Double;
Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

271

API Call

Delphi

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetZoom

GetZoom

Returns the current "zoom" scale factor for the active page.

Syntax:
Procedure: Get_Zoom: Double; Code

Reference:

272

1. Create a New Form application
2. Add a button to the form
3. Add PlanSwift to reference (Planswift9_tlb in the uses)

4. Copy code to button onclick event

API Call
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Handle

Handle

Gets the handle of the current PlanSwift application.

273

Syntax:
Procedure: Handle: HResult; Code
Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi
Using PlanSwift Object Model > Expand source
c#
Using lltem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

[Item

litem

274

This is the interface object for a PlanSwift Item.

In PlanSwift script, since each script is the property of an item, you can use the default /tem and Property objects to access the lltem andIPropertyObject that the script
belongs to.

Syntax:

Procedure: Coming soon

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model ?> Expand source

Using PlanSwift Object Model

275

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CanRecord

CanRecord
Returns true if the item is a recordable item.

Syntax:

Procedure: CanRecord: Boolean;

API Calls
Delphi
Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

276

> Expand source

> Expand source

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

277

ChildCount

ChildCount
Returns the number of child items for the item.

Syntax:

Procedure: ChildCount: Integer;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

Coming soo

278

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Childltem

Childltem
Returns the child item at the given index position.

Syntax:

Procedure: Childltem(Index: Integer): litem;

API Calls
Delphi

Using PlanSwift Object Model > Expand source

279

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Delete

Delete

Deletes the Item and its children from the system.

Syntax:

Procedure: Delete;

280

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Deleteltem (2)

Deleteltem

Deletes the given item if it exists.

281

> Expand source

> Expand source

Syntax:

Procedure: PlanSwift.Deleteltem(const ItemPath: WideString): WordBool;

API Calls
Delphi

Using PlanSwift Object Model
C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)
Using lltem Object Model
Using PlanSwift Object Model

1
Coming soon

DeleteProperty (2)

DeleteProperty

Deletes the given property if it exists.

282

Syntax:

Procedure: DeleteProperty(PropertyName: String);

API Calls
Delphi
Using PlanSwift Object Model > Expand source
Cc#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

DoRecord

DoRecord

283

Begins recording digitizer points for the Item. Returns False if no points are recorded.

Syntax:

Procedure: DoRecord: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming s

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

284

VB/VBA (OLE)
Edit

Edit
Displays the Item in the Editor Dialog.

Syntax:

Procedure: Edit(ShowAdvanced: Boolean = True): Boolean;

API Calls
Delphi

Using PlanSwift Object Model > Expand source

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

285

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

286

FullPath

FullPath

Returns the full path to the Item.

Syntax:

Procedure: FullPath: String;

API Calls
Delphi

Using PlanSwift Object Model

CH

Using litem Object Model
Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model
Coming soon
Using PlanSwift Object Model

Coming soon

Getltem

Getltem

287

Returns the given child item of the item.

Syntax:

Procedure: Getltem(ItemPath: String): litem;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetltemByGUID

GetltemByGUID

Returns the child item specified by aGUID.

288

Syntax:

Procedure: GetltemByGUID(aGUID: String): lltem;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPoint

GetPointD

Returns the IPoint object from the given index position.

Syntax:

Procedure: GetPoint(Pointindex: Integer): IPoint

289

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetProperty (2)

GetProperty
Returns the given IPropertyObjector Nil if the property does not exist.

Syntax:

Procedure: GetProperty(PropertyName: String): IPropertyObject;

290

API Calls

Delphi

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyFormula (2)

GetPropertyFormula
Returns the formula from the given property.

Syntax:

Procedure: GetPropertyFormula(PropertyName: String): String;

291

API Calls

Delphi
Using PlanSwift Object Model
C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResult (2)

GetPropertyResult
Returns the property result as a variant;

Syntax:

Procedure: GetPropertyResult(PropertyName: String): Variant;

292

API Calls

Delphi

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResultAsBoolean (2)

GetPropertyResultAsBoolean
Returns the given property result as a boolean value.

Syntax:

Procedure: GetPropertyResultAsBoolean(PropertyName: String; Default: Boolean = False): Boolean;

293

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResultAsFloat (2)

GetPropertyResultAsFloat
Returns the given property result as type double.

Syntax:

Procedure: GetPropertyResultAsFloat(PropertyName: String; Default: Double = 0): Double;

294

API Calls

Delphi

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResultAsinteger (2)

GetPropertyResultAsinteger
Returns the given property result value as an integer.

Syntax:

Procedure: GetPropertyResultAsinteger(PropertyName: String; Default: Integer = 0): Integer;

295

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GetPropertyResultAsString (2)

GetPropertyResultAsString
Returns the given property result value as a string.

Syntax:

Procedure: GetPropertyResultAsString(PropertyName: String; Default: String = "): String;

296

API Calls

Delphi

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

GUID

GUID

Returns the GUID (globally unique identifier) for the Item.

Syntax:

Procedure: GUID: String;

297

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ltemType

ItemType

Gets or Sets the Type property for the Item.

Syntax:

Procedure: ItemType: String;

298

API Calls
Delphi

Using litem Object Model
Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

[Point

IPoint

The IPoint Interface

Syntax:

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

299

> Expand source

> Expand source

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Procedure: Coming soon.

API Calls

Delphi

Using litem Object Model
Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

X

X

Gets or Sets the X coordinate for the IPoint.

Syntax:

300

Procedure: X: Double;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Gets or Sets the Y coordinate for the IPoint.

Syntax:

Procedure: Y: Double;

301

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Name (2)

Name
Gets or Sets the Name property for the item.

Syntax:

Procedure: Name: String;

302

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)
Newltem

Newltem

Creates a new child item and returns the new item.

Syntax:

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

303

Procedure: Newltem(ltemType: String; AName: String = "): lltem;

API Calls

Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

304

NewltemEx

NewltemEx

Creates a new child item and returns the new item. If EditProperties is true then the property editor will be displayed when the item is created.

Syntax:

Procedure: NewltemEx(ItemType, AName: String; EditProperties: Boolean): lltem;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

NewPoint

NewPoint

305

Creates a new digitizer point at the X, Y coordinates.

Syntax:

Procedure: NewPoint(X, Y: Double);

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

NewProperty

NewProperty
Creates a new property as specified and returns the new IPropertyObject.

Syntax:

Procedure: NewProperty(PropertyName: String; AFormula: String = "; PropertyType: PropertyTypes = ptNumber): IPropertyObject;

306

ptNumber = 0 ptColor =
1 ptText = 2 ptMemo =3
ptCheckBox = 4 ptPath =
5 ptlmage =6
ptLargelmage =7

® ptType = 8 ptScript =9

* ptFile = 10 ptLargeFile =
e 11 ptFileName = 12

« ptConnectionString = 13
o ptSlider=14

« ptDimension =15

. APICalls
Delphi
Using litem Object Model

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

307

> Expand source

> Expand source

NewSection

NewSection

Createsa new section for the Item.
If the Item is not a draw object, this function returns Nil.

Syntax:
Procedure: NewSection(AName: String = "): litem;
API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

308

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Parentltem

Parentltem

Returns the parent to the Item.

Syntax:

Procedure: Parentltem: lltem;

API Calls
Delphi
Using PlanSwift Object Model

309

> Expand source

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

PointCount

PointCount
Returns the number of digitizer points for the item.

Syntax:

Procedure: PointCount: Integer;

310

API Calls

Delphi

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

PropertyCount

PropertyCount

Returns the number of properties for this item.

Syntax:

311

Procedure: PropertyCount: Integer;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Propertyltem

Propertyltem

Returns thelPropertyObject at the given index.

312

Syntax:

Procedure: Propertyltem(Index: Integer);

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

SetPoint

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

313

SetPoint

Sets the digitizer point specified by Pointindex to the given X, Y coordinates.

Syntax:

Procedure: SetPoint(Pointindex: Integer; X, Y: Double);

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

314

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SetPropertyFormula

SetPropertyFormula

Sets the given property formula to value.

Syntax:

Procedure: SetPropertyFormula(PropertyName, value: String);

API Calls
Delphi

Using PlanSwift Object Model > Expand source

315

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

316

IPropertyObject

IPropertyObject

This is the interface object for each property on a PlanSwift litem. In PlanSwift script, since each script is the property of an item, you can use the default /tem and
Property objects to access the lltem andIPropertyObject that the script belongs to.

Syntax:

Procedure: Handle: HResult;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

317

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Adjust

Adjust
Gets or Sets the Adjust attribute for the property.

Syntax:

Procedure: Adjust: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

318

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CalculateBeforelnherit

CalculateBeforelnherit

Gets or Sets the CalculateBeforelnherit attribute for the property.

Syntax:

Procedure: CalculateBeforelnherit: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

319

> Expand source

> Expand source

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CompileDenyOLE

CompileDenyOLE

Gets or Sets the CompileDenyOLE attribute for this property.

Syntax:

Procedure: CompileDenyOLE: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

320

> Expand source

> Expand source

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CompileDenyRead

CompileDenyRead

Gets or Sets the CompileDenyRead attribute for this property.

Syntax:

Procedure: CompileDenyRead: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

321

> Expand source

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

CompileDenyWrite

CompileDenyWrite
Gets or Sets the CompileDenyWrite attribute for this property.

Syntax:

Procedure: CompileDenyWrite: Boolean;

322

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

DecimalPlaces

DecimalPlaces

Gets or Sets the DecimalPlaces attribute for the property.

323

Syntax:

Procedure: DecimalPlaces: Integer;

API Calls
Delphi
Using lltem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

324

EditScript

EditScript

Opens the script property in the script editor. If the property is not of type ptScript, this method is ignored.

Syntax:

Procedure: EditScript;

API Calls
Delphi
Using PlanSwift Object Model

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

325

> Expand source

C#

Using litem Object Model ’

Using PlanSwift Object Model

VB/VBA (OLE)

326

ExecuteScript

ExecuteScript

Executes the script property, passing a CRLF delimited list of parameters. Returns the value assigned to Result in the script.

Syntax:

Procedure: ExecuteScript(ParamList: String = "): Variant;

API Calls
Delphi

Using PlanSwift Object Model > Expand source

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

327

C#

Using litem Object Model ’

Using PlanSwift Object Model

VB/VBA (OLE)

328

Expression

Expression

Gets or Sets the Expression attribute for the property.

Syntax:

Procedure: Expression: Boolean;

API Calls
Delphi

Using PlanSwift Object Model > Expand source

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

329

C#

Using litem Object Model ’

Using PlanSwift Object Model

VB/VBA (OLE)

330

Formula

Formula
Gets or Sets the Formula attribute for the property.

Syntax:

Procedure: Formula: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

331

Group

Group
Gets or Sets the Group attribute for the property.

Syntax:

Procedure: Group: String;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ImageTransparent

ImageTransparent

Gets or Sets the ImageTransparent attribute for this property.

Syntax:

Procedure: ImageTransparent: Boolean;

API Calls
Delphi

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

Coming so0o0

333

> Expand source

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

InheritAction

InheritAction
Gets or Sets the InheritAction attribute for this property.

Syntax:

Procedure: InheritAction: Inheritactions;
iaNormal = O ialgnore = 1
ialnheritFormula = 2 ialnheritResult =
3iaFlatten=4

API Calls

Delphi

Using litem Object Model > Expand source
Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)
InheritPullFrom

InheritPullFrom

Gets or Sets the InheritPullFrom attribute for this property.

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

335

Syntax:

Procedure: InheritPullFrom: String;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

InputCondition

InputCondition

Gets or Sets the InputCondition attribute for the property.

Syntax:

Procedure: InputCondition: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

InputType

InputType
Gets or Sets the InputType attribute for the property.

Syntax:

337

Procedure: InputType: InputTypes;
inpStoreLocal = 0 inpStoreParent

=1

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

InputUnits

InputUnits

Gets or Sets the InputUnits attribute for the property.

Syntax:

Procedure: InputUnits: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
Cc#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Isinherited

Isinherited

Gets or Sets the IsInherited attribute for this property.

339

Syntax:

Procedure: Isinherited: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Isinput

Isinput

Gets or Sets the IsInput attribute for the property.

Syntax:

Procedure: IsInput: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

341

> Expand source

> Expand source

List

List

Gets or Sets the List attribute for the property. If ListType = ItListthen this string will be the full path to the PlanSwift List Object as defined on the List tab on the main

ribbon bar.

Syntax:

Procedure: List: String;

API Calls
Delphi

Using PlanSwift Object Model

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

342

> Expand source

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo0

VB/VBA (OLE)

ListColumnAutoWidth

ListColumnAutoWidth

Gets or Sets the ListColumnAutoWidth attribute for the property.

Syntax:

Procedure: ListColumnAutoWidth: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

343

> Expand source

> Expand source

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ListFromProperty

ListFromProperty

Gets or Sets the ListFromProperty attribute for the property;

Syntax:

Procedure: ListFromProperty: Boolean;

344

API Calls

Delphi

Using PlanSwift Object Model > Expand source
CH#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ListPropertiesToSet

ListPropertiesToSet

Gets or Sets the ListPropertiesToSet attribute for this property.

Syntax:

345

Procedure: ListPropertiesToSet: String;

API Calls
Delphi

Using PlanSwift Object Model > Expand source

C#

Using litem Object Model

> Expand source

Using PlanSwift Object Model

VB/VBA (OLE)
ListResultColumn
ListResultColumn

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

346

Gets or Sets the ListResultColumn attribute for the property. If the ListType =ltList, this attribute specifies which column to return for the result.

Syntax:

Procedure: ListResultColumn: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

347

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ListReturnFullPath

ListReturnFullPath
Gets or Sets the ListReturnFullPath for this property.

Syntax:

Procedure: ListReturnFullPath: Boolean;

348

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

349

> Expand source

> Expand source

ListShow1Level

ListShow1Level
Gets or Sets the ListShow1Level attribute for this property.

Syntax:

Procedure: ListShow1Level: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

350

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ListShowOnlyTypes

ListShowOnlyTypes

Gets or Sets the ListShowOnlyTypes attribute for this property.

Syntax:

Procedure: ListShowOnlyTypes: String;

API Calls
Delphi

Using PlanSwift Object Model

351

> Expand source

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ListShowSearch

ListShowSearch
Gets or Sets the ListShowSearch attribute for the property.

Syntax:

Procedure: ListShowSearch: Boolean;

352

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ListType

ListType

Gets or Sets the ListType attribute for the property.

Syntax:

353

> Expand source

> Expand source

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Procedure: ListType: ListTypes;
ItSimplelList = 0 ItList = 1
ItTreelList = 2 ItExecutePlugin
=3

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)
ListVisibleColumnsinDropdown

ListVisibleColumnsinDropdown

354

Gets or Sets the ListVisibleColumnsinDropdown attribute for this property.

Syntax:

Procedure: ListVisibleColumnsinDropdown: String;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

MeetslnputCondition

355

> Expand source

> Expand source

MeetsinputCondition

Returns true if thelnputCondition has been met.

Syntax:

Procedure: MeetsinputCondition

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

356

Name (3)

Name
Gets or Sets the Name attribute for the Property.

Syntax:

Procedure: Name: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

357

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

PluginToExecute

PluginToExecute

Gets or Sets the PluginToExecute attribute for this property.

Syntax:

Procedure: PluginToExecute: String;

API Calls
Delphi

Using PlanSwift Object Model

358

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

PluginToExecuteButtonCaption

PluginToExecuteButtonCaption
Gets or Sets the PluginToExecuteButtonCaption attribute for this property.

Syntax:

Procedure: PluginToExecuteButtonCaption: String;

359

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

PropertyType

PropertyType
Returns the Type attribute for the property.

Syntax:

360

Procedure: PropertyType: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ResultAsString

ResultAsString

Returns the property result of the property.

361

Syntax:

Procedure: ResultAsString: String;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ResultAsInteger

ResultAsInteger

362

Returns the property result as an integer if possible.

Syntax:

Procedure: ResultAsinteger: Integer;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ResultAsFloat

ResultAsFloat

363

> Expand source

> Expand source

Returns the property resultasa Double.

Syntax:

Procedure: ResultAsFloat: Double;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ResultAsVariant

364

ResultAsVariant

Returns the property result as a Variant;

Syntax:

Procedure: ResultAsVariant: Variant;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

365

> Expand source

> Expand source

ScriptType

ScriptType

Gets or Sets the ScriptType attribute for this property.

Syntax:

Procedure: ScriptType: ScriptTypes;
* stEvent =0 stMethod =1

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

366

VB/VBA (OLE)

.
.
.

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ScriptLanguage

ScriptLanguage
Gets or Sets the ScriptLanguage attribute for this property.

Syntax:

Procedure: ScriptLanguage: ScriptLanguages;

slPascal = 0 sIBasic = 1 slExecute = 2

API Calls
Delphi

Using PlanSwift Object Model > Expand source

367

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

368

ScriptParameters

ScriptParameters

Gets or Sets the ScriptParameters attribute for this property. This string is a CRLF delimited list of Parameter names.

Syntax:

Procedure: ScriptParameters: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

369

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SimplelList

SimpleList

Gets or Sets the SimpleList attribute for the property. If ListType = [tSimpleList, the SimpleList attribute will be the CRLF delimited string of list items.

Syntax:

Procedure: SimplelList: String;

370

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

SliderMax

SliderMax
Gets or Sets the SliderMax attribute for the property.

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

371

Syntax:

Procedure: SliderMax: Integer;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

372

> Expand source

> Expand source

SliderMin

SliderMin
Gets or Sets the SliderMin attribute for this property.

Syntax:

Procedure: SliderMin: Integer;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SliderShowTicks

SliderShowTicks

Gets or Sets the SliderShowTicks attribute for this property.

Syntax:

Procedure: SliderShowTicks: Boolean;

373

> Expand source

> Expand source

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SliderTickFrequency

SliderTickFrequency

Gets or Sets the SliderTickFrequency attribute for this property.

Syntax:

Procedure: SliderTickFrequency: Integer;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

374

> Expand source

> Expand source

> Expand source

> Expand source

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SystemHidden

SystemHidden

Returns True if the property is Hidden by the system.

Syntax:

Procedure: SystemHidden: Boolean;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
Cc#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SystemLocked

SystemLocked

Returns True if the property is locked by the system.

375

Syntax:

Procedure: SystemLocked: Boolean;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

376

TreelList

TreelList

Gets or Sets the Treelist attribute of the property. If ListType = ItTreeList this attribute will contain the full path to the treelist item to use for a root item in the list.

Syntax:

Procedure: Treelist: String;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

377

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ExecuteScript (2)

ExecuteScript

Executes the script property, passing a CRLF delimited list of parameters. Returns the value assigned to Result in the script.

Syntax:

Procedure: ExecuteScript (ParamList: String= ''): Variant;

378

API Calls

Delphi

Using PlanSwift Object Model > Expand source
C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Units

Units

Gets or Sets the Units attribute for the property.

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

379

Syntax:

Procedure: Units: String;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

380

> Expand source

> Expand source

UserHidden

UserHidden
Gets or Sets the UserHidden attribute for the property.

Syntax:

Procedure: UserHidden: Boolean;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

381

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

UserLocked

UserLocked
Gets or Sets the UserLocked attribute of the property.

Syntax:

Procedure: UserLocked: Boolean;

API Calls
Delphi

Using PlanSwift Object Model

382

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soo0

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon
IsBeta
IsBeta

Returns True if Beta user, False if not.

Syntax:
Procedure: IsBeta: Boolean;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

383

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

3. Copy Code into the editor
4. Press run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

IsJobOpen

IsJobOpen

Tests whether the PlanSwift application actually has a "Job" opened in the editor.

384

Syntax:

Procedure: IsJobOpen: Wordbool;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

385

IsUnlocked

IsUnlocked

Checks the product activation status of a plugin. If AllowUnlock is true, the user is prompted to Activate if needed.

Syntax:

Procedure: IsUnlocked(AProduct: String; AMajorVer: Integer; AMinorVer: Integer; AllowUnlock: Boolean): Boolean;

Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

386

> E

> E

VB/VBA (OLE)
Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

NewBlankPage

NewBlankPage

Creates a blank page in the current job and returns the Page Item that was created.

Syntax:
Procedure: NewBlankPage(const AName: WideString; AWidth, AHeight, ADPI: Integer; const AScale: WideString): litem;
Code Reference:

1. Create a New Form application

2. Add a button to the for

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model > Expand source

387

C#

Using lltem Object Model ’ E

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

NewChangeGroup

NewChangeGroup

Starts a new change group.

Syntax:
Procedure: NewChangeGroup(GroupName: String);
Code Reference

1. Create a New Forms Application

2. Add a PlanSwift to the References (Planswift_Tlb)
3. Add a button to the form

4. Copy code below to the onclick event of the button

388

5. Compile and run

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Newltem (2)

Newltem

Creates a new lltem as a child of ParentPath.

Syntax:

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

389

Procedure: Newltem(ParentPath, ltemType: String; AName: String = "): lltem;

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

390

> E

> E

NewltemEx (2)

NewltemEx

Creates a new lltem as a child of ParentPath. If EditProperties is true, then the property editor will display when the item is created.

Syntax:

Procedure: NewltemEx(ParentPath, ItemType: String; AName: String = "; EditProperties: Boolean): litem;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

391

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

NewlJobEx

NewlJobEx
Starts a "new" job in the PlanSwift application.

Syntax:

Procedure: NewJobEx(const JobName: WideString = "'): Wordbool;

API Calls
Delphi

Using PlanSwift Object Model > Expand ¢

392

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

NewPoint (2)

NewPoint

Adds a new point to /temPath at the X, Y coordinates. If the Item is not found or is not a drawing object, this procedure will be ignored.

Syntax:
Procedure: NewPoint(ItemPath: String; X, Y: Double);

Code Reference:

393

1. Create a New Forms Application

2. Add a PlanSwift to the References (Planswift_Tlb)
3. Add a button to the form

4. Copy code below to the onclick event of the button
5. Compile and run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

> Expand ¢

> Expand ¢

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

394

NewSection (2)

NewSection

Returns the newly created section as an Iltem, as a child item of ParentPath. If ParentPath is not found or is not a digitizer item, this function returns Nil.

Syntax:

Procedure: NewSection(ParentPath: String; SectionName: String = "): litem;

API Calls
Delphi
Using PlanSwift Object Model > Expand source
C#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

395

OnClose

OnClose
Triggered when the PlanSwift application closes.

Syntax:

Procedure: OnClose;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s«

396

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnDoneRecordingDigitizer

OnDoneRecordingDigitizer

Triggered when an item section finishes recording.

Syntax:

Procedure: OnDoneRecordingDigitizer(ItemPath: String);

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

397

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soo

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnCopyltem

OnCopyltem
Triggered when the PlanSwift application copies an item.

Syntax:

Procedure: OnCopyltem;

398

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnDigitizerSectionChanged

OnDigitizerSectionChanged
Triggered when the PlanSwift application focuses a new section item.

Syntax:

399

Procedure: OnDigitizerSectionChanged;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnDoneRecording

OnDoneRecording

Triggered when an item has finished recording.

400

Syntax:

Procedure: OnDoneRecording(ItemPath: String);

API Calls
Delphi

Using litem Object Model
Using PlanSwift Object Model

Coming soon

C#

Using litem Object Model
Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using lltem Object Model

Coming soon

Using PlanSwift Object Model

Coming soon

OnltemChange

OnltemChange

Triggered when an item, specified by ItemPath, has been changed.

401

> Expand source

> Expand source

Syntax:

Procedure: OnltemChange(ltemPath: String);

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnltemDelete

OnltemDelete

402

Triggered when an item is deleted. IltemPath specifies which item is deleted.

Syntax:

Procedure: OnltemDelete(ItemPath: String);

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnJobClose

403

> Expand source

> Expand source

OnJobClose

Triggered when the current job closes.

Syntax:

Procedure: OnJobClose;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming so0o0

404

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnJobOpen

OnJobOpen

Triggered when a new job is opened.

Syntax:

Procedure: OnJobOpen;

405

API Calls
Delphi

Using litem Object Model

1
2 PlanSwift and FreshDesk Code:
3
4
5 Procedure OnJobOpen;
6 Begin
7 // Process as needed.
8 End;
9
PlanSwift .OnJobOpen := OnJobOpen;

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)
OnNewltem

OnNewltem

Triggered when a new item, specified by ItemPath, is created.

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

406

Syntax:

Procedure: OnNewltem(ItemPath: String);

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnNewlob

OnNewlob

407

Triggered when the application starts a "new" job.

Syntax:

Procedure: OnNewJob;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

Coming s«

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnSelectedPageChange

408

> Expand source

> Expand source

OnSelectedPageChange

Triggered when the application changes to a "new" page in the job.

Syntax:

Procedure: OnSelectedPageChange;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming so0o0

409

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnSelectedSelectionChanged

OnSelectedSelectionChanged

Triggered when the application changes to a new selection.

Syntax:

Procedure: OnSelectedSelectionChanged;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

1
Coming soon

410

> Expand source

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OnSelectionChanged

OnSelectionChanged
Triggered when the application changes focus to a new "selectable" item in the editor.

Syntax:

Procedure: OnSelectionChanged;

411

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

412

> Expand source

> Expand source

Openlob

Openlob

Opens the job specified by JobPath. Returns True if successful, false if the job could not be found or opened.

Syntax:
Procedure: OpenJob(JobPath: String): Boolean;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor

4. Press run
API Calls
Delphi
Using PlanSwift Object Model > Expand source
Cc#
Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soon

413

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

OpenlJobEx

OpenlJobEx

Shows the PlanSwift Open Job Dialog for the user to select a job to open.

Syntax:
Procedure: OpenJobEx;
Code Reference:
1. Create a New Forms Application
2. Add a PlanSwift to the References (Planswift_Tlb)
3. Add a button to the form

4. Copy code below to the onclick event of the button
5. Compile and run

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

414

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

PointCount (2)

PointCount
Returns the number of digitizer points on the item section.

Syntax:
Procedure: PointCount(ItemPath: String): Integer;
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

415

> Expand source

> Expand source

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

PostChanges

PostChanges
Post changes made since call to NewChangeGroup.

Syntax:
Procedure: PostChanges; Code
Reference:

1. Create a New Forms Application

416

2. Add a PlanSwift to the References (Planswift_Tlb)
3. Add a button to the form

4. Copy code below to the onclick event of the button
5. Compile and run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Root

Root

Returns the Root tree object.

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

417

> Expand source

> Expand source

Syntax:
Procedure: Root: litem
Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Calls
Delphi

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SaveScreenShot

418

SaveScreenShot

Save a screenshot of the active monitor to a specified filespec.

Syntax:
Procedure: SaveScreenShot(const FileName: WideString; Prompt: WordBool): WordBool;
Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model > Expand source

419

C#
Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

Selectedltem

Selectedltem
Returns the currently selected Item, or Nil if no item is selected.

Syntax:

Procedure: Selecteditem: lltem

420

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SelectedPage

SelectedPage

Returns the currently selected page item or Nil if no page is selected.

421

Syntax:

Procedure: SelectedPage: llitem;

API Calls
Delphi

Using PlanSwift Object Model
Cc#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SelectltemDialog

SelectltemDialog

Displays the Select Item dialog to the user, then returns the selected item.

Syntax:
Procedure: SelectitemDialog(Header: String; Title: String; RootltemID: String): litem;

Code Reference:

422

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model > Expand source

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

423

SelectionList selectionList

Returns an ISelectionList object of all the selected items.

Syntax:
Procedure: SelectionList: ISelectionList;
Code Reference:

1. Create a New Form application
2. Add a button to the form
3. Add PlanSwift to reference (Planswift9_tlb in the uses)

4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model

CH#

Using litem Object Model

Coming soon

Using PlanSwift Object Model

Coming soon

424

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)

SetPoint (2)

SetPoint

Sets the XY coordinates of the specified point.

Syntax:
Procedure: SetPoint(ItemPath: String; Pointindex: Integer; X, Y: Double);
Code Reference:

1. Create a New Forms Application

2. Add a PlanSwift to the References (Planswift_Tlb)
3. Add a button to the form

4. Copy code below to the onclick event of the button
5. Compile and run

API Calls
Delphi

Using PlanSwift Object Model > Expand source

425

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SetPropertyFormula (2)

SetPropertyFormula

Sets the Items Property Formula to the specified value. This will also create a new Property with the default Type as Text if the property does not exist.

Syntax:

Procedure: SetPropertyFormula(ltemPath, PropertyName, Value: String);

API Calls
Delphi

Using PlanSwift Object Model > Expand source

426

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soo0

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model
1

SetSelected

SetSelected

Set the job "object" to either selected or not selected based on the specified itempath.

Syntax:
Procedure: SetSelected(const ItemPath: WideString; Value: WordBool);
Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

427

> Expand source

> Expand source

API Calls
Delphi

Using PlanSwift Object Model

C#

Using lltem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

428

> Expand source

’> Expand source

SetZoom

SetZoom

Defines the current "zoom" scale factor for the active page.

Syntax:
Procedure: Set_Zoom(Value: Double); Code
Reference:

1. Create a New Form application

2. Add a button to the form

3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using PlanSwift Object Model

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

429

> Expand source

C#

Using litem Object Model

Using PlanSwift Object Model

Coming soon

VB/VBA (OLE)
ISelectionList

ISelectionList
A simple list that contains all of the items selected when the list is created.

Syntax:

Procedure: Coming soon

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model

1
Coming soon

430

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming soo0

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon
Count
Count

Returns the number of objects in the list.

Syntax:

Procedure: Count: Integer;

431

API Calls
Delphi
Using lltem Object Model

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using lltem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

ltems (1)

Items

Read-only collection of items. As with all collections, Index is a 0 based value.

432

Syntax:

Procedure: Items(Index: Integer): litem;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model

1
Coming soon

C#

Using litem Object Model > Expand source

Using PlanSwift Object Model

Coming s

VB/VBA (OLE)

Using litem Object Model

1
Coming soon

Using PlanSwift Object Model

1
Coming soon

SetActiveTab (TabName: String)

SetActiveTab (TabName: String)

433

Passing the name of the tab to the method. will set the active tab in PlanSwift.

API Calls
ct

Using PlanSwift Object Model

g o o W N

434

IsLoaded

IsLoaded
Will Wait For PlanSwift to finish loading.
API Calls

C#

Using PlanSwift Object Model

oo W N

435

Scripting Documentation
Scripting Documentation

PlanSwift's internal scripting provides the means to access PlanSwift's internal structure in a coding environment to help automate PlanSwift functionality. Scripting also
provides the developer the capability to write and automate drawing tasks as well as complex formula calculations. PlanSwift's internal scripting functionality executes faster
than PlanSwift's API functionality. Scripting for PlanSwift's root settings are documented in the PlanSwift Structure section. Click here to see them.

[Z]1 PlanSwift does not provide technical support for this function.

Using APl Methods in Scriptin g
Scripting Interfac e
Scripting - Function s

Developer Docs -- Freshdesk Xfe r

436

Using APl Methods in Scripting

Using API Methods in Scripting
PlanSwift's Scripting Interface allows you to hook into PlanSwift's APl and use it, or you can use the default Scripting Reference. If you want to write something inside of
PlanSwift, just for PlanSwift, then you can use the Scripting Interface.

Documentation on the Scripting Interface and the Scripting Reference are in process.

437

Scripting Interface

Scripting Interface

To use the Scripting Interface, follow the steps below.
1. Click on Pluginson the PlanSwiftMain Menu Ribbon Baffigure 1).

#) | Home | page Tools View Estmating Lists Templates Settngs Reports Help Plugins -2 || Undo
= =l Jl
< 55 Em QAAQ) =
New Open Print Email Back Fwd Zoom Fit Zoom Zoom Pan Scale Dimension Area Linear Segment
Job Page In Out & X . Y
Job Navigate Zoom / Pan Measure Take
Pages, Bookmarks “|low"
w" Videos ,
— — = Read Qur
Figure 1

2. Click on theTools Manageron the Plugins Ribbon-bar Men(fFigure 2).

\") Home ge Tools View Estimating Lists Templates Settings Reports Help ‘ Plugins ‘E
— ~
B = A fi « (V7
Tools Import Plugin Uninstall Home Back Forward Refresh
Manager Package Plugin
Plugin Tools Navigate

Figure 2
In the Tools Manager window (Figure 3), click on the green plus (+). Note that the yellow folder icon allows a new folder to be created for storage of plugins. The blue

3.
gear icon allows the viewing of properties for any plugin in the window below. The red "X" icon allows for a plugin to be deleted. The green triangular icon allows a

selected plugin to be executed.

@ Tools [8nager
D+ bh
Seard'a:l

Name

Figure 3
In the Properties - [New Plugin] window, give the new plugin a name, such as "Stucco" or whatever name you choose for the new plugin (Figure 4).

4.

438

4 Properties - [New Plugi ny X

Largelcon

@ *

Plugin Type
|Executable - |

Executable

Parameters

"] OnStartup

] On Image Menu

"] On Ribbon Bar
nput || Advanced | Form | ok || cancel |
Figure 4

5. Select the Plugin Type by clicking on the Plugin Type selection arrow and then selecting Script Code from the drop-down menu (Figure 5).
'« Properties - [New Plugin] =

Marme
|Stucco |

Icon Largelcon

Plugin Type
-

Shell Execute
Executable ‘, ’
Parameters

] OnStartup

"] On Image Menu

"] On Ribbon Bar

Input ||Achrant:edi| Form | Ok HCancel

Figure 5

6. The Plugin Type is now displayed as Script Code (arrow 1 in Figure 6). Doubleclicking on the Icon (arrow 1) or the Largelcon (arrow 2) allows the selection of a small
Icon or a Largelcon. Double-click on the Largelcon (arrow 3).

439

“ Properties - [New Plugin] >

) I__argeIcon

-
Script Code
Edit

] OnStartup

] ©n Image Menu

] On Ribbon Bar
Input Advanced [Ok Cancel

Figure 6

7. This opens an Explorer window (Figure 7) allowing the selection of an icon. From here, it is possible to navigate to a different directory and select an icon, then click on
Open to use that selected icon; but, for now, select Cancel to retain the default green puzzle-piece icon.

- X
U s ThisPC » Pictures » Saved Pictures w | @ Search Saved Pictures 0

Organize v Mew folder = - (7]
@ Downloads ~ o)
@ Health
@ PlanSwift Brand
@ Saved Pictures Lipg 3fchfBeet®1c9ba 4acafdc5427beld GgFodZY jpg

)) a32d10e60b3edeld d4713c3d618a3e]

@ Single Sign In Au abjpg Ob.jpg

[This PC
_J 3D Objects
I Desktop Select a file to preview.
e 0906 12 059.jpg 39a1345d240b9d 1920x1080-wallpa 162962_sunset-n
= D ts
I Dotiimen 060bb32b262612 per-High-Resolut ature-1920x1080-
; Downloads 1575.jpg ion-Downloadl,j wallpaper_www.
‘b Music wallpaperwell.c...
| Pictures
B videos s<al
. Windows (C) 420329.jpg 421536-popular- 502680.jpg 548495-beautiful

2 christmas-wallpa -cool-nature-wal -
S mer T0IRANGN 10 hmnmmre el 10000
File name: w I.All (*.png:* tit* jpg;*.gif:*.png:* V:
Open Cancel
Figure 7

8. The next step is to select where you want the new icon to appear: OnStartup, On Image Menu, or On Ribbon Bar. For this exercise, select On Ribbon Bar (arrow 1),
select Tools from the Ribbon Tab drop-down (arrow 2), select Takeoff Item from the Ribbon Group drop-down (arrow 3), and then click on Ok.

440

#¥ Properties - [Stucco]

MName

Stucco

Icon Largelcon

&

Plugin Type

Script Code

Script Code

Edit

] OnStartup

[onI enu

Ribbon Tab

Ribbon Group

¥ On Ribbon Bar

Takeoff Ttem

Input Hm-.mc'edH Fornfest

Figure 8

9. Click on the Tools tab on the Main Ribbon-bar, and you will see the new "Stucco" plugin displayed in the Takeoff Item group (Figure 9).

‘ﬁ Home Page ‘ Tools ‘ View Estimating es Settings Reports Help Plugins
= 2 BE w
ai
Rotate Rotate Flip Flip Stucco = Pitch Triangulate Zip Unzip Attach Excel Open Excel Save
Left Right Vertically Horizontally SwiftJob Swiftlob File to Job File in Job Screenshot
Takeoff Item Calculations Zip Excel Files Other
Pages, Bookmarks «
T+ORTULOQ
=@ A2.11 - Sample Commercial Floor Plan H O
g s cerpip il B+ Useftlvideos and links to get started
& Open Office 106 377 Q
[Warehouse 107 195300 [l Q w Me PN
87 Office 102 13960 Il Q@ @ Tools Manager
7 Womens RR 104 20 Il Q 3 Getting Started =
67 Mens RR 105 st6sorr M Q . O+ %0 H
11 Exterior Walls 1928~ M Q 3 Start a New Project Search: |
3=, Interior Walls 1356 I Q Existi
. e ®Doors 9.0 Il Q 3 Open ng Projects
A1.1 Community Center - Sample Plans H e 3 Setting the Scale
el Al il b PR =1 -

Figure 9

10. Double-click on the Stucco plugin in the Tools Manager window to re-open the Properties - [Stucco] window (Figure 10). Click on Edit.

441

& Properties - [Stuccal b4

Mame
|Sh.|mn

Tcon Largelcon

Plugin Type
|script Code -

Seript Cade

[OnStartup.

| On Image Menu

Ribbon Tab Ribbon Group
¥ On Ribbon Bar frools v | [TakeoffItem |

| nput | [Acvancea [Fom_|

Figure 10

11. This opens the Script Code - Script Editor window (Figure 11). The large Script Editor window on the right is where plugin code is written. The Code Explorer window
will list variables and procedures as they are coded into the Script Editor window. The Help window contains the COM Object Model and Scripting selections available
to use in the Script Editor window. Clicking on the "+" symbol opens the folder and subfolders. Click on the "+" left of COM Object Model, then click on the "+" left of
the IPlanswift folder.

@ Script Code - Script Editor -] *®

W PR sibeconPont Tl | o r e

o Return

Accept Save Cancel +@ View Break

- RunTo

Figure 11
12. The COM Object Model selections are now available in the Help window (Figure 12). Click on Current Version, then click on the circled question mark directly below
the Help label.

@ Script Code - Script Editor
o® » Run =

- Mrase ||
g Compile || g
Close Script | Run Seript ||
Code Explorer [Help «
| Code

Accept Save Cancel

=2} COM Object Madel a
g

About

BeginUpdate

BeginFormulaUpdate

CancelToal

CloseJob

CompareVersion

Copyltem

Currentversion

CurrentViewport

DeleteItem

DeleteProperty

DrawOneWayLayout

DrawTwolWayLayout

Edition

EndFormulaUpdate

EndUpdate

Getltem

Getline

GetOneWaylLayout

GetProperty

GetPropertyFormula

GetPropertyResult

GetPropertyResultAsBoolean

GetPropertyResultAsFloat

GetPropertyResultAsInteger

GetPropertyResultAsString

GetRect

GetTwoWwayLayout lz‘

. o L i v = B et 68 i s R = i o W 1 P o ot o e 1 i e v e = M = ket = 76 e~ |

Figure 12

13. Clicking on CurrentVersion (arrow 1 of Figure 13), then clicking on the question mark (arrow 2), opens the CurrentVersion window (arrow 3), which provides the
Declaration form of the item selected and a Source Code Example. Source code may be copied and pasted into the Script Editor window and then modified as needed,
or the CurrentVersion selection can be double-clicked on and will appear in the Script Editor window at the cursor's last position. The Close Script, Run Script, Debug
Script, Break Points, and Script Parameter sections provide the code editing functions useful in programming API's.

443

W W%

& Run 1= Execution Point § Trace Into +® Toggle Break &1 Edit Parameters.
11 Pause 7 Reset Script &' Retumn | Save To File

A it S Cancel = Settil
Accept Save Can | Compile || ¥ Step Over rlf Rinlo HE View Break B Load From File ngs
Close Script | ‘ Run Eﬂmd | Debug Script Break Paints Script Parameters.
Code Explorer / HEJP “* CurrentVersion 3
> B Vo CurrentVersion

Declaration: CisrentVersion;
Returns the current version of the active PlanSwift application.

o P
]

=+.2) COoM Object Model
E-F IPlanswift

~ P About
& BeginUpdate

CloseJob
CompareVersion

E
P

P CancelTool
E
F Copyltem

CurrentViewport
Deleteltem

DeleteProperty

BeginFormulaUpdate

var

sVersion: atring;
begin

sVersion := PlanSwift.CurrentVersion;
end;

Figure 13

444

Scripting - Functions
Scripting - Functions

Forms

NewRadioButton
NewForm
NewButton
NewEdit
NewComboBox
NewColorBox
NewCheckBox
NewlLabel

Math Functions

Upd

DecToEnglish
DistanceBetweenPointsScaled
DistanceFromLine

ExtendLine
GetDistanceFromLine
GetlntersectPoint

GetPI

Max

Min

RoundDown
DistanceBetweenPoints
RoundToNearest

RoundUp
AngleBetweenPointsUnScaled
ParallelLine

Pi

PointOnAngle

TrimToArea

ate Methods
BeginUpdate (2)
BeginFormulaUpdate (2)
CurrentVersion (2)
EndFormulaUpdate (2)
EndUpdate (2)
ImageRefresh
Refreshimage
NewChangeGroup (2)
PostChanges (2)

Windows Controls

Use

CurrentViewport (2)
FindWindow
FocusMainWindow
FocusWindow
SendKey
SendKeys

r Input
GetlntersectPoint (2)
GetLine (2)
GetPoint (2)
GetRect (2)

HitTest
NewPoint (3)
ResultPointX

445

* ResultPointY

446

ResultPointX2
ResultPointY2

BringToFront
ChildCount (2)
Childltem (2)
ClearSelection
Copyltem (2)
Deleteltem
Getltem (2)
GetSelectionList
IsType

ListData
MoveltemTo Newltem
3)
ParentltemGUID
Parentltem (2)
Selectedltem (2)
Showlabel
StartRecording
SelectedPage (2)
SendToBack
SelectedPageGUID
Selectltem ZoomToltem

Sections
AddPoint
DeletePoint
DrawOneWayLlayout (2)
DrawTwoWayLlayout (2)
GetOneWaylayout
GetTwoWaylayout (2)
NewSection (3)
NewSubtractSection
PointX
PointY
PointCount (3)
SetPoint (3)

Properties
DeleteProperty
GetGUIDfromPath
GetJobTotal (2)
GetPropertyCount
GetPropertyFormula
GetPropertyResult
GetResultAsBoolean
GetResultAsFloat
GetResultAsInteger
GetResultAsString
GetPropertyName
GetPropertyAttribute
GetPropertyAttributelist
SetPropertyAttribute
SetPropertyFormula (3)

BeepAcknowledged
CompareVersion (2)
CurrentUser
ExecuteScript (3)
GetActionlLog
GetPairedValue

447

GetResult
IsUnlocked (2)
KeyDown

KeyUp

License

* Openlob (2

* NewBlankPage (3
* SetRecordMock
SetlmagePropertyFromFi¢
* SetEncrypted

* RGB
ReapplyAllOfType
* OpenlJobEx (2

® SetResul
StopRecordirg

Dialogs
* EditScriptPropery
* Edititem
Custom Dialog
MessageDialg
My Color Dialg
ScriptMessageDialg
SelectltemDialog (2

Global Variables and Constant s

448

Forms

Forms

NewRadioButto n
NewForm
NewLabel
NewCheckBo x
NewComboBo x
NewButto n
NewColorBo x

NewEdit

449

NewButton

NewButton

Creates a new TButton and sets the Left, Top, Caption and ModalResult Properties as specified. Do not attempt to destroy or free a TButton created with NewButton.

Syntax:
Procedure: NewButton(Left, Top: Integer; Caption: String; Modalresult: Integer): TButton;

Code Reference:

Scripting ?> Expand source

450

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Call:

451

NewCheckBox

NewCheckBox

Creates a new TCheckBox and sets the Left, Top, Caption and Checked Properties as specified. Do not attempt to destroy or free a TCheckBox created withNewCheckBox.
Syntax:
Procedure: NewCheckBox(Left, Top: Integer; Caption: String; Checked: Boolean): TCheckBox;

Code Reference:

Scripting ?> Expand source

452

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Call:

453

NewColorBox

NewColorBox

Creates a new TColorBox and sets the Left, Top and Selected Properties as specified. Do not attempt to destroy or free a TColorBox created with NewColorBox.

Syntax:
Procedure: NewColorBox(Left, Top: Integer; Selected: Integer): TColorBox;

Code Reference:

454

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Call:

Scripting > Expand source

455

NewComboBox

NewComboBox

Creates a new TComboBox and sets the Left, Top and Text Properties as specified. Do not attempt to destroy or free a TComboBox created withNewComboBox.

Syntax:
Procedure: NewComboBox(Left, Top: Integer; Text: String): TComboBox;

Code Reference:

456

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Call:

Scripting > Expand source

457

NewEdit

NewEdit

Creates a new TEdit and sets the Left, Top and Text Properties as specified. Do not attempt to destroy or free a TEdit created with NewEdit.

Syntax:
Procedure: NewEdit(Left, Top: Integer; Text: String): TEdit;

Code Reference:

458

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Call:

Scripting > Expand source

459

NewForm

NewForm

Creates a new TForm object and sets the width, height, and caption as specified. Do not attempt to destroy or free forms created with NewForm.

Syntax:
Procedure: NewForm(Width, Height: Integer; Caption: String): TForm;

Code Reference:

460

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Call:

Scripting > Expand source

461

NewlLabel

Newlabel

Creates and returns a new TLabel object and sets the Left, Top and Caption properties. Do not attempt to destroy or free labels created with NewLabel.Declaration:

Syntax:

Procedure: NewLabel(Left, Top: Integer; Caption: String): TLabel;

462

API Call:

Scripting > Expand source

463

NewRadioButton

NewRadioButton

Creates a new TRadioButton and sets the Left, Top, Caption and Checked Properties as specified. Do not attempt to destroy or free a TRadioButton created
withNewRadioButton.

Syntax:

Procedure: NewRadioButton(Left, Top: Integer; Caption: String; Checked: Boolean): TRadioButton;

Scripting ?> Expand source

464

Code Reference:

1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor

3. Copy Code into the editor

4. Press run

API Call:

465

Math Functions

Math Functions

DecToEnglis h
DistanceBetweenPointsScale d
DistanceFromlLin e

ExtendLine
GetDistanceFromLin e
GetlntersectPoin t

GetPl|

Max

Min

RoundDow n
DistanceBetweenPoint s
RoundToNeares t

RoundU p
AngleBetweenPointsUnScale d
ParallelLine

Pi

PointOnAngl e

TrimToAre a

DecToEnglish

DecToEnglish

Converts a given dimension into its string representation.

Syntax:

Procedure: DecToEnglish(Feet: Double): String;

API Call:

Scripting

466

> Expand source

DistanceBetweenPointsScaled

DistanceBetweenPointsScaled

Returns the angle between 2 points given by pl and p2 coordinates (based on scale factor for the page).

Syntax:

Procedure: DistanceBetweenPointsScaled(p1X, p1Y, p2X, p2Y: Double): Double;

API Call:

Scripting > Expand source

467

DistanceFromLine

DistanceFromLine

Returns the distance of a point given by p3 is from a line, given by p1 and p2.

Syntax:

Procedure: DistanceFromLine(p1x, ply, p2x, p2y, p3x, p3y: Double): Double;

API Call:

Scripting > Expand source

468

ExtendLine

ExtendLine

Calculates the points to extend a line given by p1 and p2 a given Distance, then returns the new points in variables p3 and p4.

Syntax:

Procedure: ExtendLine(p1x, p1ly, p2x, p2y, Distance: Double; var p3x: Double; var p3y: Double; var p4x: Double; var pdy: Double);

API Call:

Scripting > Expand source

469

GetDistanceFromLine

GetDistanceFromLine

Coming soon

Syntax: Procedure: GetDistancefromLine

API Call:

Scripting

470

> Expand source

GetlIntersectPoint

GetlIntersectPoint

Calculates at what point Line 1, given by p1 and p2, intersects with Line 2, given by p3 and p4, and returns the result point in p5. Returns 1 (True) if the lines intersect

or O (False) if the lines are parallel.

Syntax:

Procedure: GetlintersectPoint(p1x, ply, p2x, p2y, p3x, p3y, p4x, p4y: Double; var p5x: Double; var p5y: Double): Integer;

API Call:

Scripting > Expand source

471

GetPl

GetPI

Gets Pi.

Syntax: Procedure:

GetPl API Call:

Scripting

472

> Expand source

Max

Max

Returns the larger of the values passed.

Syntax:

Procedure: Max(Valuel, Value2: Double): Double;

API Call:

Scripting > Expand source

473

Returns the smaller of the values passed.

Syntax:

Procedure: Min(Valuel, Value2: Double): Double;

API Call:

Scripting

474

> Expand source

RoundDown

RoundDown
Rounds the given value down to the nearest whole number.

Syntax:

Procedure: RoundDown(Val: Double): Integer;

API Call:

Scripting > Expand source

475

DistanceBetweenPoints

DistanceBetweenPoints

Returns the distance between 2 points specified by p1 and p2 coordinates.

Syntax:

Procedure: DistanceBetweenPoints(p1X, p1Y, p2X, p2Y: Double): Double;

API Call:

Scripting > Expand source

476

RoundToNearest

RoundToNearest
Rounds the given value down to the nearest value as defined by precision.

Syntax:

Procedure: RoundToNearest(Val, Precision: Double): Double;

API Call:

Scripting > Expand source

477

RoundUp

RoundUp
Rounds the given value up to the nearest integer.

Syntax:

Procedure: RoundUp(Val: Double): Integer

API Call:

Scripting > Expand source

478

AngleBetweenPointsUnScaled

AngleBetweenPointsUnScaled
Returns the angle between 2 points given by p1 and p2 coordinates.

Syntax:

Procedure: AngleBetweenPointsUnScaled(p1X, p1Y, p2X, p2Y: Double): Double;

API Call:

Scripting > Expand source

479

ParallelLine

ParallelLine

Calculates the points to form a new line parallel line offset Distance from the original, specified by p1 and p2, then returns the new points in variables p3 and p4.

Syntax:

Procedure: ParallelLine(p1x, ply, p2x, p2y, Distance: Double; var p3x: Double; var p3y: Double; var p4x: Double; var p4y: Double);

API Call:

Scripting > Expand source

480

Pi
Pi
Returnsthe numeric value for Pi (3.1415926535897932384626433832795).

Syntax:

Procedure: Pi: Double;

API Call:

Scripting

481

> Expand source

PointOnAngle

PointOnAngle

Calculates a new point given by p1 a given Distance and Angle then returns the result point in p2.

Syntax:

Procedure: PointOnAngle(p1x, p1ly, Angle, Distance: Double; var p2x: double; var p2y: double);

API Call:

Scripting > Expand source

482

TrimToArea

TrimToArea

Trims the ends of a Segment object to the boundaries of the given Area object.

Syntax:

Procedure: TrimToArea(AreaPath, SegmentPath: String);

API Call:

Scripting > Expand source

483

Update Methods

Update Methods

BeginUpdate (2)
BeginFormulaUpdate (2)
CurrentVersion (2)
EndFormulaUpdate (2)
EndUpdate (2)
ImageRefres h
Refreshimag e
NewChangeGroup (2)

PostChanges (2)

484

BeginUpdate (2)

BeginUpdate

Temporarily suspends program updates.

Syntax: Procedure:

BeginUpdate;

API Call:

Scripting

485

> Expand source

BeginFormulaUpdate (2)

BeginFormulaUpdate

Temporarily suspends automatic property calculations.

Syntax:

Procedure: BeginFormulaUpdate;

API Call:

Scripting

486

> Expand source

CurrentVersion (2) currentversion

Returns the current versions of PlanSwift.

Syntax:

Procedure: CurrentVersion: String;

API Call:

Scripting

487

EndFormulaUpdate (2)

EndFormulaUpdate

Ends the temporary suspension of automatic property calculations.

Syntax:

Procedure: EndFormulaUpdate;

API Call:

Scripting

488

> Expand source

EndUpdate (2)

EndUpdate

Ends the temporary suspension of program updates.

Syntax:

Procedure: EndUpdate;

API Call:

Scripting

489

> Expand source

ImageRefresh

ImageRefresh
Refreshes the current screen image. Same as Refreshimage.

Syntax:

Procedure: ImageRefresh;

API Call:

Scripting > Expand source

490

Refreshimage

Refreshimage
Refreshes the current screen image. Same asImageRefresh.

Syntax:

Procedure: Refreshimage

API Call:

Scripting > Expand source

491

NewChangeGroup (2)

NewChangeGroup
Creates a new program change group.

Syntax:

Procedure: NewChangeGroup(AName: String);

API Call:

Scripting > Expand source

492

PostChanges (2)

PostChanges

Post all opened change groups to the program.

Syntax: Procedure: PostChanges;

API Call:

Scripting

493

> Expand source

Windows Controls

Windows Controls

CurrentViewport (2)
FindWindo w
FocusMainWindo w
FocusWindo w
SendKey

SendKeys

494

CurrentViewport (2)

CurrentViewport

Syntax:

Procedure: Coming soon

API Call:

Scripting > Expand source

495

FindWindow

FindWindow

Finds a window based on the given criteria. Returns the window handle if successful or 0 if the window is not found.

Syntax:
Procedure: FindWindow(StartsWith, Contains, Excludes: String; Exact: Boolean): Integer; Contains,

Excludes, and Exact are optional.

API Call:

Scripting > Expand source

496

FocusMainWindow

FocusMainWindow

Put user focus back on application main window.

Syntax: Procedure:

FocusMainWindow;

API Call:

Scripting

497

> Expand source

FocusWindow

FocusWindow

Put user focus back on application main window.

Syntax:

Procedure: FocusWindow(Hwnd: Integer);

API Call:

Scripting

498

> Expand source

SendKey

SendKey
Sends the given KeyCode to the active PlanSwift control. (Same as TypeKey).

Syntax:

Procedure: SendKey(AKey: Integer);

API Call:

Scripting > Expand source

499

SendKeys

SendKeys

Sends a string of keystrokes to the active PlanSwift control.

Syntax:

Procedure: SendKeys(AKeys: String);

API Call:

Scripting

500

> Expand source

User Input

User Input

GetlntersectPoint (2)
GetlLine (2)

GetPoint (2)
GetRect (2)

HitTest

NewPoint (3)
ResultPoint X
ResultPoint Y
ResultPointX 2

ResultPointY 2

501

GetlIntersectPoint (2)

GetlIntersectPoint

Coming soon.

Syntax: Procedure:

GetlntersectPoint

API Call:

Scripting ’> Expand source

502

GetlLine (2)

GetLine

Prompts the user to click 2 points on the activeplan to define a line then returns the coordinates in p1 and p2. Returns 1 if the function is successful or 0 if the user
cancels.

Syntax:

Procedure: GetLine(Var p1x: double; Var ply: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

Scripting > Expand source
API Call:

503

GetPoint (2)

GetPoint

GetPoint prompts the user to select a point by clicking on the activeplan, then returns the point coordinates in X and Y. If the user clicks a valid point, the result is 1
(True); otherwise, the result is O (False).

Syntax:

Procedure: GetPoint(Var X: Double; Var Y: Double; Hint: String): Integer;

Scripting > Expand source
API Call:

504

GetRect (2)

GetRect

Prompts the user to click 2 points on the active plan to define a rectangle, then returns the coordinates in p1 and p2. Returns 1 if the function is successful or 0 if the user
cancels.

Syntax:

Procedure: GetRect(Var p1x: double; Var ply: double; Var p2x: double; Var p2y: double; Hint: String): Integer;

Scripting > Expand source
API Call:

505

HitTest

HitTest

Coming soon

Syntax: Procedure:

HitTest API Call:

Scripting

506

> Expand source

NewPoint (3)

NewPoint

Adds a new point to /temPath at the X, Y coordinates. If the Item is not found or is not a drawing object, this procedure will be ignored.

Syntax:

Procedure: NewPoint(ItemPath: String; X, Y: Double);

API Call:

Scripting > Expand source

507

ResultPointX

ResultPointX
Returns the x coordinate from the last Getpoint, Getline or GetRect.

Syntax:

Procedure: ResultPointX: Double;

API Call:

Scripting > Expand source

508

ResultPointY

ResultPointY
Returns the y coordinate from the last Getpoint, Getline or GetRect.

Syntax:

Procedure: ResultPointY: Double;

API Call:

Scripting > Expand source

509

ResultPointX2

ResultPointX2

Returns the x2 coordinate from the last Getline or GetRect.

Syntax:

Procedure: ResultPointX2: Double;

API Call:

Scripting

510

> Expand source

ResultPointY2

ResultPointY2

Returns the y2 coordinate from the last Getline or GetRect.

Syntax:

Procedure: ResultPointY2: Double;

API Call:

Scripting

511

> Expand source

ltems

Items

BringToFron t
ChildCount (2)
Childltem (2)
ClearSelectio n
Copyltem (2)
Deletelte m
Getltem (2)
GetSelectionlLis t
IsType

ListData
MoveltemTo
Newltem (3)
ParentltemGUI D
Parentltem (2)
Selectedltem (2)
ShowLabel

StartRecordin g

SelectedPage (2)

SendToBac k

SelectedPageGUI D

512

BringToFront

BringToFront

Brings the given item to the forefront, above all other items.

Syntax:

Procedure: BringToFront(ItemPath: String);

API Call:

Scripting

513

> Expand source

ChildCount (2)

ChildCount
Returns the number of child items for the item.

Syntax:

Procedure: ChildCount(ItemPath: String): Integer;

API Call:

Scripting > Expand source

514

Childltem (2)

Childltem

Returns the full path of the child item at position Index in the list. If the child item does not exist, an empty string is returned.

Syntax:

Procedure: Childltem(IltemPath: String; Index: Integer): String;

API Call:

Scripting > Expand source

515

ClearSelection

ClearSelection

Un-selects all currently selected items.

Syntax: Procedure:

ClearSelection;

API Call:

Scripting

516

> Expand source

Copyltem (2)

Copyltem

Creates a copy of /tem under Parent and returns the ID of the new item. If IncludeChildren is true, child items will be copied also. If SkipSections is true, digitized sections

will be duplicated also.

Syntax:

Procedure: Copyltem(Item: String; Parent: String; IncludeChildren: boolean; SkipSections: boolean): String;

Scripting > Expand source
API Call:

517

Deleteltem

Deleteltem
Deletes the given item from the system. Returns 1 (True) is successful, otherwise 0 (False).

Syntax:

Procedure: Deleteltem(ItemPath: String): Integer;

API Call:

Scripting > Expand source

518

Getltem (2)

Getltem
Returns the item given by FullPath. Returns Nil if the object is not found.

Syntax:

Procedure: Getltem(sltemPath: string): string;

API Call:

Scripting > Expand source

519

GetSelectionlList

GetSelectionlList

Returns a list of order list of GUIDs assigned to sections.

Syntax:

Procedure: GetSelectionList;

API Call:

Scripting

520

> Expand source

IsType

IsType
Returns 1 (True) if the item is of type given, otherwise returns O (False).

Syntax:

Procedure: IsType(ltemPath, Type: String): Integer;

API Call:

Scripting > Expand source

521

ListData

ListData

Coming soon

Syntax: Procedure:

ListData; API Call:

Scripting

522

> Expand source

MoveltemTo

MoveltemTo

Returns True if the given item is successfully moved to a new parent item. MoveAction is optional, can be Above, Below or IntoTop; otherwise will default to IntoBottom.

Syntax:

Procedure: MoveltemTo(ItemPath, NewParent, MoveAction: String): Boolean;

Scripting > Expand source

523

API Call:

524

Newltem (3)

Newltem

Creates a new child item for the given item. IltemType is optional and allows you to set the type of item to create. Name is optional and sets the name for the new child
item.

Syntax:

Procedure: Newltem(ltemPath, ItemType, Name: String): String;

API Call:

Scripting > Expand source

525

ParentltemGUID

ParentltemGUID

Returns the GUID (globally unique identifier) of the Parent Item for the given item.

Syntax:

Procedure: ParentltemGUID(ItemPath: String): String;

API Call:

Scripting ’> Expand source

526

Parentltem (2)

Parentltem

Returns the parent item for the given item. If the function fails an empty string is returned.

Syntax:

Procedure: Parentltem(ItemPath: String): String;

API Call:

Scripting > Expand source

527

Selectedltem (2)

Selectedltem

Returns the full path to the currently selected item. If no item is selected an empty string is returned.

Syntax:

Procedure: Selecteditem: String;

API Call:

Scripting ’> Expand source

528

Showlabel

ShowlLabel

Sets the visibility of an item's label.

Syntax:

Procedure: ShowLabel(ltemPath: String; Visible: Boolean);

API Call:

Scripting > Expand source

529

StartRecording

StartRecording

ItemPath is optional. If provided, ltemPath must be a digitizer object. If <itempath< i=""> is omitted, Planswift will attempt to record the currently selected item, if any.

Returns 1 (True) if successful, otherwise returns O (False).

Syntax:

Procedure: StartRecording(ltemPath: String): Integer;

API Call:

Scripting > Expand source

530

SelectedPage (2)

SelectedPage

Returns the full path to the currently selected page. If no page is selected, an empty string is returned.

Syntax:

Procedure: SelectedPage: String;

API Call:

Scripting > Expand source

531

SendToBack

SendToBack

Sends the given item to the back, behind all other items.

Syntax:

Procedure: SendToBack(ItemPath: String);

API Call:

Scripting

532

> Expand source

SelectedPageGUID

SelectedPageGUID

Returns the GUID for the currently selected page. If no page is selected returns an empty string.

Syntax:

Procedure: SelectedPageGUID: String;

API Call:

Scripting > Expand source

533

Selectltem

Selectltem

Set the given items selected status to Selected. Returns True if successful, False if the operation failed.

Syntax:

Procedure: Selectitem(ItemPathorGUID: string; Selected: boolean): Boolean;

API Call:

Scripting ’> Expand source

534

ZoomToltem

ZoomToltem

Redisplays the current view to a selected takeoff item on the page. A value can be assigned to allow for user sizeable margins around the viewed object (default = 30).

Syntax:

Procedure: ZoomToltem(sitemPath: string; Marginsize: string); integer;

API Call:

Scripting > Expand source

535

Sections

Sections

AddPoint

DeletePoin t
DrawOneWaylayout (2)
DrawTwoWaylayout (2)
GetOneWaylayou t
GetTwoWaylayout (2)
NewSection (3)
NewSubtractSectio n
PointX

PointY

PointCount (3)

SetPoint (3)

536

AddPoint

AddPoint

Adds a new point given by X, Y to the item. ItemPath must specify an existing digitizer object or the procedure fails.

Syntax:

Procedure: AddPoint(IltemPath: String; X, Y: Double);

API Call:

Scripting > Expand source

537

DeletePoint

DeletePoint

Deletes the point at position Index.

Syntax:

Procedure: DeletePoint(ItemPath: String; Index: Integer);

API Call:

Scripting > Expand source

538

DrawOneWayLlayout (2)

DrawOneWaylLayout

Function used to perform segment layouts at a specified span, horizontal run, as well as spacing.

Syntax:

Procedure: DrawOneWayLayout(altem: string; oSpanPnt1X; oSpanPnt1Y, oSpanPnt2X, oSpanPnt2Y, oRunPnt1X, oRunPnt1Y, oRunPnt2X , oRunPnt2Y: double;
bincludeFirst, bincludeLast: boolean; nSpacing: double; aAreaSection: string): boolean;

Arguments:
Altem: String
Specifies the area section to assign the layout segments to.

SpanLineX and SpanLineY: Double Direction
span start and endpoint.

RunLineX and RunLineY: Double
Horizontal (side to side) run direction of area to populate. Requires a start and endpoint;

bincludeFirst: Boolean
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludelast: Boolean
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: String (optional parameter)

Scripting > Expand source

539

API Call:

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID (globally unique identifier) to the area section. Or, empty
double-quotes for no trim/extending required.

DrawTwoWayLayout (2)

DrawTwoWaylLayout

Function used to perform segment layouts (in 2 directions) at a specified span, horizontal run, as well as spacing.

Syntax:

Procedure: DrawTwoWayLayout(altem: string; oSpanPnt1X; oSpanPnt1Y, oSpanPnt2X, oSpanPnt2Y, oRunPnt1X, oRunPnt1Y, oRunPnt2X , oRunPnt2Y: double;
bincludeFirst, bincludeLast: boolean; nSpacing: double; aAreaSection: string): boolean;

Arguments:
Altem: String

Specifies the area section to assign the layout segments to.

SpanLineX and SpanLineY: Double Direction
span start and endpoint.

RunLineX and RunLineY: Double
Horizontal (side to side) run direction of area to populate. Requires a start and endpoint;

bincludeFirst: Boolean
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludelast: Boolean
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

Scripting

> Expand source

540

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: String (optional parameter)

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area section. Or, empty double-quotes for no
trim/extending required.

API Call:

GetOneWaylLayout

GetOneWaylLayout

Function used to perform segment layouts at a specified span, horizontal run, as well as spacing.

Syntax:

Procedure: GetOneWayLayout(altem: string; sSpanHint, sRunHint: string; bincludeFirst, bincludeLast: boolean; nSpacing: double; aAreaSection: string): boolean;

Arguments:
Altem: String
Specifies the area section to assign the layout segments to.

sSpanHint: String
Hint message displayed on mouse cursor indicating to pick the "span" direction.

sRunHint: String
Hint message displayed on mouse cursor indicating to pick the "run" direction.

bincludeFirst: Boolean
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

Scripting > Expand source

541

bincludeLast: Boolean
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double

Specifies the "run" spacing used when laying out segment objects.

AArea: String (optional parameter)

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area section. Or, empty double-quotes for no
trim/extending required.

API Call:

GetTwoWaylayout (2)

GetTwoWaylLayout

Function used to perform segment layouts (in 2 directions) at a specified span, horizontal run, as well as spacing.

Syntax:

Procedure: GetTwoWayLayout(altem: string; sSpanHint, sRunHint: string; bincludeFirst, bincludeLast: boolean; nSpacing: double; aAreaSection: string): boolean;

Arguments:
Altem: String
Specifies the area section to assign the layout segments to.

sSpanHint: String
Hint message displayed on mouse cursor indicating to pick the "span" direction.

sRunHint: String
Hint message displayed on mouse cursor indicating to pick the "run" direction.

Scripting > Expand source

542

bincludeFirst: Boolean
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludelast: Boolean
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: String (optional parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or GUID to the area section. Or, empty double-quotes for no
trim/extending required.

API Call:

NewSection (3)

NewSection

Adds a new section to a digitized type item and returns the full path to the new section. If ParentPath does not exist, or is not a digitzer item, this function fails and
returns an empty string. SectionName is optional.

Syntax:

Procedure: NewSection(ParentPath, SectionName: String): String;

API Call:

Scripting > Expand source

543

NewSubtractSection

NewSubtractSection

Subtracts a new section from a digitized type item and returns the full path to the new section. If ParentPath does not exist or is not a digitzer item, this function fails and
returns an empty string. SectionName is optional.

Syntax:

Procedure: NewSubtractSection;

API Call:

Scripting > Expand source

544

PointX

PointX

Returns the X coordinate of the point given by Index. If this function fails the return value is -1.

Syntax:

Procedure: PointX(IltemPath: String; Index: Integer): Double;

API Call:

Scripting > Expand source

545

PointY

PointY

Returns the Y coordinate of the point given by Index. If this function fails the return value is -1.

Syntax:

Procedure: PointY(ItemPath: String, Index: Integer): Double;

API Call:

Scripting > Expand source

546

PointCount (3)

PointCount
Returns the number of points recorded for the section.

Syntax:

Procedure: PointCount(ItemPath: String): Integer;

API Call:

Scripting > Expand source

547

SetPoint (3)

SetPoint
Sets the X, Y coordinates of the given point.

Syntax:

Procedure: SetPoint(ItemPath: String; Index: Integer; X, Y: Double);

API Call:

Scripting > Expand source

548

Properties

Properties

DeletePropert y
GetGUIDfromPat h
GetJobTotal (2)
GetPropertyCoun t
GetPropertyFormul a
GetPropertyResul t
GetResultAsBoolea n
GetResultAsFloa t
GetResultAsIntege r
GetResultAsStrin g
GetPropertyNam e
GetPropertyAttribut e
GetPropertyAttributeLis t
SetPropertyAttribut e

SetPropertyFormula (3)

DeleteProperty

DeleteProperty

Deletes a property from the item.

Syntax:

Procedure: DeleteProperty(IltemPath, PropertyName: String);

API Call:

Scripting > Expand source

549

GetGUIDfromPath

GetGUIDfromPath

Returns the GUID for the item based upon the path for the item.

Syntax:

Procedure: GetGUIDfromPath;

API Call:

Scripting

550

> Expand source

GetJobTotal (2)

GetlJobTotal

Retrieves the total number of items of a certain type in the entire opened job.

Syntax:

Procedure: GetlobTotal(sPropertyname: string; sitemType: string = "): Double;

API Call:

Scripting > Expand source

551

GetPropertyCount

GetPropertyCount

Returns the number of properties for the given item.

Syntax:

Procedure: GetPropertyCount(ltemPath: String): Integer;

API Call:

Scripting > Expand source

552

GetPropertyFormula

GetPropertyFormula

Returns the formula for the given property.

Syntax:

Procedure: GetPropertyFormula(ltemPath, PropertyName: String): String;

API Call:

Scripting > Expand source

553

GetPropertyResult

GetPropertyResult

Returns the calculated result of the given property as a variant.

Syntax:

Procedure: GetPropertyResult(ItemPath, PropertyName: String): Variant;

API Call:

Scripting > Expand source

554

GetResultAsBoolean

GetResultAsBoolean

Returns the calculated result of the given property.

Syntax:

Procedure: GetResultAsBoolean(ItemPath, PropertyName: String; Default: Boolean): Boolean;

API Call:

Scripting > Expand source

555

Default is an optional return value for the function in case of failure. If Default

GetResultAsFloat

GetResultAsFloat
Returns the calculated result of the given property. is not provided it defaults to 0.

Syntax:

Procedure: GetResultAsBoolean(ItemPath, PropertyName: String; Default: Double): Double;

API Call:

Scripting > Expand source

556

Default is an optional return value for the function in case of failure. If Default

GetResultAsInteger

GetResultAsInteger

Returns the calculated result of the given property. is not provided it defaults to 0.

Syntax:

Procedure: GetResultAsinteger(ItemPath, PropertyName: String; Default: Integer): Integer;

API Call:

Scripting > Expand source

557

Default is an optional return value for the function in case of failure. If Default

GetResultAsString

GetResultAsString

Returns the calculated result of the given property. is not provided it defaults to an empty string.

Syntax:

Procedure: GetResultAsString(IltemPath, PropertyName: String; Default: String): String;

API Call:

Scripting > Expand source

558

GetPropertyName

GetPropertyName
Returns the name of the nth property in the property list.

Syntax:

Procedure: GetPropertyName(ltemPath: String; Index: Integer): String;

API Call:

Scripting > Expand source

559

GetPropertyAttribute

GetPropertyAttribute
Returns the value of the given Item Property Attribute.

Syntax:

Procedure: GetPropertyAttribute(ltempath, PropertyName, AttributeName: String): String;

API Call:

Scripting > Expand source

560

GetPropertyAttributelList

GetPropertyAttributelList
Returns the value of the given Item Property Attribute.

Syntax:

Procedure: GetPropertyAttributelist(Itempath, PropertyName: String): String;

API Call:

Scripting > Expand source

561

SetPropertyAttribute

SetPropertyAttribute
Attempts to set the Item Property Attribute to the given Value.

Syntax:

Procedure: SetPropertyAttribute(ltemPath, PropertyName, AttributeName, Value: String);

API Call:

Scripting > Expand source

562

SetPropertyFormula (3)

SetPropertyFormula
Sets the given property to the value specified if possible.

Syntax:

Procedure: SetPropertyFormula(ltemPath, PropertyName: String; Value: Variant; Type: String);

API Call:

Scripting > Expand source

563

Misc

Misc

BeepAcknowledge d
CompareVersion (2)
CurrentUse r
ExecuteScript (3)
GetActionlo g
GetPairedValu e
GetResult
IsUnlocked (2)
KeyDown

KeyUp

License

OpenlJob (2)
NewBlankPage (2)
SetRecordMod e
SetlmagePropertyFromFil e
SetEncrypte d

RGB
ReapplyAllOfTyp e
OpenlJobEx (2)

SetResult

BeepAcknowledged

BeepAcknowledged

Sends an instruction to the computer to trigger an audible beep.

Syntax:

Procedure: BeepAcknowledged;

API Call:

Scripting > Expand source

564

CompareVersion (2)

CompareVersion

Compares two different versions of PlanSwift.

Syntax:

Procedure: CompareVersion(argl, arg2): integer;

API Call:

Scripting > Expand source

565

CurrentUser

CurrentUser

Returns the username of the current user.

Syntax: Procedure: CurrentUser:

String

API Call:

Scripting > Expand source

566

ExecuteScript (3)

ExecuteScript

Executes the script property PropertyPath and returns the result as a variant. Paramx is the optional string parameters to pass to the script. Failure to pass required

parameters could lead to errors or failure. All scripts should check for invalid parameters and exit gracefully.

Syntax:

Procedure: ExecuteScript(PropertyPath, param1, param2, param3, param4, param5, paramé, param7, param8, param9: String;): Variant;

API Call:

Scripting > Expand source

567

GetActionlLog

GetActionLog

Returns to a string the entire contents of the application Action Log.

Syntax:

Procedure: GetActionLog;

API Call:

Scripting

568

’> Expand source

GetPairedValue

GetPairedValue

Passed a search string and a set of paired strings, the result will be the value assigned to the search string.

Syntax:

Procedure: GetPairedValue(sSearchStr: string; sStringSet: string): string;

API Call:

Scripting > Expand source

569

GetResult

GetResult

Coming soon. Returns the calculated result from the given property ???.

Syntax:

Procedure: GetResult;

API Call:

Scripting > Expand source

570

IsUnlocked (2)

IsUnlocked

Checks the product activation status of a plugin. If AllowUnlock is true the user is prompted to Activate if needed.

Syntax:

Procedure: IsUnlocked(AProduct: String; AMajorVer: Integer; AMinorVer: Integer; AllowUnlock: Boolean): Boolean;

API Call:

Scripting > Expand source

571

KeyDown

KeyDown

Pushes a Keydown event to PlanSwift.

Syntax: Procedure:

KeyDown;

API Call:

Scripting

572

> Expand source

KeyUp

KeyUp

Pushes a Keyup event to PlanSwift.

Syntax: Procedure:

KeyUp;

API Call:

Scripting

573

> Expand source

License

License

Coming soon

Syntax: Procedure:

License; API Call:

Scripting

574

> Expand source

Openlob (2)

OpenJob

Opens the job specified by JobPath. Returns True if successful, false if the job could not be found or opened.

Syntax:

Procedure: OpenJob(JobPath: String): Boolean;

API Call:

Scripting > Expand source

575

NewBlankPage (2)

NewBlankPage

Creates a blank page in the current job and returns the Page Item that was created.

Syntax:

Procedure: NewBlankPage(AName: string; AWidth, AHeight, ADPI: integer; AScale: string): string;

API Call:

Scripting > Expand source

576

SetRecordMode

SetRecordMode

Set the digitizer record mode to either "Box" mode or "Point to Point" mode. "Box" is the only valid setting; anything else will set the mode to "Point to Point".

Syntax:

Procedure: SetRecordMode(Mode: String);

API Call:

Scripting > Expand source

577

SetimagePropertyFromFile

SetlmagePropertyFromFile

Assigns an image to a property within an item. Item is passed with a filespec parameter.

Syntax:

Procedure: SetimagePropertyFromFile(sltemPath: string; sPropertyltem: string; sFilespec: string): integer;

API Call:

Scripting > Expand source

578

SetEncrypted

SetEncrypted

Sets encryption on scripted plugins.

Syntax: Procedure:

SetEncrypted;

API Call:

Scripting

579

> Expand source

RGB

RGB

Passed RGB integers will return the "color" integer in ARGB format.

Syntax:

Procedure: RGB(nRed: integer; nGreen: integer; nBlue: integer): integer;

API Call:

Scripting > Expand source

580

ReapplyAllOfType

ReapplyAllOfType
Coming soon.

Syntax:

Procedure: ReapplyAllOfType(sType: string);

API Call:

Scripting > Expand source

581

OpenJobEx (2)

OpenJobEx

Shows the Open Job Dialog for the user to select a job to open.

Syntax:

Procedure: OpenJobEx;

API Call:

Scripting

582

> Expand source

SetResult

SetResult

Assigns the result of the script to the passed value.

Syntax:

Procedure: SetResult(nResult: string);

API Call:

Scripting

583

> Expand source

StopRecording

StopRecording
Forces a termination on any mouse takeoff recordings that got started.

Syntax:

Procedure: StopRecording;

API Call:

Scripting > Expand source

584

Dialogs

Dialogs

EditScriptPropert y
Editltem

Custom Dialog s
MessageDialo g

My Color Dialo g
ScriptMessageDialo g

SelectltemDialog (2)

585

EditScriptProperty

EditScriptProperty

Loads the specified script property into the script editor and displays to the user for editing.

Syntax:

Procedure: EditScriptProperty(ltemPath, PropertyName: String);

API Call:

Scripting > Expand source

586

Editltem

Editltem

Loads the given item into the Item Editor, then displays to the user for editing. If /temPath does not exist, or if the user cancels the dialog, the function fails and returns

False.

Syntax:

Procedure: Edititem(ItemPath: String): Boolean;

API Call:

Scripting > Expand source

587

Custom Dialogs

Custom Dialogs

One of the great new features in PlanSwift9 is the ability to create reusable dialogs using stored items and properties; simply design an item with only the desired
properties set as Input.

Scripting > Expand source

588

Syntax:

Procedure: Coming soon

API Call:

589

MessageDialog

MessageDialog

Displays a dialog with a corresponding message.

590

Syntax: Procedure:

MessageDialog();

API Call:

Scripting > Expand source

591

My Color Dialog

My Color Dialog

Coming soon

592

Syntax: Procedure: Coming

soon

API Call:

Scripting > Expand source

593

ScriptMessageDialog

ScriptMessageDialog

Coming soon

594

Syntax: Procedure: ScriptMessageDialog;

API Call:

Scripting > Expand source

595

SelectltemDialog (2)

SelectltemDialog

Displays the ItemDialog with specified parameters that were passed as arguments.

596

Syntax:

Procedure: SelectitemDialog(AHeader: String = ''; ACaption: String = "; Rootltem: String = ");

API Call:

Scripting > Expand source

597

Global Variables and Constants

Global Variables and Constants

Coming soon

598

Syntax:

Procedure: Coming soon

API Call:

Scripting > Expand source

599

Developer Docs -- Freshdesk Xfer

Developer Docs—Freshdesk Xfer

600

COM Object Model - Events -- xfer from Freshdesk

COM Object Model Events — Transfer from FreshDesk

601

OnDoneRecording - FD

OnDoneRecording

Called when recording of a section or the stop button pressed.

Declaration: ???

API Calls
Delphi
Using lltem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

602

VB/VBA (OLE)

603

1631
OnJobOpen - FD

OnJobOpen

Declaration: OnJobOpen;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

604

Triggered when a new job is opened in PlanSwift.

> Expand source

Item Object Model
1

Using the PlanSwift Object Model

1633
OnNewltem - FD

OnNewltem

Triggered when a new item, specified by ItemPath, is created.
Declaration: OnNewltem(ltemPath: String);

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

1635
OnSelectionChanged - FD

OnSelectionChanged

Triggered when the PlanSwift application changes focus to a new "selectable" item in the editor.
Declaration: OnSelectionChanged;

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

606

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

1637

OnltemDelete - FD

OnltemDelete

Triggered when an item is deleted. ItemPath specifies which item was deleted.

Declaration: OnltemDelete(ltemPath: String);

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1639
608

OnltemChange - FD

OnltemChange
Triggered when an item, specified by ItemPath has been changed.

Declaration: OnltemChange(ltemPath: String);

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1641

610

OnCopyltem - FD

OnCopyltem

Triggered when the PlanSwift application copies an item.

Declaration: OnCopyltem;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

1643
OnSelectedPageChange - FD

OnSelectedPageChange

Triggered when the PlanSwift application changes to a "new" page in the job.

> Expand source

Declaration: OnSelectedPageChange;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

1645
OnNewlob - FD

Using the PlanSwift Object Model
1

612

OnNewlJob

Triggered when the PlanSwift application starts a "new" job.

Declaration: OnNewlob;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

1647
OnJobClose - FD

OnJobClose

Triggered when the current job closes.

Declaration: OnJobClose;

Using the PlanSwift Object Model
1

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

1649

614

OnClose - FD

OnClose

Triggered when the PlanSwift application closes.

Declaration: OnClose;

API Calls
Delphi

Using litem Object Model
1

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

1651
OnDoneRecordingDigitizer - FD

OnDoneRecordingDigitizer

Triggered when an item section finishes recording.

Declaration: OnDoneRecordingDigitizer(ItemPath: String);

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

616

Item Object Model
1

Using the PlanSwift Object Model
1

1653
OnSelectedSelectionChanged - FD

OnSelectedSelectionChanged

Triggered when the PlanSwift application changes to a new selection.

Declaration: OnSelectedSelectionChanged;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

> Expand source

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

1655

OnDigitizerSectionChanged - FD

OnDigitizerSectionChanged

Declaration: OnDigitizerSectionChanged;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Triggered when the PlanSwift application focuses a new section item.

618

Item Object Model
1

Using the PlanSwift Object Model
1

1657
COM Object Model - Procedures -- Xfer from Freshdesk

COM Object Model - Procedures — Xfer from Freshdesk

BeginUpdate - FD

BeginUpdate

Temporarily suspends program updates.

Syntax:

Function:
o
B

e N e

API Calls
Delphi

Using litem Object

IPlanswift.BeginUpdate; Code Reference:

Create a New Forms Application

Add a Planswift to the References (Planswift_TlIb)
Add a button to the form

Copy code below to the onclick event of the button
Compile and run

Model

Using PlanSwift Object Model

1

C#

Using litem Object
1

Model

Using PlanSwift Object Model

1

VB/VBA (OLE)

Using litem Object
1

Model

Using PlanSwift Object Model

1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

> Expand source

Item Object Model

620

Using the PlanSwift Object Model
1

621

SetPropertyFormula - FD

SetPropertyFormula

Sets the Items Property Formula. (note) this will also create a new Property with the default a default Type as Text if the property does not exist.

Syntax:

Procedure: IPlanswift.SetPropertyFormula (PropertyName,

Code Reference:

¢ 1 Create a New Forms Application
2
¢ 3. Add a button to the form
* 4
* s Compile and run
API Calls

Delphi

Using litem Object Model

Using PlanSwift Object Model
1

CH

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Add a Planswift to the References (Planswift_Tlb)

Copy code below to the onclick event of the button

622

value:

> Expand source

Item Object Model
1

Using the PlanSwift Object Model
1

623

Using the PlanSwift Object Model
1

About - FD

About
Shows the About Planswift Dialog Syntax:
Procedure: IPlanswift.About; Code Reference:

1 Create a New Forms Application

2 Add a Planswift to the References (Planswift_TlIb)
* 3. Add a button to the form

4

5

Copy code below to the onclick event of the button
Compile and run

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model

624

> Expand source

Pascal Scripting

Item Object Model

625

Using the PlanSwift Object Model
1

OpenlobEx - FD

OpenlJobEx
Opens the "Open Job" Dialog Box once the "Job Dialog" box appears. The com will suspend until either a job is opened or the Cancel button is pressed.
Syntax:
Procedure: IPlanSwift.OpenJobEx;
Code Reference:

1. Create a New Forms Application
2. Add a Planswift to the References (Planswift_Tlb)
® 3. Adda button to the form
4. Copy code below to the onclick event of the button
5

Compile and run

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

626

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

627

Using the PlanSwift Object Model

1

BeginFormulaUpdate - FD

BeginFormulaUpdate

Signals the beginning of a formula change operation.

Syntax:

Procedure: BeginFormulaUpdate; Code Reference:

API Calls

Delphi

1
2
3.
4
5

Create a New Forms Application

Add a Planswift to the References (Planswift_TIb)
Add a button to the form

Copy code below to the onclick event of the button
Compile and run

Using litem Object Model

Using PlanSwift Object Model

1

C#

Using litem Object Model

1

Using PlanSwift Object Model

1

VB/VBA (OLE)

Using lltem Object Model

1

Using PlanSwift Object Model

1

Item Object Model
1

Root Object Model

628

> Expand source

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

629

EndUpdate - FD

EndUpdate
Calls the PlanSwift EndUpdate procedure Syntax: Procedure: PlanSwift.EndUpdate; Code

Instruction:

a. Create a New Project
b. Add Planswift Reference Usage

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

630

SetPoint - FD

SetPoint
Sets the digitizer point specified by Pointindex to the given X, Y coordinates.
Syntax:

Procedure: IPlanswift.SetPoint (PointIndex: Integer; X, Y: Double);

Code Reference:

¢ L Create a New Forms Application
2 Add a Planswift to the References (Planswift_Tlb)
¢ 3. Add a button to the form
¢ 4 Copy code below to the onclick event of the button
* s Compile and run
API Calls

Delphi

Using litem Object Model

1

2 procedure TForml.GetSetPoint (sender: TObject);

3 var

4 ps: IPlanSwift;

5 area,sect: IItem;

6 xs,cx,cy: Extended;

7 pgw,pgh, plx,ply, p2x,p2y,p3x,p3y,p4x,p4y: Extended;

g begin

9 ps := coPlanswift .Create;
10 area := ps.GetItem('Job\Takeoff');
11 area := area.Newltem('Area', 'SetPointArea'):;
12 sect := area.NewSection('SetPoint Area Section'):;
13 pgw := ps.SelectedPage .GetPropertyResultAsInteger ('PageWidth',b0);
14 pgh := ps.SelectedPage .GetPropertyResultAsInteger ('PageHeight' ,b0);
15 xs := ps.SelectedPage .GetPropertyResultAsFloat('ScaleX',0);
16 cx = pgw /2;
17 cy := pgh /2;

18 plx := cx - 20 * xs;

19 ply := cy - 10 * xs;
20 sect .NewPoint (plx,ply);
21 p2x := cx + 10 * XS;
22 p2y := ply;
23 sect .NewPoint (p2x,p2y) ;
24 p3x = p2x;
25 p3y := cy + 10 * xs;
26 sect .NewPoint (p3x,p3y) ;
27 pé4x := cx - 10 * xs;
28 pdy := p3y;
29 ps.NewPoint (sect .GUID, p4x,p4dy);

30 ShowMessage ('Now will fix the first point by using set point');
31 plx := cx - 10 * XS;
32 ps.SetPoint (sect .guid, 0,plx,ply);

33

end;

Using PlanSwift Object Model
1

CH

Using litem Object Model

631

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

EndFormulaUpdate - FD

EndFormulaUpdate

Signals an end to the formula update operation Syntax:
Procedure: EndFormulaUpdate
Code Reference:

1. Create a New Forms Application

2. Add a Planswift to the References (Planswift_Tlb)
3. Add a button to the form

4. Copy code below to the onclick event of the button
5. Compile and run

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model
1

633

CancelTool - FD

CancelTool

Cancels the currently active tool in PlanSwift.
Syntax:

Procedure: IPlanSwift.CancelTool; Code

Reference:
1. Create a New Forms Application
2. Add a Planswift to the References (Planswift_TIb)
3. Add a button to the form
4. Copy code below to the onclick event of the button
5. Open Planswift and select a digitizer object
6. Compile and run

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model
1

635

Closelob - FD

Closelob

Closes the currently opened job.

Syntax:

Procedure: IPlanswift.CloseJob; Code Reference:

uohw N e

Create a New Forms Application

Add a Planswift to the References (Planswift_Tlb)
Add a button to the form

Copy code below to the onclick event of the button
Compile and run

API Calls
Delphi
Using lltem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

636

Using the PlanSwift Object Model
1

Item Object Model

637

PostChanges - FD

PostChanges

Post changes made since call to NewChangeGroup. (See New Change Group).
Syntax:

Reference: IPlanswift.PostChanges; Code

Reference:
¢ 1. Create a New Forms Application
c 2 Add a Planswift to the References (Planswift_Tlb)
* 3. Add a button to the form
* 4 Copy code below to the onclick event of the button
* s Compile and run

API Calls

Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

638

Item Object Model

639

Using the PlanSwift Object Model
1

NewPoint - FD

NewPoint

Creates a new digitizer point at the X, Y coordinates.

Syntax:

Procedure: IPlanswift.NewPoint (X, Y: Double);

Code Reference:

¢ 1 Create a New Forms Application
2. Add a Planswift to the References (Planswift_Tlb)
* 3. Add a button to the form
* 4 Copy code below to the onclick event of the button
* 5. Compile and run
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

640

Pascal Scripting

Item Object Model

641

Using the PlanSwift Object Model
1

NewChangeGroup - FD

NewChangeGroup

Starts a new change group. This will start the store of all com events taking place as an undo point until a postchages event is called (See Post Changes).

Syntax:

Procedure: NewChangeGroup (GroupName: String);

Code Reference:

1 Create a New Forms Application
¢ 2. Add a Planswift to the References (Planswift_Tlb)
3. Add a button to the form
* 4 Copy code below to the onclick event of the button
* 5. Compile and run
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

642

Pascal Scripting

Item Object Model

643

COM Object Model - Functions -- Xfer from Freshdesk

COM Object Model - Functions — Xfer from Freshdesk

644

SaveScreenShot - FD

SaveScreenShot

Save a screenshot of the active monitor to a specified filespec.

Syntax:

Code Reference:

1
2.
¢ 3.
4

API Calls
Delphi

Using litem Object

Function: SaveScreenShot (const FileName:

Create a New Form application

Add a button to the form

Add Planswift to reference (Planswift9_tlb in the uses)
Copy code to button onclick event

Model

Using PlanSwift Object Model

1

C#

Using litem Object
1

Model

Using PlanSwift Object Model

1

VB/VBA (OLE)

Using litem Object
1

Model

Using PlanSwift Object Model

1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

WideString;

Prompt:

WordBool) :

WordBool;

> Expand source

Item Object Model

645

Using the PlanSwift Object Model
1

646

GetRect - FD

GetRect
Prompts the user to click 2 points on the active plan to define a rectangle, then returns the coordinates in p1 and p2.
Returns 1 if the function is successful or 0 if the user cancels.
Syntax:
Function: GetRect (Varplx: double; Varply: double; Varp2x: double; Varp2y: double; Hint: String): Integer;

Code Reference:

1 Create a New Form application

2 Add a button to the form

¢ 3. Add Planswift to reference (Planswift9_tlb in the uses)
4

Copy code to button onclick event

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

647

Using the PlanSwift Object Model
1

648

GetLine - FD

Getline

Prompts the user to

click 2 points on the active plan to define a line then returns the coordinates in p1 and p2.

Returns 1 if the function is successful or 0 if the user cancels.

Syntax:

Function:

Code Reference:

1
2.
¢ 3.
!

API Calls
Delphi

Using litem Object

GetLine (const ToolHint: WideString): ILine;

Create a New Form application

Add a button to the form

Add Planswift to reference (Planswift9_tlb in the uses)
Copy code to button onclick event

Model > Expand source

Using PlanSwift Object Model

1

C#

Using litem Object
1

Model

Using PlanSwift Object Model

1

VB/VBA (OLE)

Using litem Object
1

Model

Using PlanSwift Object Model

1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

649

Using the PlanSwift Object Model
1

650

GetPropertyResult - FD

GetPropertyResult
Returns the calculated result from the given property.
Syntax:

Function: GetPropertyResult (ItemPath, PropertyName: String): Variant;

Code Reference:

1 Navigate to Plugin Store->Tool Manager and create a new Plugin
2 Set the plugin type to Script Code and open the Editor
¢ 3. Copy Code into the editor
4 Press run
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

651

Using the PlanSwift Object Model
1

652

1694

CompareVersion - FD

CompareVersion

Compares 2 different versions of PlanSwift.

Function:

Syntax:
1
¢ 2
¢ 3.
4
API Cals
Delphi

CompareVersion; Code Reference:

Create a New Form application
Add a button to the form
Add Planswift to reference (Planswift9_tlb in the uses)

Copy code to button onclick event

Using litem Object Model

Using PlanSwift Object Model

1

C#

Using litem Object Model

1

Using PlanSwift Object Model

1

VB/VBA (OLE)

Using litem Object Model

1

Using PlanSwift Object Model

1

Pascal Scripting (OLE)

Item Object Model

1

Root Object Model

Using the PlanSwift Object Model

1

> Expand source

SelectionlList - FD

SelectionList

Returns an ISelectionList object of all the selected items.
Syntax:

Function: SelectionList: ISelectionList;
Code Reference:

1. Create a New Form application
2. Add a button to the form
3. Add Planswift to reference (Planswift9_tlb in the uses)

4. Copy code to button onclick event

API Calls
Delphi

> Expand source

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model

Using the PlanSwift Object Model
1

654

IsUnlocked - FD

IsUnlocked

Checks the product activation status of a plugin. If AllowUnlock is true the user is prompted to Activate if needed.
Syntax:

Function: IsUnlocked(AProduct: String; AMajorVer: Integer; AMinorVer: Integer; AllowUnlock: Boolean): Boolean;

Code Reference:

* 1 Create a New Form application
2 Add a button to the form
* 3 Add Planswift to reference (Planswift9_tlb in the uses)
* 4 Copy code to button onclick event
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

655

Item Object Model
1

Root Object Model

Using the PlanSwift Object Model
1

656

GetJobTotal - FD

GetJobTotal

Retrieves the total number of items of a certain type in the entire opened job.

Syntax:
Function:
Code Reference:

1. Create a New Form application

2. Add a button to the form
3. Add Planswift to reference (Planswift9_tlb in the uses)

4. Copy code to button onclick event

* APICalls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model

1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Pascal Scripting

GetJobTotal (const Propertyname:

WideString; const ItemType: WideString= '"'): Double;

> Expand source

Item Object Model

657

Item Object Model
1

Root Object Model

Using the PlanSwift Object Model
1

658

Copyltem - FD

Copyltem

Creates a copy of /tem under Parent and returns the ID of the new item.
If IncludeChildren is true, child items will be copied also.
If SkipSections is true, digitized sections will be duplicated also.

Syntax:

Function: CopyItem(Item: String; Parent: String; IncludeChildren: boolean; SkipSections: boolean): String;

Code Reference:

1 Create a New Form application

2 Add a button to the form

¢ 3. add Planswift to reference (Planswift9_tlb in the uses)
4 copy code to button onclick event

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model

1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

659

Item Object Model
1

Using the PlanSwift Object Model
1

660

GetProperty - FD

GetProperty
Returns the IPropertyObject specified by ItemPath and PropertyName. Returns Nil if the Item or Property is not found.

Syntax:

Function: GetProperty(ItemPath, PropertyName: String): IPropertyObject;

Code Reference:

¢ 1 Navigate to Plugin Store->Tool Manager and create a new Plugin
¢ 2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
¢ 4 Press run
API Calls
Delphi
Using litem Object Model ?> Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

661

Using the PlanSwift Object Model
1

662

Getltem - FD

Getltem
Returns the item given by FullPath. Returns Nil if the object is not found.

Syntax:

Function: GetItem(FullPath: String): IItem;

Code Reference:

¢ 1 Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
¢ 3. Copy Code into the editor
4 Press run
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

663

Using the PlanSwift Object Model
1

664

DrawTwoWaylLayout - FD

DrawTwoWayLlayout
Function used to perform segment layouts (in 2 directions) at a specified span, horizontal run, as well as spacing.
Syntax:
Function: DrawTwoWayLayout (const AItem: WideString; const SpanLine: ILine; const RunLine: ILine;

bIncludeFirst: WordBool; bIncludelLast: WordBool; nSpacing: Double; const AArea: WideString): WordBool;
Arguments:
Altem: WideString

Specifies the area section to assign the layout segments to.

Spanline: ILine
Direction span start and endpoint.

RunLine: ILine
Horizontal (side to side) run direction of area to populate. Requires a start and endpoint;

bincludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (optional parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or guide to the area section. Or empty double-quotes for no
trim/extending required.

Code Reference:

¢ 1 Create a New Form application
2. Add a button to the form
¢ 3. Add Planswift to reference (Planswift9_tlb in the uses)
¢ 4 Copy code to button onclick event
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model

Pascal Scripting (OLE)

665

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

666

PointCount - FD

PointCount
Returns the number of digitizer points for the item.
Syntax:

Function: PointCount: Integer;

Code Reference:

1 Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
¢ 3. Copy Code into the editor
4 Press run
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

667

Using the PlanSwift Object Model
1

668

NewltemEx - FD

NewltemEx
Creates a new child item and returns the new item.
If EditProperties is true then the property editor will be displayed when the item is created.
Syntax:

Function: NewItemEx (ItemType, AName: String; EditProperties: Boolean): IItem;

Code Reference:

1. Create a New Form application

2. Add a button to the form

¢ 3. Add Planswift to reference (Planswift9_tlb in the uses)
4.

Copy code to button onclick event

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

669

Using the PlanSwift Object Model
1

670

Openlob - FD

Openlob

Syntax:

Function:

Code Reference:
° 1

c 2

¢ 3.
4

API Calls
Delphi

Using litem Object

Opens the job specified by JobPath. Returns True if ssuccessful or false if the job could not be found or opened.

OpendJob (JobPath: String): Boolean;

Navigate to Plugin Store->Tool Manager and create a new Plugin
Set the plugin type to Script Code and open the Editor

Copy Code into the editor

Press run

Model > Expand source

Using PlanSwift Object Model

1

C#

Using litem Object
1

Model

Using PlanSwift Object Model

1

VB/VBA (OLE)

Using litem Object
1

Model

Using PlanSwift Object Model

1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

671

Using the PlanSwift Object Model
1

672

GetPropertyFormula - FD

GetPropertyFormula

Returns the formula string for the property specified by ItemPath and PropertyName. Returns an empty string (") if the item or property is not found.

Syntax:

Function: GetPropertyFormula (ItemPath, PropertyName: String): String;

Code Reference:

* 1 Navigate to Plugin Store->Tool Manager and create a new Plugin
2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
¢ 4 Press run
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Using the PlanSwift Object Model
1

Item Object Model

673

GetTwoWaylayout - FD

GetTwoWaylayout

Function used to perform segment layouts (in 2 directions) at a specified span, horizontal run, as well as spacing.

Arguments:

Altem: WideString
Specifies the area section to assign the layout segments to.

SpanLine: ILine
Direction span start and endpoint.

RunLine: ILine
Horizontal (side to side) run direction of area to populate. Requires a start and endpoint;

bincludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludeLast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (optional parameter)
Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or guide to the area section. Or, empty double-quotes for no
trim/extending required.

Code Reference:

Create a New Form application
Add a button to the form

1.
2.

* 3. Add Planswift to reference (Planswift9_tlb in the uses)
4.

Copy code to button onclick event

API Calls
Delphi
Using lltem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

674

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

675

Using the PlanSwift Object Model
1

SetSelected - FD

SetSelected

Set the PlanSwift job "object" to either selected or not selected based on the specified itempath. Syntax:
Function: SetSelected(const ItemPath: WideString; Value: WordBool) ;
Code Reference:

1. Create a New Form application

2. Add a button to the form

3. Add Planswift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model

1

Item Object Model
1

Root Object Model

676

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

677

Using the PlanSwift Object Model
1

SelectltemDialog - FD

SelectltemDialog

Displays the Planswift Select Item dialog to the user, then returns the selected item.
Syntax:

° Function: SelectItemDialog(Header: String; Title: String; RootItemID: String): IItem;
Code Reference:

. 1. Create a New Form application
2. Add a button to the form
3. add Planswift to reference (Planswift9_tlb in the uses)
4. copy code to button onclick event

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

678

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

679

Using the PlanSwift Object Model
1

NewlJobEx - FD

NewJobEx

Starts a "new" job in the PlanSwift application.
Syntax:

° Function: NewJobEx (const JobName: WideString= ''): Wordbool;
Code Reference:

. 1. Create a New Form application
2. Add a button to the form
3. add Planswift to reference (Planswift9_tlb in the uses)

4. copy code to button onclick event

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

680

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

681

Using the PlanSwift Object Model
1

CurrentVersion - FD

CurrentVersion

Returns the current version of the active PlanSwift application.
Syntax:
Function: CurrentVersion; Code Reference:

1. Create a New Form application
2. Add a button to the form
3. Add Planswift to reference (Planswift9_tlb in the uses)

4. Copy code to button onclick event

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

682

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

683

NewBlankPage - FD

NewBlankPage

Creates a blank page in the current job and returns the PAge Item that was created.

Syntax:

Function: NewBlankPage (const AName: WideString; AWidth, AHeight, ADPI: Integer; const AScale: WideString): IItem;

Code Reference:

®* 1. Create a New Form application
® 2. Adda button to the form
® 3. AddPlanswift to reference (Planswift9_tlb in the uses)
® 4. Copy code to button onclick event
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

684

Item Object Model
1

Using the PlanSwift Object Model
1

685

Newltem - FD

Newltem

Creates a new child item and returns the new item.

Syntax:
Function: NewItem(ItemType: String; AName: String= ''): IItem;

Code Reference:

1 Navigate to Plugin Store->Tool Manager and create a new Plugin
¢ 2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
4 Press run
API Calls

Delphi

Using litem Object Model ’> Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

686

Pascal Scripting

Item Object Model

687

Using the PlanSwift Object Model
1

IsBeta - FD

IsBeta

Returns True if Beta user, False if not.
Syntax:

* Function: IsBeta: Boolean;
Code Reference:

. 1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

688

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

689

Using the PlanSwift Object Model
1

Root - FD

Root

Returns the Root tree object in PlanSwift.
Syntax:

° Function: Root: IItem
Code Reference:

. 1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

690

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

691

Using the PlanSwift Object Model
1

CurrentViewport - FD

CurrentViewport
Gets the upper-right and lower-left points of the viewport.

Syntax:
* Function: CurrentViewport; Code
: Reference:
. 1. Create a New Form application

2. Add a button to the form
3. Add Planswift to reference (Planswift9_tlb in the uses)
4. Copy code to button onclick event

API Calls
Delphi
Using lltem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

692

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

693

Using the PlanSwift Object Model

1

SelectedPage - FD

SelectedPage

Returns the currently selected page item or nil if no page is selected.
Syntax:

M Function: SelectedPage: IItem;
. Code Reference:
. 1. Navigate to Plugin Store->Tool Manager and create a new Plugin

2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

694

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

695

Using the PlanSwift Object Model
1

Deleteltem - FD

Deleteltem
Deletes the item specified by ItemPath from the system.

Syntax:

° Function: Deleteltem(ItemPath: String): Boolean;
Code Reference:

D 1. Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
3. Copy Code into the editor
4. Press run

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

696

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

697

GetOneWaylLayout - FD

GetOneWaylayout

Function used to perform segment layouts at a specified span, horizontal run, as well as spacing.

Arguments:
Altem: WideString
Specifies the area section to assign the layout segments to.

sSpanHint: WideString
Hint to user on mouse cursor specifying to select the span line.

sRunHint: WideString
Hint to user on mouse cursor specifying to select the run line.

bincludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludelast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (optional parameter)

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or guid to the area section. Or, empty double-quotes for no

trim/extending required.
Syntax:

Function:GetOneWayLayout (const Altem: WideString; const sSpanHint: WideString; const

WideString; bIncludeFirst: WordBool; bIncludelast: WordBool; nSpacing: Double; const AArea:

WideString): WordBool; Code Reference:

c 1 Create a New Form application
o2 Add a button to the form
* 3. Add Planswift to reference (Planswift9_tlb in the uses)
* 4 Copy code to button onclick event
API Calls

Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

> Expand source

Using PlanSwift Object Model
Pascal Scripting (OLE)

698

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

699

GetPropertyResultAsString - FD

GetPropertyResultAsString

Returns the result value of the given property. Returns Default if the property is not found.

Syntax:
Function: GetPropertyResultAsString(ItemPath, PropertyName: String; Default String= ''): String;
Code Reference:
° 1 Create a New Form application
¢ 2 Add a button to the form
* 3. Add Planswift to reference (Planswift9_tlb in the uses)
* 4 Copy code to button onclick event

API Calls
Delphi

> Expand source

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

700

Using the PlanSwift Object Model
1

701

IslobOpen - FD

IsJobOpen

Syntax:

Function: IsJobOpen: Wordbool;

Code Reference:

® 1. Create a New Form application
® 2. Adda button to the form
® 3. Add Planswift to reference (Planswift9_tlb in the uses)
® 4. Copy code to button onclick event
API Call
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Tests whether the PlanSwift application actually has a "Job" opened in the editor.

> Expand source

Item Object Model

702

Using the PlanSwift Object Model
1

703

DrawOneWaylLayout - FD

DrawOneWayLayout
Function used to perform segment layouts at a specified span, horizontal run, as well as spacing.
Syntax:
Function: DrawOneWayLayout (const Altem: WideString; const SpanLine: ILine; const RunLine: ILine;

bIncludeFirst: WordBool; bIncludelLast: WordBool; nSpacing: Double; const AArea: WideString): WordBool;
Arguments:

Altem: WideString

Specifies the area section to assign the layout segments to.

SpanLine: ILine
Direction span start and endpoint.

RunLine: ILine
Horizontal (side to side) run direction of area to populate. Requires a start and endpoint;

bincludeFirst: WordBool
Specifies whether to include a segment at the "start" run point. Even if it does not fall within the spacing range.

bincludelast: WordBool
Specifies whether to include a segment at the "last" run point. Even if it does not fall within the spacing range.

nSpacing: Double
Specifies the "run" spacing used when laying out segment objects.

AArea: WideString (optional parameter)

Specifies a defined "Area Segment" to trim/extend laid segments to. Supply either the path or guid to the area section. Or, empty double-quotes for no
trim/extending required.

Code Reference:

° 1 Create a New Form application
o2 Add a button to the form
* 3. add Planswift to reference (Planswift9_tlb in the uses)
* 4 copy code to button onclick event
API Calls

Delphi

Using litem Object Model

> Expand source

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model

Pascal Scripting (OLE)

704

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

705

DeleteProperty - FD

DeleteProperty

Deletes PropertyName from ItemPath.

Syntax:

Function: DeleteProperty(ItemPath, PropertyName: String): Boolean;

Code Reference:

° 1 Navigate to Plugin Store->Tool Manager and create a new Plugin
¢ 2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
4 Press run
API Calls
Delphi
Using lltem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model

706

707

Using the PlanSwift Object Model
1

Edition - FD

Edition
Returns the current PlanSwift Edition.
Syntax:

Function: Edition;

Code Reference:

° 1 Navigate to Plugin Store->Tool Manager and create a new Plugin
2 Set the plugin type to Script Code and open the Editor
¢ 3. Copy Code into the editor
4 Press run
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

708

Item Object Model

709

Using the PlanSwift Object Model
1

GetPropertyResultAsBoolean - FD

GetPropertyResultAsBoolean
Attempt to return the result of the given property as a boolean value. If the calculated result can not be converted to a boolean value, the default value is
returned.

Syntax:

Function: GetPropertyResultAsBoolean (ItemPath, PropertyName: String; Default: Boolean = False): Boolean;

Code Reference:

° 1 Navigate to Plugin Store->Tool Manager and create a new Plugin
* 2 Set the plugin type to Script Code and open the Editor
¢ 3. Copy Code into the editor
* 4 press run
API Calls
Delphi
Using litem Object Model ?> Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Item Object Model

710

Pascal Scripting

711

Using the PlanSwift Object Model
1

GetPropertyResultAsinteger - FD

GetPropertyResultAsInteger

Attempts to return the property value as an Integer. If the calculated value can not be converted to an integer, the value given in Default is returned.
Syntax:
Function: GetPropertyResultAsInteger (ItemPath, PropertyName: String; Default: Integer = 0): Integer;

Code Reference:

1 Navigate to Plugin Store->Tool Manager and create a new Plugin
¢ 2 Set the plugin type to Script Code and open the Editor
¢ 3. Copy Code into the editor
¢ 4 Press run
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

712

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

713

Using the PlanSwift Object Model
1

Handle - FD

Handle
Gets the handle of the current PlanSwift application.
Syntax:

Function: Handle: HResult; Code Reference:

1 Create a New Form application

2 Add a button to the form

¢ 3. Add PlanSwift to reference (Planswift9_tlb in the uses)
4

Copy code to button onclick event

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

714

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

715

Using the PlanSwift Object Model
1

GetZoom - FD

GetZoom

Returns the current "zoom" scale factor for the active page.
Syntax:

Function: Get Zoom: Double; Code Reference:

1 Create a New Form application

2 Add a button to the form

¢ 3. Add Planswift to reference (Planswift9_tlb in the uses)
4

Copy code to button onclick event

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Item Object Model
1

Root Object Model

716

Pascal Scripting (OLE)

Pascal Scripting

Item Object Model

717

Using the PlanSwift Object Model
1

GetPropertyResultAsFloat - FD

GetPropertyResultAsFloat
Attempts to return the given property value as a floating point value. If the calculated property value can not be converted, the value supplied by Default is
returned.
Syntax:
Function: GetPropertyResultAsFloat (ItemPath, PropertyName: String; Default: Double= 0): Double;

Code Reference:

* 1 Navigate to Plugin Store->Tool Manager and create a new Plugin
¢ 2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
* 4 Press run
API Calls

Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Item Object Model

718

Pascal Scripting

719

Using the PlanSwift Object Model
1

lltems - Procedures -- Freshdesk Xfer

lltems - Procedures — Freshdesk Xfer

720

Procedures - Delete - FD

Procedures - Delete

Deletes the Item and its children from the system.

Syntax: Procedure: Delete;

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)
Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1767

Procedures - NewPoint - FD

Procedures - NewPoint

Creates a new digitizer point at the X, Y coordinates.
Syntax:

Procedure: NewPoint (X, Y: Double);

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

722

1769
Procedures - Delete Property - FD

Procedures - Delete Property
Deletes PropertyName from ItemPath.
Syntax:

Function: DeleteProperty(ItemPath, PropertyName: String): Boolean;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1771
Procedures - SetPropertyFormula - FD

Procedures - SetPropertyFormula

Sets the given property formula to value.

Syntax:

Procedure: SetPropertyFormula (PropertyName, value: String);

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

724

Item Object Model
1

Using the PlanSwift Object Model
1

1773

Procedures - SetPoint - FD

Procedures - SetPoint
Sets the digitizer point specified by Pointindex to the given X, Y coordinates.

Syntax:
Procedure: SetPoint (PointIndex: Integer; X, Y: Double);
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

726

727

lltems - Property -- Xfer from Freshdesk

lltems - Property --Xfer from Freshdesk

728

Property - ItemType - FD

Property - ItemType
Gets or Sets the Type property for the Item.

Declaration: itemType: String;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

729

> Expand source

1778
Property - Name - FD

Property - Name

Gets or Sets the Name property for the item

Declaration: Name: String;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1780
[ltems - Functions -- Xfer from Freshdesk

Iltems - Functions — Xfer from Freshdesk

731

Functions - GUID - FD

Functions - GUID
Returns the GUID for the Item.

Syntax:
Function: lltem.GUID: String;

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1783

732

Function - GetPropertyResultAsString - FD

Function - GetPropertyResultAsString
Returns the result value of the given property. Returns Default if the property is not found.

Syntax:

Function: IItem.GetPropertyResultAsString(ItemPath, PropertyName: String; Default String= ''): String;

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)
Item Object Model
1

Root Object Model
1

Pascal Scripting
Item Object Model
1

Using the PlanSwift Object Model
1

1785

NewProperty - FD

NewProperty
Creates a new property as specified and returns the new IPropertyObject.
® ptNumber = 0 ptColor = 1 ptText = 2 ptMemo = 3 ptCheckBox = 4 ptPath = 5 ptimage =6

e ptlargelmage = 7 ptType = 8 ptScript = 9 ptFile = 10 ptLargeFile = 11 ptFileName = 12
« ptConnectionString = 13 ptSlider = 14 ptDimension = 15

. APICalls
Delphi ¢
‘ Using lltem Object Model ’> Expa
Using PlanSwift Object Model
1
Ctt .

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

734

1787

Functions - Propertyltem - FD

Functions - Propertyltem
Returns the IPropertyObject at the given index.

Syntax:

Function: IItem.PropertyItem(Index: Integer);

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model

1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1789

Item Object Model
1

Using the PlanSwift Object Model
1

736

Functions - Childltem - FD

Functions - Childltem

Returns the child item at the given index position.

Syntax:
Function: IItem.ChildItem(Index: Integer): IItem;

API Calls
Delphi

?> Expand source

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1791
Functions - GetPropertyResult - FD

Functions - GetPropertyResult

Returns the calculated result from the given property.

Syntax:
Function: GetPropertyResult (ItemPath, PropertyName: String): Variant;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1793
Functions - GetltemByGUID - FD

Functions -GetltemByGUID
Returns the child item specified by aGUID.

Syntax:

Function: IItem.GetItemByGUID (aGUID: String): IItem;

Item Object Model
1

Using the PlanSwift Object Model
1

738

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1795

> Expand source

Functions - Parentltem - FD

Functions - Parentltem

Returns the parent to the Item.

Syntax:

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Function:IItem.ParentItem: IItem;

> Expand source

Using the PlanSwift Object Model

740

1797
Functions - FullPath - FD

Functions - FullPath
Returns the full path to the Item.

Syntax:

Function: IItem.FullPath: String;

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1799

Functions - GetPropertyResultAsBoolean - FD

Functions - GetPropertyResultAsBoolean

Attempt to return the result of the given property as a boolean value. If the calculated result cannot be converted to a boolean value, the default value is returned.
Syntax:

Function: IItem.GetPropertyResultAsBoolean (ItemPath, PropertyName: String; Default: Boolean = False): Boolean;

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1801

Functions - Edit - FD

Functions - Edit
Displays the Item in the Editor Dialog.

Syntax:

Function: IItem.Edit (ShowAdvanced: Boolean = True): Boolean;

Item Object Model
1

Using the PlanSwift Object Model
1

742

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1803

Functions - PropertyCount - FD

Functions - PropertyCount

Returns the number of properties for this item.

Syntax:

API Calls
Delphi

Function:IItem.PropertyCount:

Integer;

> Expand source

Using litem Object Model ’> Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1805

Item Object Model
1

Using the PlanSwift Object Model
1

744

Functions - NewSection - FD

Functions - NewSection

Creates a new section for the Item.
If the Item is not a draw object this function returns Nil.

Syntax:

Function: IItem.NewSection (AName: String= ''): IItem;

API Calls
Delphi

Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1807
Functions - Newltem - FD

Functions - Newltem
Creates a new child item and returns the new item.

Syntax:

Function: IItem.NewItem(ItemType: String; AName: String= ''): IItem;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

746

Item Object Model
1

Using the PlanSwift Object Model
1

1809
Functions - NewltemEx - FD

Functions - NewltemEx

Creates a new child item and returns the new item.
If EditProperties is true then the property editor will be displayed when the item is created.

Syntax:
Function: IItem.NewItemEx (ItemType, AName: String; EditProperties: Boolean): IItem;
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1811
Functions - GetPoint - FD

Functions - GetPoint

Returns the IPoint object from the given index position.
Syntax:Function: IItem.GetPoint (PointIndex: Integer): IPoint

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model
1

CH

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

748

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

Functions - Getltem - FD

Functions - Getltem
Returns the item given by FullPath. Returns Nil if the object is not found. Syntax:

Function: IItem.GetItem(FullPath: String): IItem;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

Functions - CanRecord - FD

750

Functions - CanRecord
Returns true if the item is record-able item.
Syntax:

Function: IItem.CanRecord: Boolean;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

CH

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

Functions - Deleteltem - FD

751

Functions - Deleteltem
Deletes the item specified by ItemPath from the system.

Syntax:

Function: IItem.Deleteltem(ItemPath: String): Boolean;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

752

1816
Functions - GetProperty - FD

Functions - GetProperty
Returns the IPropertyObject specified by ltemPath and PropertyName. Returns Nil if the Item or Property is not found.

Syntax:
Function: IItem.GetProperty(ItemPath, PropertyName: String): IPropertyObject;
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

753

1818
Functions - GetPropertyResultAsInteger - FD

Functions - GetPropertyResultAsInteger
Attempts to return the property value as an Integer. If the calculated value cannot be converted to an integer, the value given in Default is returned.
Syntax:

Function: IItem.GetPropertyResultAsInteger (ItemPath, PropertyName: String; Default: Integer = 0): Integer;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1820
Functions - PointCount - FD

Functions - PointCount

Returns the number of digitizer points for the item.

Syntax:

Function:IItem.PointCount: Integer;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

755

> Expand source

Item Object Model
1

Using the PlanSwift Object Model
1

1822
Functions - GetPropertyFormula - FD

Functions - GetPropertyFormula

Returns the formula string for the property specified by /temPath and PropertyName.
Returns an empty string (") if the item or property is not found.

Syntax:
Function: IItem.GetPropertyFormula (ItemPath, PropertyName: String): String;
API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1824
Functions - ChildCount - FD

Functions - ChildCount

Returns the number of child items for the item.
Syntax:

Function: IItem.ChildCount: Integer;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

757

> Expand source

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1826
Functions - DoRecord - FD

Functions - DoRecord

Begins recording digitizer points for the Item. Returns False if no points are recorded.

Syntax:

Function: DoRecord: Boolean;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1828
Functions - GetPropertyResultAsFloat - FD

Functions - GetPropertyResultAsFloat

Attempts to return the given property value as a floating point value. If the calculated property value cannot be converted, the value supplied by Default is
returned.

Syntax:

Function: IItem.GetPropertyResultAsFloat (ItemPath, PropertyName: String; Default: Double = 0): Double;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

759

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1830
IPoint - Property -- Xfer from Freshdesk

IPoint - Property xx -Xfer from Freshdesk

Property - X-FD

Property - X

Gets or Sets the X coordinate for the IPoint.

Syntax:

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

Property:IItem.IPoint(X:

Double;

Y:

Double) ;

?> Expand source

1833
Property-Y-FD

Property - Y

Get or Sets the Y coordinate of the IPoint.

Syntax:

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

Property:

IItem.IPoint (X:Double;

762

Y:

Double) ;

1835
IPropertyObject - Procedures -- Xfer from FreshDesk

IPropertyObject - Procedures -- Xfer from FreshDesk

Procedures - EditScript - FD

Procedures - EditScript
Opens the script property in the script editor. If the property is not of type ptScript this method is ignored.

Syntax:
Procedure: IPropertyObject.EditScript;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

764

1837

1838
IPropertyObject - Functions -- Xfer from Freshdesk

IPropertyObject - Functions — Xfer from Freshdesk

Functions - MeetslnputCondition - FD

Functions - MeetslnputCondition

Returns true if the InputCondition has been met.

Syntax:

Function: MeetsInputCondition;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1839

> Expand source

Item Object Model
1

Using the PlanSwift Object Model
1

1841

768

Functions - ExecuteScript - FD

Functions - ExecuteScript
Executes the script property, passing a CRLF delimited list of parameters. Returns the value assigned to Result in the script.

Syntax:

Function: ExecuteScript (ParamList: String= ''): Variant;

API Calls
Delphi

> Expand source

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1843

Functions - ResultAsString - FD

Functions - ResultAsString
Returns the property result of the property.
Syntax:

Function: ResultAsString: String;

API Calls
Delphi
Using litem Object Model >

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1845
Functions - System Locked - FD

Functions - System Locked
Returns True if the property is locked by the system.
Syntax:

Function: SystemLocked: Boolean;

Item Object Model
1

Using the PlanSwift Object Model
1

770

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1847

> Expand source

Functions - ResultAsinteger - FD

Functions - ResultAsInteger

Returns the property result as an integer if possible. Syntax:

Function: ResultAsInteger: Integer;

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model
1

CH

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1849
Functions - System Hidden - FD

772

Functions - System Hidden

Returns True if the property is Hidden by the system.

Syntax:

Function: SystemHidden: Boolean;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1851

Functions - ResultAsVariant - FD

Functions - ResultAsVariant

Returns the property result as a Variant;

Syntax:

Function: ResultAsVariant: Variant;

> Expand source

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1853
Functions - PropertyType - FD

Functions - PropertyType
Returns the Type attribute for the property.

Syntax:

Function: PropertyType: String;

Item Object Model
1

Using the PlanSwift Object Model
1

774

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1855

> Expand source

Functions - ResultAsFloat - FD

Functions - ResultAsFloat
Returns the Type attribute for the property.

Syntax:

Function: PropertyType: String;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

776

77

IPropertyObject - Property -- Xfer from Freshdesk

IPropertyObject - Property — Xfer from Freshdesk

778

Property - Expression - FD

Property - Expression
Gets or Sets the Expression attribute for the property. Syntax:

Property: IPropertyObject.Expression: Boolean;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Item Object Model
1

Using the PlanSwift Object Model
1

779

Pascal Scripting

1860
Property - TreelList - FD

Property - TreelList
Gets or Sets the Treelist attribute of the property. If ListType = ItTreelList this attribute will contain the full path to the treelist item to use for a root item in the list.
Syntax:

Property: TreelList: String;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1862
Property - SimplelList - FD

Property - SimplelList
Gets or Sets the Simplelist attribute for the property. If ListType = [tSimpleList, the SimpleList attribute will be the CRLF delimited string of list items.
Syntax:

Property: SimpleList: String;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Using the PlanSwift Object Model
1

781

Item Object Model
1

Root Object Model

1

Pascal Scripting

1864

Property - SliderMax - FD

Property - SliderMax

Gets or Sets the SliderMax attribute for the property.

Syntax:

Property: SliderMax: Integer;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

> Expand source

Using the PlanSwift Object Model

783

1866
Property - ListShowSearch - FD

Property - ListShowSearch
Gets or Sets the ListShowSearch attribute for the property.

Syntax:

Property: ListShowSearch: Boolean;

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model
1

CH#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

Using the PlanSwift Object Model
1

1868
Property - InheritAction - FD

Property - InheritAction
Gets or sets the InheritAction attribute for this property.

iaNormal = O ialgnore = 1

¢ jalnheritFormula =2

« ialnheritResult = 3 iaFlatten
. =4

* Syntax:

Property: InheritAction: Inheritactions;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

1870

785

> Expand source

Property - SliderMin - FD

Property - SliderMin
Gets or Sets the SliderMin attribute for this property.

Syntax:

Property: SliderMin: Integer;

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1872

Property - InputCondition - FD

Property - InputCondition
Gets or Sets the InputCondition attribute for the property.

Syntax:
Property: InputCondition: String;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1874
Property - InputUnits - FD

Property - InputUnits
Gets or Sets the InputUnits attribute for the property.
Syntax:

Property: InputUnits: String;

Item Object Model
1

Using the PlanSwift Object Model
1

787

> Expand source

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1876

Property - Islnput - FD

Property - Islnput
Gets or Sets the IsInput attribute for the property.

Syntax:

Property: IsInput: Boolean;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

CH

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

Property - Units - FD

Property - Units
Gets or Sets the Units attribute for the property.

Syntax:

Property: Units: String;

789

> Expand source

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

790

Property - SliderShowTicks - FD

Property - SliderShowTicks

Gets or Sets the SliderShowTicks attribute for this property.

Syntax:

Property: SliderShowTicks: Boolean;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

> Expand source

Using the PlanSwift Object Model

791

Item Object Model
1

Using the PlanSwift Object Model
1

Property - SliderTickFrequency - FD

Property - SliderTickFrequency
Gets or Sets the SliderTickFrequency attribute for this property.

Syntax:

Property: SliderTickFrequency: Integer;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)
Item Object Model
1

Root Object Model
1

Pascal Scripting

1883

792

Property - DecimalPlaces - FD

Property - DecimalPlaces
Gets or Sets the DecimalPlaces attribute for the property.

Syntax:
Property: IPropertyObject.DecimalPlaces:

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1885
Property - ListShowOnlyTypes - FD

Property - ListShowOnlyTypes
Gets or Sets the ListShowOnlyTypes attribute for this property.
Syntax:
Property: ListShowOnlyTypes: String;

Integer;

?> Expand source

Item Object Model
1

Using the PlanSwift Object Model
1

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1887

794

Property - InheritPullForm - FD

Property - InheritPullForm

Gets or Sets the InheritPullFrom attribute for this property.

Syntax:

Property: InheritPullFrom: String;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1889

> Expand source

Property - ListType - FD
Property - ListType
Gets or Sets the ListType attribute for the property.

Syntax:
Property: ListType: ListTypes;

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
Item Object Model
1

Using the PlanSwift Object Model
1

1891

796

Property - ScriptParameters - FD

Property - ScriptParameters

Gets or Sets the ScriptParameters attribute for this property. This
string is a CRLF delimited list of Parameter names.

Syntax:

Property: ScriptParameters: String;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

> Expand source

Item Object Model
1

Using the PlanSwift Object Model
1

1893
Property - UserHidden - FD

Property - UserHidden
Gets or Sets the UserHidden attribute for the property.

Syntax:

Property: UserHidden: Boolean;

API Calls
Delphi

Using lltem Object Model
1

Using PlanSwift Object Model
1

C#

Using litem Object Model

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

798

Item Object Model
1

Using the PlanSwift Object Model
1

1895
Property - ScriptLanguage - FD

Property - ScriptLanguage
Gets or Sets the ScriptLanguage attribute for this property.

slPascal = 0 sIBasic = 1
¢ slExecute =2

Syntax:

Property: ScriptLanguage: ScriptLanguages;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

> Expand source

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

1897

800

Property - Group - FD
Property - Group
Gets or Sets the Group attribute for the property.

Syntax:
Property: Group: String;

API Calls
Delphi

> Expand source

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1899

Property - ListPropertiesToSet - FD

Property - ListPropertiesToSet
Gets or Sets the ListPropertiesToSet attribute for this property.

Syntax:

Property: ListPropertiesToSet: String;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1901

Property - ListColumnAutoWidth - FD

Property - ListColumnAutoWidth
Gets or Sets the ListColumnAutoWidth attribute for the property.

Syntax:

Property: ListColumnAutoWidth: Boolean;

Item Object Model
1

Using the PlanSwift Object Model
1

802

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1903

> Expand source

Property - List - FD

Property - List
Gets or Sets the List attribute for the property. If ListType = ItList then this string will be the full path to the PlanSwift List Object as defined on the List tab on the main
ribbon bar.

Syntax:

Property: List: String;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

804

1905
Property - Formula - FD

Property - Formula

Gets or Sets the Formula attribute for the property.
Syntax:

Property: Formula: String;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1907
Property - Image Transparent - FD

Property - Image Transparent

Gets or Sets the ImageTransparent attribute for this property.
API Call:
Syntax:

ImageTransparent: Boolean;

API Calls
Delphi

Using lltem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

806

> Expand source

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

1909
Property - CompileDenyWrite - FD

Property - CompileDenyWrite
Gets or Sets the CompileDenyWrite attribute for this property.

Syntax:

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Property:

IPropertyObject.CompileDenyWrite: Boolean;

> Expand source

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1911
Property - UserLocked - FD

Property - UserLocked

Gets or Sets the UserLocked attribute of the property.
Syntax:

Property: UserLocked: Boolean

API Calls
Delphi

Using lltem Object Model

> Expand source

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

808

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1913
Property - Isinherited - FD

Property - IsInherited
Gets or Sets the IsInherited attribute for this property.

Syntax:

Property: IsInherited: Boolean;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

1915
Property - CompileDenyRead - FD

Property - CompileDenyRead
Gets or Sets the CompileDenyRead attribute for this property.

Syntax:

Property: IPropertyObject.CompileDenyRead: Boolean;

API Calls
Delphi

Using lltem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using lltem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

810

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1917
Property - InputType - FD

Property - InputType

inpStoreLocal = 0 inpStoreParent = 1 Syntax: InputType: InputTypes;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Gets or Sets the InputType attribute for the property.

> Expand source

Item Object Model
1

Using the PlanSwift Object Model

1919
Property - Adjust - FD

Property - Adjust

Gets or Sets the Adjust attribute for the property.
Syntax:

Property: Adjust: String;

API Calls
Delphi
Using lltem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using lltem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

812

Item Object Model
1

Using the PlanSwift Object Model
1

1921
Property - ListResultColumn - FD

Property - ListResultColumn
Gets or Sets the ListResultColumn attribute for the property. If the ListType = ItList, this attribute specifies which column to return for the result.
Syntax:

Property: ListResultColumn: String;

API Calls
Delphi
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model

1923
Property - CalculateBeforelnherit - FD

Property - CalculateBeforelnherit
Gets or Sets the CalculateBeforelnherit attribute for the property.

Syntax:

Property: IPropertyObject.CalculateBeforeInherit: Boolean;

API Calls
Delphi

Using lltem Object Model > Expand source

Using PlanSwift Object Model
1

CH

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

814

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

1925
Property - ListFfromProperty - FD

Property - ListFromProperty

Gets or Sets the ListFromProperty attribute for the property; Syntax:

Property: ListFromProperty: Boolean;

API Calls
Delphi
Using lltem Object Model

Using PlanSwift Object Model

C#

Using litem Object Model

Using PlanSwift Object Model

VB/VBA (OLE)

Using litem Object Model

Using PlanSwift Object Model

Pascal Scripting (OLE)

Item Object Model

Root Object Model

Pascal Scripting

Item Object Model

Using the PlanSwift Object Model

816

Property - PluginToExecuteButtonCaption - FD

Property - PluginToExecuteButtonCaption
Gets or Sets the PluginToExecuteButtonCaption attribute for this property.

Syntax:

Property: PlugInToExecuteButtonCaption: String;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

> Expand source

Using the PlanSwift Object Model

817

818

Property - ListVisibleColumnsinDropdown - FD

Property - ListVisibleColumnsinDropdown
Gets or Sets the ListVisibleColumnsinDropdown attribute for this property.

Syntax:
Property: ListVisibleColumnsInDropdown: String;

API Calls
Delphi

> Expand source

Using litem Object Model

Using PlanSwift Object Model
1

C#
Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)
Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

Item Object Model
1

Using the PlanSwift Object Model
1

819

1930
Property - ScriptType - FD

Property - ScriptType
Gets or Sets the ScriptType attribute for this property.
Syntax:

Property: ScriptType: ScriptTypes;

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1932

Property - ListShowlLevel - FD

Property - ListShow1Level

Gets or Sets the ListShow1Level attribute for this property.

Syntax:

?> Expand source

Property: ListShowlLevel: Boolean;

API Calls
Delphi
Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1934

Property - PluginToExecute - FD

Property - PluginToExecute
Gets or Sets the PluginToExecute attribute for this property.
Syntax:
Property: PlugInToExecute: String;
Item Object Model
1

Using the PlanSwift Object Model
1

821

> Expand source

API Calls
Delphi

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting

1936
Property - ListReturnFullPath - FD

Property - ListReturnFullPath
Gets or Sets the ListReturnFullPath for this property.

Syntax:

Property: ListReturnFullPath: Boolean;

API Calls
Delphi

> Expand source

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1938

Property -- Name - FD

Property -- Name

Gets or Sets the Name property for the item.

Syntax: Property: Name: String;

API Calls
Delphi

Item Object Model
1

Using the PlanSwift Object Model
1

823

?> Expand source

Using litem Object Model

Using PlanSwift Object Model
1

C#

Using litem Object Model
1

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1940

Property - CompileDenyOLE - FD

Property - CompileDenyOLE

Gets or Sets the CompileDenyOLE attribute for this property.

Syntax:

API Calls
Delphi

IPropertyObject.CompileDenyOLE:

?> Expand source

Boolean;

Using litem Object Model
1

Using PlanSwift Object Model
1

C#
Using litem Object Model > Expand source

Using PlanSwift Object Model
1

VB/VBA (OLE)

Using litem Object Model
1

Using PlanSwift Object Model
1

Pascal Scripting (OLE)

Item Object Model
1

Root Object Model
1

Pascal Scripting
1942

Item Object Model
1

Using the PlanSwift Object Model
1

825

Scripting - Functions -- Xfer from Freshdesk

Scripting - Functions — Xfer from Freshdesk

826

Functions - New Label - FD

Functions - New Label

Creates and returns a new TLabel object and sets the Left, Top and Caption properties. Do not attempt to destroy or free labels created with NewLabel.
Declaration:

<!--startsyntax-->Function: NewLabel (Left, Top: Integer; Caption: String): TLabel;<!--endsyntax-->

API Calls
Delphi

Scripting > Expand source

827

Functions - NewForm - FD

Functions - NewForm

Create a new TForm object and sets the width, height, and caption as specified. Do not attempt to destroy or free forms created with NewForm.

Syntax:

Function: NewForm(Width, Height: Integer; Caption: String): TForm;

Code Reference:

¢ 1 Navigate to Plugin Store->Tool Manager and create a new Plugin
2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
* 4 Press run
API Call
Delphi
Scripting > Expand source

828

Functions - NewComboBox - FD
Functions - NewComboBox
Creates a new TComboBox and sets the Left, Top and Text Properties as specified. Do not attempt to destroy or free a TComboBox created with NewComboBox.

Syntax:
Function: NewComboBox (Left, Top: Integer; Text: String): TComboBox

Code Reference:

¢ L Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
* 4 Press run
API Calls
Delphi
Scripting > Expand source

829

Property - NewCheckBox - FD

Property - NewCheckBox

Creates a new TCheckBox and sets the Left, Top, Caption and Checked Properties as specified. Do not attempt to destroy or free a TCheckBox created with NewCheckBox.

Syntax:

Function: NewCheckBox (Left, Top: Integer; Caption: String; Checked: Boolean): TCheckBox;

Code Reference:

¢ L Navigate to Plugin Store->Tool Manager and create a new Plugin
2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
* 4 Press run
API Call
Delphi
Scripting > Expand source

830

Functions - NewButton - FD
Functions - NewButton
Creates a new TButton and sets the Left, Top, Caption and ModalResult Properties as specified. Do not attempt to destroy or free a TButton created with NewButton.

Syntax:
Function: NewCheckBox (Left, Top: Integer; Caption: String; Checked: Boolean): TCheckBox;

Code Reference:

¢ L Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
* 4 Press run
API Calls
Delphi
Scripting > Expand source

831

Functions - NewEdit - FD

‘Functions - NewEdit
Creates a new TEdit and sets the Left, Top and Text Properties as specified. Do not attempt to destroy or free a TEdit created with NewEdit.

Syntax:

Function: NewEdit (Left, Top: Integer; Text: String): TEdit;

Code Reference:

¢ L Navigate to Plugin Store->Tool Manager and create a new Plugin
2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
* 4 press run
API Calls
Delphi
Scripting > Expand source

832

Property - NewRadioButton - FD

Property - NewRadioButton
Creates a new TRadioButton and sets the Left, Top, Caption and Checked Properties as specified. Do not attempt to destroy or free a TRadioButton created with
NewRadioButton.

Syntax:
Function: NewRadioButton (Left, Top: Integer; Caption: String; Checked: Boolean): TRadioButton;

Code Reference:

1 Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
¢ 3. Copy Code into the editor
¢ a4 Press run
API Calls
Delphi
Scripting > Expand source

833

Property - NewColorBox - FD
Property - NewColorBox
Creates a new TColorBox and sets the Left, Top and Selected Properties as specified. Do not attempt to destroy or free a TColorBox created with NewColorBox.

Syntax:

Function: NewColorBox (Left, Top: Integer; Selected: Integer): TColorBox;

Code Reference:

¢ L Navigate to Plugin Store->Tool Manager and create a new Plugin
2 Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
* 4 Press run
API Calls
Delphi
Scripting > Expand source

834

Functions - Math Functions -- Xfer from Freshdesk

Functions - Math Functions — Xfer from Freshdesk

835

Math Functions - RoundUp - FD

Math Functions - RoundUp

Rounds the given Val up to the nearest integer.
Declaration:

RoundUp(Val: Double): Integer

Source Code
Delphi

Scripting

836

’> Expand source

Math Functions - ParallelLine - FD

Math Functions - ParallelLine

Calculates the points to form a new line parallel line offset Distance from the original, specified by p1 and p2 then returns the new points in variables p3 and p4.
Declaration:

ParallelLine(p1x, p1ly, p2x, p2y, Distance: Double; var p3x: Double; var p3y: Double; var p4x: Double; var p4y: Double);
Source Code

Delphi

Scripting > Expand source

837

Math Functions - RoundToNearest - FD

Math Functions - RoundToNearest

Rounds the given value down to the nearest value as defined by precision.
Declaration:

RoundToNearest(Val, Precision: Double): Double;

Source Code
Delphi

Scripting

838

> Expand source

Math Functions - DistanceFromLine - FD

Math Functions - DistanceFromLine
Returns the distance of a point given by p3 is from a line, given by p1 and p2.

Declaration:

DistanceFromLine(p1x, ply, p2x, p2y, p3x, p3y: Double): Double;

Source Code
Delphi

Scripting

839

> Expand source

Math Functions - DistanceBetweenPoints - FD

Math Functions - DistanceBetweenPoints

Returns the distance between 2 points specified by p1 and p2 coordinates.
Declaration:

DistanceBetweenPoints(p1X, p1Y, p2X, p2Y: Double): Double;

Source Code
Delphi

Scripting

840

> Expand source

Math Functions - GetIntersectPoint - FD

Math Functions - GetIntersectPoint
Calculates at what point Line 1, given by p1 and p2 intersects with Line 2, given by p3 and p4 and returns the result point in p5. Returns 1 (True) if the lines intersect or 0
(False) if the lines are parallel.

Declaration:

GetlIntersectPoint(p1x, ply, p2x, p2y, p3x, p3y, p4x, p4y: Double; var p5x: Double; var p5y: Double): Integer;

Source Code
Delphi

Scripting > Expand source

841

Math Functions - RoundDown - FD

Math Functions - RoundDown

Rounds the given Val down to the nearest integer.
Declaration:

RoundDown(Val: Double): Integer

Source Code
Delphi

Scripting

842

’> Expand source

Math Functions - Pi - FD

Math Functions - Pi
Returns the numeric value for Pi (3.1415926535897932384626433832795).

Syntax: Pi: Double;
Source Code

Delphi

Scripting > Expand source

843

Math Functions - DecToEnglish - FD

Math Functions - DecToEnglish

Converts a given dimension into its string representation.

Syntax:

Function: DecToEnglish (Feet: Double):

Code Reference:

1 Navigate to Plugin Store->Tool Manager and create a new Plugin
2. Set the plugin type to Script Code and open the Editor
* 3. Copy Code into the editor
* a4 press run
API Calls
Delphi
Scripting

844

String;

> Expand source

Math Functions - ExtendLine - FD

Math Functions - ExtendLine

Calculates the points to extend a line given by p1 and p2 a given Distance then returns the new points in variables p3 and p4.
Declaration:

ExtendLine(p1x, ply, p2x, p2y, Distance: Double; var p3x: Double; var p3y: Double; var p4x: Double; var p4y: Double);
Source Code

Delphi

Scripting > Expand source

845

Math Functions - AngleBetweenPointsUnScaled - FD

Math Functions - AngleBetweenPointsUnScaled

Returns the angle between 2 points given by pl and p2 coordinates.
Declaration:

AngleBetweenPointsUnScaled(p1X, p1Y, p2X, p2Y: Double): Double;
Source Code

Delphi

Scripting ?> Expand source

846

Math Function - Min - FD

Math Function - Min

Returns the smaller of the values passed. Declaration:

Source Code
Delphi

Scripting

Min(Valuel, Value2: Double): Double;

847

> Expand source

Math Function - Max - FD

Math Function - Max

Returns the larger of the values passed.

Declaration:

Source Code
Delphi

Scripting

Max(Valuel, Value2: Double): Double;

848

> Expand source

Math Functions - PointOnAngle - FD

Math Functions - PointOnAngle

Calculates a new point given by p1 a given Distance and Angle then returns the result point in p2.
Declaration:

PointOnAngle(p1x, ply, Angle, Distance: Double; var p2x: double; var p2y: double);
Source Code

Delphi

Scripting > Expand source

849

Math Functions - Procedures -- Xfer from Freshdesk

Math Functions - Procedures — Xfer from Freshdesk

850

Procedures - TrimToArea - FD

Procedures - TrimToArea

Declaration:

TrimToArea(AreaPath, SegmentPath: String);

Source Code
Delphi

Scripting

851

Trims the ends of a Segment object to the boundaries of the given Area object.

> Expand source

Update Method - Functions -- Xfer from Freshdesk

Update Method - Functions -- Xfer from Freshdesk

852

Update Method - CurrentVersion - FD

Update Method - CurrentVersion

Returns the current versions of Planswift.

Declaration: CurrentVersion: String;

Source Code
Delphi

Scripting

853

> Expand source

Update Methods - Procedures -- Xfer from Freshdesk

Update Methods - Procedures -- Xfer from Freshdesk

854

Update Methods - EndUpdate - FD

Update Methods - EndUpdate

Ends the temporary suspension of program updates.

Declaration: EndUpdate;

Source Code
Delphi

Scripting

855

> Expand source

Update Methods - BeginFormulaUpdate - FD

Update Methods - BeginFormulaUpdate

Temporarily suspends automatic property calculations.

Declaration: BeginFormulaUpdate;

Source Code
Delphi

Scripting

856

> Expand source

Update Methods - Begin Update - FD

Update Methods - BeginUpdate

Temporarily suspends program updates.

Declaration: BeginUpdate;

Source Code
Delphi

Scripting

857

> Expand source

Update Methods - Refreshimage - FD

Update Methods - Refreshimage

Refreshes the current screen image. Same as ImageRefresh.

Declaration: Refreshimage

Source Code
Delphi

Scripting

858

> Expand source

Update Methods - NewChangeGroup - FD

Update Methods - NewChangeGroup

Creates a new program change group.
Declaration:

NewChangeGroup(AName: String);
Source Code

Delphi

Scripting > Expand source

859

Update Methods - PostChanges - FD

Update Methods - PostChanges

Post all opened change groups to the program.

Declaration: PostChanges;

Source Code
Delphi

Scripting

860

> Expand source

Update Methods - EndFormulaUpdate - FD

Update Methods - EndFormulaUpdate

Ends the temporary suspension of automatic property calculations.

Declaration: EndFormulaUpdate;

Source Code
Delphi

Scripting

861

> Expand source

Update Methods- ImageRefresh - FD

Update Methods - ImageRefresh

Refreshes the current screen image. Same as Refreshimage.
Declaration:

ImageRefresh;

Source Code
Delphi

Scripting

862

Windows Controls - Functions -- Xfer from Freshdesk

Windows Controls - Functions -- Xfer from Freshdesk

863

Windows Controls - FindWindow - FD

Windows Controls - FindWindow

Finds a window based on the given criteria. Returns the window handle if successful or 0 if the window is not found.
Contains, Excludes and Exact are optional.
Declaration:

FindWindow(StartsWith, Contains, Excludes: String; Exact: Boolean): Integer;
Source Code

Delphi

Scripting > Expand source

864

Windows Controls - FocusWindow - FD

Windows Controls - FocusWindow

Gives focus to the window given by Hwnd.
Declaration:

FocusWindow(Hwnd: Integer);

Source Code
Delphi

Scripting

865

> Expand source

Windows Controls - Procedures -- Xfer from Freshdesk

Windows Controls - Procedures -- Xfer from Freshdesk

866

Windows Controls - Send Key - FD

Windows Controls - Send Key

Sends the given KeyCode to the active PlanSwift control.

Declaration: SendKey(AKey: Integer);

Source Code
Delphi

Scripting

867

> Expand source

Windows Controls - SendKeys - FD

Windows Controls - SendKeys

Declaration:

SendKeys(AKeys: String);

Source Code
Delphi

Scripting

868

Sends a string of keystrokes to the active PlanSwift control. Same as TypeKeys

> Expand source

User Input - Functions -- Xfer from Freshdesk

User Input - Functions -- Xfer from Freshdesk

869

User Input - ResultPointV2 - FD

User Input - ResultPointV2

Returns the y2 coordinate from the last Getline or GetRect.

Declaration: ResultPointY2: Double;

Source Code
Delphi

Scripting

870

> Expand source

User Input - GetPoint - FD

User Input - GetPoint
GetPoint prompts the user to select a point by clicking on the active plan, the returns the point coordinates in Xand Y .
If the user clicks a valid point, the result is 1 (True), otherwise the result is O (False).
Declaration:

GetPoint(Var X: Double; Var Y: Double; Hint: String): Integer;

Source Code
Delphi

Scripting > Expand source

871

User Input - ResultPointX2 - FD

User Input - ResultPointX2

Returns the x2 coordinate from the last Getline or GetRect.

Declaration: ResultPointX2: Double;

Source Code
Delphi

Scripting

872

> Expand source

User Input - GetLine - FD

User Input - GetLine

Prompts the user to click 2 points on the active plan to define a line then returns the coordinates in p1 and p2.
Returns 1 if the function is successful or 0 if the user cancels.
Declaration:

GetlLine(Var p1x: double; Var ply: double; Var p2x: double; Var p2y: double; Hint: String): Integer;
Source Code

Delphi

Scripting > Expand source

873

User Input - ResultPointX - FD

User Input - ResultPointX

Declaration: ResultPointX: Double;

Source Code
Delphi

Scripting

874

Returns the x coordinate from the last Getpoint, Getline or GetRect.

?> Expand source

User Input - GetRect - FD

User Input - GetRect

Prompts the user to click 2 points on the active plan to define a rectangle then returns the coordinates in p1 and p2.
Returns 1 if the function is successful or 0 if the user cancels.
Declaration:

GetRect(Var p1x: double; Var ply: double; Var p2x: double; Var p2y: double; Hint: String): Integer;
API Call

Delphi

Scripting > Expand source

875

User Input - ResultPointY - FD

User Input - ResultPointY

Declaration: ResultPointY: Double;

Source Code
Delphi

Scripting

876

Returns the y coordinate from the last Getpoint, Getline or GetRect.

?> Expand source

Iltems - Functions -- Xfer from Freshdesk

Items - Functions -- Xfer from Freshdesk

877

ltems - SelectedPage - FD

Items - SelectedPage

Returns the full path to the currently selected page.
If no page is selected and an empty string is returned.

Declaration: SelectedPage: String;

Source Code
Delphi

Scripting > Expand source

878

Iltems - IsType - FD

Items - IsType

Returns 1 (True) if the item is of type given, otherwise returns O (False).
Declaration:

IsType(ItemPath, Type: String): Integer;
Source Code

Delphi

Scripting > Expand source

879

[tems - Childltem - FD

Items - Childltem

Returns the full path of the child item at position Index in the list. If the child item does not exist an empty string is returned.
Declaration:

Childitem(ItemPath: String; Index: Integer): String;
Source Code

Delphi

Scripting > Expand source

880

Items - Parentltem - FD

Items - Parentltem

Returns the parent item for the given item.
If the function fails an empty string is returned.

Declaration:

Parentltem(ItemPath: String): String;

Source Code
Delphi

Scripting > Expand source

881

Items - StartRecording - FD

Items - StartRecording

ItemPath is optional. If provided, ItemPath must be a digitizer object.
If is omitted, PlanSwift will attempt to record the currently selected item, if any.

Returns 1 (True) if successful, otherwise returns O (False).
Declaration:

StartRecording(ItemPath: String): Integer;
Source Code

Delphi

Scripting > Expand source

882

Items - MoveltemTo - FD

Items - MoveltemTo

Returns True if the given item is successfully moved to a new parent item.
MoveAction is optional, can be Above, Below or IntoTop otherwise will default to IntoBottom.

Declaration:

MoveltemTo(ItemPath, NewParent, MoveAction: String): Boolean;
Source Code

Delphi

Scripting > Expand source

883

I[tems - Selectedltem - FD

Items - Selectedltem

Returns the full path to the currently selected item If no item is selected an empty string is returned.

Declaration: SelectedItem: String;
Source Code

Delphi

Scripting > Expand source

884

Items - Newltem - FD

Items - Newltem

Creates a new child item for the given item.
ItemType is optional and allows you to set the type of item to create.
Name is optional, sets the name for the new child item.

Declaration:

Newltem(ItemPath, ItemType, Name: String): String

Source Code
Delphi

Scripting

885

[tems - ChildCount - FD

Items - ChildCount

Returns the number of child items for the item.
Declaration:

ChildCount(ltemPath: String): Integer;
Source Code

Delphi

Scripting > Expand source

886

[tems - Deleteltem - FD

Items - Deleteltem

Deletes the given item from the system. Returns 1 (True) is successful, otherwise O (False).' Declaration:

Deleteltem(ItemPath: String): Integer;
Source Code

Delphi

Scripting > Expand source

887

Iltems - Procedures -- Xfer from Freshdesk

Items - Procedures -- Xfer from Freshdesk

888

[tems - ShowLabel - FD

Items - ShowLabel

Sets the visibility of an items label.
Declaration:

ShowLabel(ltemPath: String; Visible: Boolean);
Source Code

Delphi

Scripting > Expand source

889

Sections - Functions -- Xfer from Freshdesk

Sections - Functions -- Xfer from Freshdesk

890

Sections - PointCount - FD

Sections - PointCount

Returns the number of points recorded for the section.

Declaration:

PointCount(ltemPath: String): Integer;

Source Code
Delphi

Scripting

891

> Expand source

Sections - NewSection - FD

Sections - NewSection

Adds a new section to a digitized type item and returns the full path to the new section.
If ParentPath does not exist, or is not a digitzer item, this function fails and returns an empty string. SectionName is optional.
Declaration:

NewSection(ParentPath, SectionName: String): String;
Source Code

Delphi

Scripting > Expand source

892

Sections - PointX - FD

Sections - PointX

Returns the X coordinate of the point given by Index
If this function fails the return value is -1.

Declaration:
PointX(ItemPath: String; Index: Integer): Double;

Source Code
Delphi

Scripting > Expand source

893

Scripting - PointY - FD

Scripting - PointY

Returns the Y coordinate of the point given by Index If this function fails the return value is -1.

Declaration:
PointY(ItemPath: String; Index: Integer): Double;

Source Code
Delphi

Scripting > Expand source

894

Sections - Procedures -- Xfer from Freshdesk

Sections - Functions -- Xfer from Freshdesk

895

Sections -SetPoint - FD

Sections - SetPoint

Sets the X, Y coordinates of the given point.

Declaration:

Source Code
Delphi

Scripting

896

SetPoint(ItemPath: String; Index: Integer; X, Y: Double);

> Expand source

Sections - AddPoint - FD

Sections - AddPoint
Adds a new point given by X, Y to the item.

ItemPath must specify an existing digitizer object or the procedure fails.

Declaration:

AddPoint(ItemPath: String; X, Y: Double);

Source Code
Delphi

Scripting

897

> Expand source

Sections - DeletePoint - FD

Sections - DeletePoint

Deletes the point at position Index.
Declaration:

DeletePoint(ItemPath: String; Index: Integer);
Source Code

Delphi

Scripting > Expand source

898

Properties - Functions -- Xfer from Freshdesk

Properties - Functions -- Xfer from Freshdesk

899

Properties - GetPropertyResult - FD

Properties - GetPropertyResult

Returns the calculated result of the given property as a variant.
Declaration:

GetPropertyResult(ltemPath, PropertyName: String): Variant;
Source Code

Delphi

Scripting > Expand source

900

Properties - GetResultAsInteger - FD

Properties - GetResultAsInteger

Returns the calculated result of the given property.
Default is an optional return value for the function in case of failure. If Default is not provided it defaults to 0
Declaration:

GetResultAsinteger(IltemPath, PropertyName: String; Default: Integer): Integer;

Source Code

Delphi
> Expand source

901

Properties - GetPropertyAttributelist - FD

Properties - GetPropertyAttributeList

Returns a Name=Value list of the given property attributes.
Declaration:

GetPropertyAttributelList(Itempath, PropertyName: String): String;
Source Code

Delphi

Scripting > Expand source

902

Properties - GetPropertyFormula - FD

Properties - GetPropertyFormula

Returns the formula for the given property.
Declaration:

GetPropertyFormula(ltemPath, PropertyName: String): String;

Source Code
Delphi

Scripting

903

> Expand source

Properties - GetPropertyCount - FD

Properties - GetPropertyCount

Returns the number of properties for the given item.
Declaration:

GetPropertyCount(ltemPath: String): Integer;

Source Code
Delphi

Scripting

904

> Expand source

Properties - GetPropertyName - FD

Properties - GetPropertyName
Returns the name of the nth property in the propertylist.

Declaration:

GetPropertyName(ltemPath: String; Index: Integer): String;
Source Code

Delphi

Scripting > Expand source

905

Properties - GetResultAsFloat - FD

Properties - GetResultAsFloat

Returns the calculated result of the given property.

Default is an optional return value for the function in case of failure. If Default is not provided it defaults to 0.

Declaration:

GetResultAsBoolean(IltemPath, PropertyName: String; Default: Double): Double;

Source Code
Delphi

Scripting > Expand source

906

Properties - GetResultAsBoolean - FD

Properties - GetResultAsBoolean
Returns the calculated result of the given property.
Default is an optional return value for the function in case of failure. If Default is not provided it defaults to FALSE.
Declaration:

GetResultAsBoolean(ltemPath, PropertyName: String; Default: Boolean): Boolean;

Source Code
Delphi

Scripting > Expand source

907

Properties - GetResultAsString - FD

Properties - GetResultAsString

Returns the calculated result of the given property.
Default is an optional return value for the function in case of failure. If Default is not provided it defaults to an empty string.
Declaration:
GetResultAsString(ItemPath, PropertyName: String; Default: String): String;
Source Code
Delphi

Scripting

908

Properties - GetPropertyAttribute - FD

Properties - GetPropertyAttribute

Returns the value of the given Item Property Attribute

Declaration:

Source Code
Delphi

Scripting

909

GetPropertyAttribute(ltempath, PropertyName, AttributeName: String): String;

> Expand source

Properties - Procedures -- Xfer from Freshdesk

Properties - Procedures -- Xfer from Freshdesk

910

Properties - SetPropertyAttribute - FD

Properties - SetPropertyAttribute
Attempts to set the Item Property Attribute to the given Value.

Declaration:

Source Code
Delphi

Scripting

911

SetPropertyAttribute(ltemPath, PropertyName, AttributeName, Value: String);

> Expand source

Properties - Set PropertyFormula - FD

Properties - SetPropertyFormula

Sets the given property to the value specified if possible.

Declaration

SetPropertyFormula(ltemPath, PropertyName: String; Value: Variant; Type: String);

912

Properties - Delete Property - FD

Properties - Delete Property

Deletes a property from the item.
Declaration:

DeleteProperty(IltemPath, PropertyName: String);

Source Code
Delphi

Scripting

913

> Expand source

Misc - Functions -- Xfer from Freshdesk

Misc - Functions -- Xfer from Freshdesk

914

Misc - ExecuteScript - FD

Misc - ExecuteScript

Executes the script property PropertyPath and returns the result as a variant.

Paramx is the optional string parameters to pass to the script. Failure to pass required parameters could lead to errors or failure. All scripts should check for invalid
parameters and exit gracefully.

Declaration:

ExecuteScript(PropertyPath, param1, param2, param3, param4, param5, paramé, param7, param8, param9: String;): Variant;

Source Code
Delphi

Scripting > Expand source

915

Misc - Current User - FD

Misc - Current User

Returns the username of the current user.

Declaration: CurrentUser: String

Source Code
Delphi

Scripting

916

> Expand source

Dialogs - Function -- Xfer from Freshdesk

Dialogs - Function -- Xfer from Freshdesk

917

Dialogs - Editltem - FD

Dialogs - Editltem

Loads the given item into the Item Editor then displays to the user for editing.
If ’temPath does not exist or if the user cancels the dialog the function fails and returns False.
Declaration:

Editltem(ItemPath: String): Boolean;
Source Code

Delphi

Scripting > Expand source

918

Dialogs - ScriptMessageDialog - FD

Dialogs - ScriptMessageDialog

Declaration: ScriptMessageDialog

Source Code
Delphi

Scripting

919

> Expand source

Dialogs - Message Dialog - FD

Dialogs - Message Dialog Declaration:

MessageDialog();

920

Dialogs - SelectltemDialog - FD

Dialogs - SelectltemDialog

Displays the PlanSwift ItemDialog with specified parameters that were passed as arguments.

Declaration:
SelectitemDialog(AHeader: String = '; ACaption: String = "'; Rootltem: String = ");

Source Code

Delphi

Scripting > Expand source

921

Dialogs - Procedures -- Xfer from Freshdesk

Dialogs - Procedures -- Xfer from Freshdesk

922

Dialogs - EditScriptProperty - FD

Dialogs - EditScriptProperty
Loads the specified script property into the script editor and displays to the user for editing.

Declaration:
EditScriptProperty(ltemPath, PropertyName: String);

Source Code

Delphi

Scripting > Expand source

923

Dialogs - Objects -- Xfer from Freshdesk

Dialogs - Objects -- Xfer from Freshdesk

924

Dialogs - CustomDialogs - FD

Dialogs - CustomDialogs

One of the great new features in PlanSwift9 is the ability to create reusable dialogs using stored items and properties, simply design an item with only the desired
properties set as Input.

Source Code:

Delphi

Scripting > Expand source

925

PlanSwift SDK -- Xfer from Freshdesk

PlanSwift SDK -- Xfer from Freshdesk

926

PlanSwift9 SDK - FD

PlanSwift9 SDK

Description:

PlanSwift9 SDK Version 1.2 is now available. This SDK contains the necessary source code for Delphi, Excel, C#, VBA, and HTA. There are several examples for you to use.

What's in the package:

The zip file contains 3 folders:

|| Mame
| Delphi 2007
J HTA

L. VBA

Delphi Source Code:

Name Type
P2 excelform Delphi Form
PR excelform Delphi Source File
| excelform.deu DCUFile
2 main Delphi Form
BB main Delphi Source File
|| main,dcu DCU File
PR Planswift TLB Delphi Source File
__| PlanSwift_TLB.dcu DCU File
__ readme Text Document
2 5DK_Demo Delphi Project File
P2 5DK_Demo Delphi Project File
[575DK_Demo Application
|| SDK_Demo.dprojlocal LOCAL File
_| 5DK_Demo.identcache IDENTCACHE File
|| SDK_Demo.res RES File
|| Work Order.dotx DOTX File
Sample HTA
Mame Type
[comDEMO HTML Application

Sample Excel Addin

=

Mame Type
?ml‘]]' PlanSwift Microsoft Office Excel Ad...
,_, Readme Text Document

o

Planswift9_SDK.zip (1.62 MB)

927

2045
Development Archives - OLE Automation Manual

«What is COM?
What is OLE Automation?

What is COM?

Component Object Model (COM) is an interface standard for software componentry introduced by Microsoft in 1993. It is used to enable interprocess communication and
dynamic object creation in any programming language that supports the technology. The term COM is often used in the software development industry as an umbrella term
that encompasses the OLE, OLE Automation, and ActiveX, COM+DCOM technologies.

The essence of COM is a language-neutral way of implementing objects that can be used in environments different from the one they were created in, even across machine
boundaries. For well-authored components, COM allows reuse of objects with no knowledge of their internal implementation, as it forces component implementers to provide
well-defined interfaces that are separate from the implementation. The different allocation semantics of languages are accommodated by making objects responsible for their
own creation and destruction through reference-counting. Casting between different interfaces of an object is achieved through the Queryinterface() function. The preferred
method of inheritance within COM is the creation of sub-objects to which method calls are delegated.

Although the interface standard has been implemented on several platforms, COM is primarily used with Microsoft Windows. COM is expected to be replaced at least to some
extent by the Microsoft .NET framework, and support for Web Services through the Windows Communication Foundation (WCF). However, COM objects can still be used with
all .NET languages without problems. Networked DCOM uses binary proprietary formats, while WCF encourages the use of XML-based SOAP messaging. COM is very similar to
other component software interface standards, such as CORBA and Java Beans, although each has its own strengths and weaknesses. It is likely that the characteristics of COM
make it most suitable for the development and deployment of desktop applications, for which it was originally designed.

929

What is OLE Automation?

In Microsoft Windows applications programming, OLE Automation (later renamed by Microsoft to just Automation, although the old term remained in widespread use), is an
inter-process communication mechanism based on Component Object Model (COM) that is intended for use by Scripting Languages -originally Visual Basic, but now many
languages that run on Windows. It provides an infrastructure whereby applications called automation controllers can access and manipulate (i.e. set properties of or call
methods on) shared automation objects that are exported by other applications. It supersedes Dynamic Data Exchange (DDE), an older mechanism for applications to control
one another. As with DDE, in OLE Automation the automation controller is the "client" and the application exporting the automation objects is the "server".

930

Enabling the AllowManualActivation Property

The “Enable Manual Activations” checkbox in the license manager has been hidden so that it is no longer available to the user. Manual Activation may still

be enabled through U-T-H Settings.

To enable manual activation:

1. Enable U-T-H (Under the Hood)
2. Select U-T-H from the main menu, right click on “Settings” and select “Properties”
3. In the Properties Form, click the “Advanced” button.

4. In the “Other” section, near the bottom (before “Sales Tax 1” and “Sales Tax 2”), look for a property named “AllowManualActivation”.

@ Edit Property

Name: AllowManualactivation L
] Expression
v I

Group: (Other ~|

Tool Hint: | |

[JRemember value [parse Formula

Input Options
5. If this property exists, check the checkbox to set its value to “True”.
6. If this property does not exist, create a new property called “AllowManualActivation”, with a Type of “Checkbox” and a Group of “Other”.

Save the new property and then check the checkbox to set its value to “True”.

| salesTat o % 0.00
o % .00

True

: AllowManual Activation

7. Manual activation should now be enabled.

Contact Us

To contact PlanSwift:

For existing customers,give us a call at888-752-6794, option 1. If you're calling about a simple issue such as activation, one of our customer care specialists
can take of you right away. If your issue is more involved, we'll open a case and have a technical support rep follow up. We work all cases in the order they are
received - follow up times vary but we will get back to you as soon as possible

If you are interested in purchasing PlanSwiftgive us a call at888-752-6794, option 2. One of our amazing Sales Team members will be happy to help you.

You can send an e-mail tosupport@planswift.comPlease include your name, phone number, company name, and a detailed description of your issue. If
you want us to call you, let us know the best times to reach yoyNote: to ensure that you receive our response, please adsupport@planswift.comto your email
contact list or safe senders list.)

Business Hours
We are available to help youMonday - Friday 6 am - 6 pm (MST).

®
22 planswift

Related articles

EContact Us

931

Draft/Needs Update

(Missing Images) How To: Add a Bookmark

(Needs Images + Updated Link) Online Forum

Area Pro (Check Links)

Concrete for Budget Takeoff (check links)

Digitizing or Moving Beyond the Current View (Zoom) (Needs Images)
Drag and Drop Folders from Templates to Estimating (Needs Images/Video)
Export to MS Project for PlanSwift version 9 (Check Links)

How To: Add Attachments to a Project. (Needs Images)

How To: Create Advanced Parts Using Expressions (Needs Updates)
How To: Use the Fill Down and Fill With (Needs Images)

Import a Job from a PlanSwift E-Mail

Multiline Tool (Needs Image)

Painting (Check Links)

Plumbing Standard (Check Links)

Select and Set (Check Links)

Shape Stamper (Check Links)

+ Subtracting a Section (Needs images)

Switch Pages from Takeoff Summary (Needs Images)

932

(Missing Images) How To: Add a Bookmark

Bookmarks provide an easy way to quickly move to pages and even specific areas of pages. By default, PlanSwift docks the Bookmarks to the Pages window. The Pages window
is at the top, the Bookmarks window below that.

|’ pre—
10;) Home | page Tools View Estimating Lists Tempfates Setﬁngs Rep-orts Heip Ptugins Eﬁﬂ- |
—=
3=, N QQQQ@s*ﬂib
Mew Open Pnnt Email SwiftMaps Back Fuwd Zoom Zoom Zoom Pan Scale Dimension Area Lm ear
lob Page In Out i
Job Nawigate. Zoom / Pan Measyre
Pages, Bookmarks «“

2O t started today with these videos,

x| \nks, keyboard hotkeys & shortcuts

Purchase
> PlanSwift’

|_] Al, ZFIoor an - Sample Plans =
an - Sample Plans

NVatch our Tutorial Videos

r Elevation - Sample Plans
cal Plan - Sample Plans
Plan - Sample Plans

0 Annotations

Getting Started

Chat with
’-J Support

cape Plan - Sample Plans - Start a New Project B Creating an Arc

GO G D DD DD

an - Sample Plans =
Plans g Open Existing Projects 3 Qverlay a Page = Knowledge
. : 1 Base
Setting the Scale D Excel Integration
T - s i
% T Parts and Assemblies D PlanSwift Videos Webinars

&Training

Q Main Page View
Q Keyboard Hotkeys
[%] videas and Links

-

el el

{eyboard Hotkeys & Shortcuts Legend

%] Isometric View = ;ﬂagniﬂr Push and hold M on the keyboard to Magnify
(4 Meris and Womer's Restrooms = Menu Right Click on any item or page to get a Menu of options I
Pan Right Click and Hold it down to Pan across the page l
Undo Use the Backspace button or CTRL Z to Undo points when digitizing '

If you wish, you can undock the Bookmarks window by right-clicking the Pages, Booksmarks window header, clicking on Bookmarks, then clicking on Undock.

40) Home Page Tools View Estimating Lists Templales Settings

[— 2
& Bookmarks - O x
SSEm, N QQQ<
Mew Open Print Email SwiftMap Zoom = <+ 0 # Tl
Job Page |
Job [Pan Search: | |
Pages, Bookmarks [%] Main Page View =
e > | pade [%] Keyboard Hotkeys =
~
+ g # e ?1 0 [%] Videos and Links
[%] 1sometric View =

Search:

Al.1 Community Cente:
:ﬂ 41,2 Floor Flan - Sample Flans
@ A1.4RoofPlan - Sample Plans
@ AZ.1Exterior Elevation - Sample Plans &
E1.0 Electrical Plan - Sample Plans &

Dock Left
Dock Right
Dock With

Reset Layout [%] Men's and Women's Restrooms

The undocked window can now be dragged to wherever it is convenient for you.

933

‘_‘_”) Home: Page Tools View Estimating Lists Templat

R
MWew Open Print Email SwiftMaps Back Fwd Zoom
Job
Job | Mavigate
Pages %
F+O0BUOO 2t starte:
Search: | % |nks, keyl
) Al.1 Community Center ... = & 4
& A1.2Flgor Plan - Sample Plans =
<&l Al.4RoofPlan - Sample Flans & Vatc h O u
A2, 1Exterior Elevation - Sample Plans L2 e
1.0 Electrical Plan - Sample Plans i Gu:thng Started
M2, 1HVAC Plan - Sample Plans L3
L1.0 Landscape Flan - Sample Plans = 3R Start a New Pro
C1.15ite Plan - Sample Plans = &
& Jnist Tool Plans H @ 1 Open Existing P
dﬂ Bookmarks
M+ O
Search: |
@ Main F;age View =
@ Keyboard Hotkeys =
@ Videos and Links]
%] 1sometric view = p
@ Men's and Women's Restrooms = r

To add a Bookmark, first select the page from the Pages window that you would like to bookmark. If you want to bookmark a particular area of the page, pan to that area
(right-click and drag). If you want it zoomed in on, use the mouse wheel to zoom to the level that you would like. Bookmarks automatically store both the pan and zoom
settings in place at the time you create the bookmark. Bookmarks may also be organized and stored in folders. To set a bookmark, click on the green plus (+) in the Bookmarks
window, enter the new name for the bookmark in the Bookmark window that opens, and click on OK.

‘e') Home = page Tools Wiew Estimati Lists Settings Reports Help Plugins Iear—|
~E5 N €« QAAAQAN -« Ml7 - S H
> = Ty < ®
Mew Open Print Email SwiftMaps Back Fwd Zoom Fit Zoom Zoom Pan Scale Dimension Area Linear Segment Count single Send Digitizer
Job Page In Out 2 =% X 't X Click~ Data Recard
Job | Mavigate Zoom / Pan Measure Takeoff R
Pages %
-)
+OLOO
Search: | ‘E

fll A1.1Community Center - Sample... =
. 2 Floor Plan - Sample Plans =

oof Plan - Sample Plans

A2.1 Exterior Elevation - Samp...

E1.0 Electrical Plan - Sample Plans

M2, 1HVAC Plan - Sample Plans

L1.0 Landscape Plan - Sample Plans =

C1.15ite Plan - Sample Plans =

Joist Tool Plans H

R

N\
1‘__ Bookmarks — O A
® g ﬁ ﬂ Bookmark n

N

Search: | |
Bookmark Mame; |Iso Yie
[%] Main Page View (=
[Keyboard Hotkeys (= [] Create Snapshat

@ Videos and Links
@ Isometric View

[%] Men's and Women's Restrooms = !x Cancel |

934

The new bookmark appears in the Bookmark window.

K Bookmarks = O *
=R > -
Search: |
[%] Main Page View =
[%] Kkeyboard Hotkeys =
@ Videos and Links
[1sometric view @
[%] Men's and Women's Restrooms =

@ Iso View

If you want to move the new bookmark to a higher level, click on the bookmark, then click on the up/down arrows button. This opens the Adjust Bookmarks Order window,
where you can click on any bookmark, then click on the arrow keys to move the bookmark. The two large up and down arrows on the right move the bookmark all the way to
the top or bottom of the list. The two small up and down arrows on the left move the bookmark up or down one line for each click.

£ .
M Bookmarks — O X | djust Bookmarks Order/ X

T D T e— v ol 2|2 Y

| ! @ Main Page View

Search: | :
o i @ Keyboard Hotkeys
@ Main Page View = @ Videos and Links
@ Keyboard Hotkeys = @ Isometric View
[%] videos and Links [%] Men's and Women's Restrooms
%] 1sometric View = Sl
@ Men's and Women's Restrooms =

S 1 il

The left and right arrows allow you to move the bookmark into or out of any folder you can create using the folder button in the Bookmarks window.

935

rl .

ffﬁeﬁ.’_f — O » “ Adjust Bookm rder »®
+ OB f vl F A X
.@ Main Page View
Seardh: i cpa e o
_ | _ | [l Keyboard Hotkeys
%] Keyboard Hotkeys = @ Videos and Links
%] Videos and Links %] Isometric View
%] Tsometric View = [Men's and Women's Restrooms
E Tso Wiew - 'Iﬂ
[%] Men's and Women's Restrooms L] Isa view
5
T
.T_ z. .
i 11T T T T I
T . 3]
1R == ;
ti | | I|| " " !il || " |||: m TF— =T =it LN L] Ll ey e i i i

Once the bookmark is added, simply click on it to immediately view the page (and the location on the page) saved with the bookmark.

2

Enter a name for the Bookmark, check the box for Create Snapshot if you want to capture a small image of the bookmarked area, then click Ok. To view the snapshot of the
Bookmark, click in the camera icon to the right of the bookmark name.

.,

Now there is a created Bookmark in the Bookmark window. Anytime a page is open, clicking the desired Bookmark in the list will automatically change the page to a view of
that specific Bookmark.

(Needs Images + Updated Link) Online Forum

E &
|I:Vi5it the PlanSwift Forum for help OR ll.OnIine Forum Button 2

The PlanSwift Online Forum is your place to connect with other users of PlanSwift to share and learn new ideas. You can also connect with PlanSwift experts inside the forum
to gain great information.

1. To connect with the forum from inside PlanSwift, you need to have an internet connection, then select the "PlanSwift Online Forum" button.

i;:loin the PlanSwift forum to share ideas and get help OR D,Dnline Forum Selected 2

2. You will need to register to become a forum member to post questions and comments. You can register by clicking here.

936

Export to MS Project for PlanSwift version 9 (Check Links)

. Main Form

P

1.1. PlanSwift default names of properties column and
user-defined names

Description: These fields are made for multi-language support and User Defined Export of Costs and Prices (where Price Each or Cost Each = MS Project Resource Standard Rate
and Price Total or Cost Total = MS Project Task or Assignment Costs). In the main case, they do not need edition.

1.2. Parts exporting to Resources options

Description: Here are five combos. They manage the way that each different Part Type is exported to MS Project. Available options are Material, Work and Cost (2007 and up).

1.3. The Logic of Export is (for now fixed L):
1.3.1. If Item Type is Folder, Digitizer or Assembly it will create Tasks;

1.3.2. If Item Type is Part, Material, Labor, Equipment, Sub or Other it will check Parts exporting options and create Resources and add Assignments(There is a checkfor
resource uniqueness a€“ key is Part Type and Part Name)

1.4. The Result is a Copy of Estimating but in MS Project

BUT ONLY IF the logic of used methodology in estimating is equal to Logic of Export. In other words: in the estimating must not be used Items with Type 4€"ITEMa€™ and
Parts are Childs of 4€"Tasksa€™ and do not have their own SubChilds.

- See more at: http://www.planswift.com/phpkb/article/export-to-ms-project-for-planswift-version-9-2227.html#sthash.GGfLLnjj.dpuf
How To: Create Advanced Parts Using Expressions (Needs Updates)

In this article, we will cover how to create advanced parts using expressions.

An expression in a programming language is a combination of values, variables, operators, and functions that are interpreted (evaluated) according to the particular rules of
precedence and of association for a particular programming language, which computes and then produces (returns, in a stateful environment) another value.

The expression is said to evaluate to that value. As in mathematics, the expression is (or can be said to have) its evaluated value; the expression is a representation of that
value.

Requirements:
Version 8.5
Difficulty - Moderate

>y

This part will be a drywall item where you can select the sheet size, sheet thickness, and type of drywall. Based on the selections you make, you can determine a unit price to
apply to the sheet count that is generated. This will allow you to create one complex part rather than several individual parts.

1. Click on the "New Part" button located at the top of the estimating window to add a new item.
2. Give the part a name. In this example, we will use "Drywall Template".

Tip: At this point, it is good practice to think about all of the variables you will need for your part. Map it out with paper and pencil first, this will help you to think it through
before you start writing the necessary code.

1. In my example, | have determined that | need to create the following properties (shown in blue):

937

Sheet Width and Sheet Height (to specify the sheet size | want). Check the box to set it as an input.

Layers for Side A and Layers for Side B (this will allow me the flexibility to specify different layers for each side i.e. Side A specifies - 1 layer and side B - 2 layers). Check
the box to set it as an input.

Sheet Thickness (1/4", 1/2", 5/8", etc.; set the type to Text and check the box for input).

Type (Std. Gyp, Type-X, Moisture Resistant etc.) Set the type to Text and check the box for input.

SqgFt Calc (for calculating the gross Sq Ft of board)

1/4" Std Gyp, 1/2" Std Gyp, 5/8" Std Gyp, 1/4" Type-x, 1/2" Type-x, 5/8" Type-x, 1/4" MR, 1/2" MR, and 5/8"MR (for entering the price per square foot). 1/4" Price,
1/2" Price, and 5/8" Price (this is where we will write the expressions). After entering the name, change the type to Expression (Pascal).

We will also take advantage of the List feature as we create the new properties. For sheet Thickness, create a list of 1/4", 1/2", 5/8" and check the box to only select
from this list. For Type, create a list of Std. Gyp, Type-X, Moisture Resistant and check the box to only select from this list. You can change the names or add more to suit
your own needs; just remember to add them in to the expressions as well.

Tip: When creating new properties, | like to utilize the Group feature. You will notice | have created a group for the properties that | have set to be input items. This will not affect
the calculations in any way but just keeps things organized.

1. Start with the basic calculations first..e

Let's do the Gross Square footage first. You can see we have used ([Area]* ([Layers Side A] + [Layers Side B])). This is giving you the correct square footage to start the
calculation.

Now we can build the QTY calculation - RoundUp([Gross SqFT] / ([Sheet Width * Sheet Height)). This will take the gross square footage we just calculated above and
divide the footage by the square footage of the sheet size. This will give us the sheet count required and round to the nearest full sheet.

The Price Each calculation is where we will use the nested property - [[Size] price] this takes the value from the property "Size" and appends it to the text " price" thus
creating the property of, for example, "1/4" Price". Note: Be mindful of any spaces you create in property names as these are recognized as characters. In this example,
there is a space before "price".

After [[Size] price], which is going to be the price per square foot, add *([Sheet Width]*[Sheet Height]). This will now calculate the price per square foot and multiply by
the square footage of the sheet size. This will give you the price per sheet.

The Price Total is simply left as the QTY multiplied by the Price of each sheet.

. Now for the Expressions... A

N

o
Open the Edit Formula window by clicking on the ellipses button (I.l;) in the value field. This will open the Edit Formula window. This window allows a greater view of
the formula you are creating. This is the area where everything is case sensitive.
Let's start with the IF statement - If('[Type]' = 'Std. Gyp.') then Result := [1/4" std gyp] else
This is saying if the 'Type' property is exactly equal to the value 'Std. Gyp.' then use the result that is in the '1/4" std gyp' property. If it isn't, then read the next line. This
repeats until the code reads Else Result := 0 thus if none of the criteria match, use 0.

3. You can copy this formula and paste it into the other properties for the other sizes; just edit the [1/4"...] to match the appropriate size.

4. We're almost ready to try our new part! Now just populate the price per square foot for all of the different types you have created.

P
. Here is one more expression you can use if you like. This one can be set up in the Name property. Double click on the Name property and once again set the 'Type' to
Expression (Pascal).

w

IF ([Area] = 0) then Result := 'Drywall Template' else Result := '[Sheet Width] X [Sheet Height] X [Size] [Type]'
This states that when the [Area] is equal to O use 'Drywall Template' for the Name; if not, use the sheet height, width, size and type based on the selections chosen from
the inputs.

With all of the calculations completed, your part is ready for use. Try it on a practice area by dragging it from the SwiftDepot window on to your Digitizer. It should open the
'Input' window and you should be able to select from your drop-down menu: the size and the type of drywall, the sheet height and width, and the number of layers on each
side of the wall. If it is a ceiling, just use one of the sides.

It is always a good practice to try all of the different combinations from your newly created part to check for any errors and correct them. With the addition of the expressions,
this type of dynamic part can be created for any number of building components. Drywall, concrete, metal and wood studs, pricing, names, grades, gauges. The possibilities are
almost limitless!

938

Import a Job from a PlanSwift E-Mail

1. Open the PlanSwift email in your default email client (Outlook, Yahoo, Gmail, etc...) The email
should look something like the information listed below.

A PlanSwift user has sent you some files.

Click the following link to download:
http://share.planswift.com/download/?file=J86E1SS3-7AN8-HD4S-CO6A-4LIVW6EVBBWS This file will
be available for download for 30 days from today (expiring 04/08/11).

PlanSwift is the #1 takeoff and estimating software, and it comes with powerful, yet easy to use, on-screen digitizer and takeoff tools. Discover how much time you can
save with PlanSwift. Available for download at http://www.planswift.com/requesttrial

. Click the first link in the email.

. A dialog box will appear asking you to save the file. Save the file to your desktop or location of your choice.
. Open PlanSwift, if it is not already open. (If you do not have a copy of PlanSwift, click here).

. Click on the tab named Other and click the Unzip SwiftJob button.

. The Open dialog will appear. Select the file you saved in step 3 and press Open.

. The Import dialog will appear. Select your storage location (the default location is your local computer).

. Name the job (IMPORTANT: rename the job to avoid duplicates).

. Press Ok.

O 00 N O U1 B W N

This will now start the import process. Congratulations you have just imported your first job!

939

How To: Add Attachments to a Project. (Needs Images)

To add attachments to your project, start by opening the attachments sidebar window in PlanSwift.

1. Allows you to create a New Folder for organizing attachments.
2. Allows you to add attachments by opening Windows Explorer. Simply select the desired files in Windows Explorer, and click Open.
3. Allows you to delete any files or folders in the Attachments sidebar.

4. Allows you to view and edit basic and advanced properties regarding the selected Attachment. For more information about advanced properties, click hereto watch the
video.

5. Directional arrows allow you to organize the attachments by moving them up, down, left or right. Note: Moving files left or right is only useful when placing or removing files
from folders.

There is also the option of adding desired attachments to the Attachment sidebar window simply via drag and drop.

If you have multiple attachments for one job, you have the option of searching for a specific attachment or file via the Search bar located at the top of the
Attachment sidebar window.

940

Subtracting a Section (Needs images)

To subtract a section from an already existing digitized area, first select the digitized area you will be editing. Once selected, the perimeter of the digitized area should be
highlighted red.

Then, right click the digitized area and select 'Subtract from Section'.

[

From there, continue to digitize the area you would like to remove. Please note that you must stay within the bounds of the area you are subtracting from.

Video:

Drag and Drop Folders from Templates to Estimating (Needs Images/Video)

This feature was added into version 9.3. It allows for the user to drag a folder from the template window and drop it and its contents into the Estimate window.

This function greatly improves the user's ability to create specific job templates of takeoff items and parts specific to a construction sector such as, but not limited to:

* Commercial
* Residential
® Multi-Family Hotel

941

Note: This approach is more streamlined than copying and pasting from the Templates tab.

942

Switch Pages from Takeoff Summary (Needs Images)

Available in 9.3+.

1. In case you are not in Takeoff Summary, click Takeoff Summary.
2. Select the drop-down box at the top of the Takeoff Summary sidebar.
3. Select the page you wish to switch to.

L Takeoff Summary Page Switch

943

Digitizing or Moving Beyond the Current View (Zoom) (Needs Images)

Hover Scrolling - Wheel Mouse Pan - Zoom / Pan Tool - Scroll Bars

Hover Scrolling:

1. As your mouse nears the top, right, bottom, or left of the plan/takeoff screen you will notice two transparent blocks of blue (see the Hover Scroll image below). The
darker of the two has an arrow in it.

N

. Hovering (not clicking) your mouse in the darker blue box will make the plan scroll quickly in the direction of the arrow.
3. Hovering your mouse in the lighter blue box will make the plan scroll slowly in the direction of the arrow.

4. While scrolling you may press the Spacebar to reverse the direction of the scroll (see the Hover Scroll after Spacebar image below.) This is useful if you went too far and
don't want to move the mouse to the other side of the screen to scroll down.

Note: If you reach the edge of the PlanSwift drawing area, you will be presented with red boxes instead of blue. This means that you cannot scroll anymore in that direction
(see the Red Hover image below).

Hover Scroll:

leHover Scolling

Hover Scroll after Space Bar:

le_Hover Scolling - Back Red

Hover:

l#_Red Hover - Edge of page

Wheel Mouse Pan:

1. Hold your wheel mouse button down and "drag" the plan.
2. Release the button to continue digitizing or repeat step 1 to pan some more.

Pan via the Zoom / Pan tool:

1. This tool is discussed in detail in the Zoom and Pan section.

Scroll Bars:

1. On the right and the bottom of the current view, you will see scrollbars. You can click and drag these scroll bars to move around the plan.

How To: Use the Fill Down and Fill With (Needs Images)

This article will explain how to use the Fill Down and Fill With options in the right click menus on the Estimating, Templates and Reports screen.

Requirements:

* PlanSwift 9.5.8.6

* Property must exist on the item

First, select the cells in the grid that you want to update. This can be done one of two ways. Hold the CTRL key on your keyboard and click the cells in the column that you want
to update, or click the first cell, then hold the SHIFT key and select the last cell to select the range.

Right-click on one of the selected cells and select Fill With.

You will be prompted to enter a value in the dialog box.

wa

944

Select OK. The values will update.

Take note that Locked properties will not get overwritten. If your field contains a formula that you do not want over-written, it is recommended that you lock those properties.

Repeat these steps to use the Fill Down option. The only difference it that it uses the value in the topmost selected cell to fill the other selections.

Painting (Check Links)

Painting

Painting for plugin is a quick and easy database intended for swift takeoff of Painting on a budget basis. This database covers all the major type of takeoff issues that a Painting
contractor will encounter.

Plugin Sections

The database is sequenced into :
Paint Interior Wall 1 Side
Paint Interior Wall 2 Sides
Paint Interior Trim
Paint Exterior Wall by LF
Paint Exterior Wall by SF
Paint Exterior Trim
CMU & Concrete Specialties
Paint Ceilings
Paint Windows
Paint Doors & Frames
Paint Floors
Paint Stairwells

Paint Steel Shapes

*** Note, that the order of these conditions are set correctly as we have set up the data. The Planswift program will move these conditions around as you use the Plugin.
This is a known issue and the fix is under way with a future Planswift upgrade.

Takeoff View:

This is a screenshot of the takeoff window. Notice the sequence of the folders on the right side.

>

Each folder is discussed in detail below.

Paint Wall on 1 Side

This section is to be used when you are painting a wall on one side only. There are child folders for different paint substrates such as:
Paint Wall on 1 Side GWB
Paint Wall on 1 Side CMU
Paint Wall on 1 Side Concrete

Paint Wall on 1 Side Plaster

945

Paint Wall on 1 Side Wood

Stain Wall on 1 Side Wood

Each sub section in turn is organized as follows. For this example we are using the GWB as an example:
Paint Wall on 1 Side GWB
Paint Wall Primer & 2 Coats on 1 Side GWB 8'
Paint Wall Primer & 2 Coats on 1 Side GWB 9’
Paint Wall Primer & 2 Coats on 1 Side GWB 10'
Paint Wall Primer & 2 Coats on 1 Side GWB 11'
Paint Wall Primer & 2 Coats on 1 Side GWB 12'
Input other height

Paint Wall Primer & 2 Coats on 1 Side GWB 15’

*** Note, that the order of these conditions are set correctly as we have set up the data. The Planswift program will move these conditions around as you use the Plugin.
This is a known issue and the fix is under way with a future Planswift upgrade.

The first 5 conditions are pre-set so that you do not have to input the height of the wall. These heights are set up and the math is completed to calculate the SF of the 1
sided wall that you are to paint. As an example, if you have a 9 foot wall to takeoff select this condition, takeoff the length of the wall and this length is calculated times the
height of 9 foot for you. This method will cover 85% of what the average use will encounter.

For the times you have a wall of a different height click on the "Input other Height" folder and then the conditions inside this folder. As you use this condition the 1st
question you will see will be the height of the wall. This is pre-set to 15 feet. Change to reflect the actual wall height you want to see. A screen shot of this condition is as
follows.

.

When you input the wall height the description will change to reflect the wall height of the takeoff.

Paint Wall on 2 Sides
This section is to be used when you are painting a wall on 2 sides. There are child folders for different paint substrates such as:
Paint Wall on 2 Sides GWB
Paint Wall on 2 Sides CMU
Paint Wall on 2 Sides Concrete
Paint Wall on 2 Sides Plaster
Paint Wall on 2 Sides Wood

Stain Wall on 2 Sides Wood

Each sub section in turn is organized as follows. For this example we are using the GWB as an example:

Paint Wall on 1 Side GWB

946

Paint Wall Primer & 2 Coats on 2 Sides GWB 8'
Paint Wall Primer & 2 Coats on 2 Sides GWB 9'
Paint Wall Primer & 2 Coats on 2 Sides GWB 10’
Paint Wall Primer & 2 Coats on 2 Sides GWB 11'
Paint Wall Primer & 2 Coats on 2 Sides GWB 12’
Input other height
Paint Wall Primer & 2 Coats on 2 Sides GWB 15'

*** Note, that the order of these conditions are set correctly as we have set up the data. The Planswift program will move these conditions around as you use the Plugin.
This is a known issue and the fix is under way with a future Planswift upgrade.

The first 5 conditions are pre-set so that you do not have to input the height of the wall. These heights are set up and the math is completed to calculate the SF of the 2
sided wall that you are to paint. As an example if you have a 9 foot wall to takeoff select this condition. Takeoff the length of the wall and this length is calculated times the
height of 9 foot for you time both sides of the wall. This method will cover 85% of what the average use will encounter.

For the times you have a wall of a different height click on the "Input other Height" folder and then the conditions inside this folder. As you use this condition the 1st
question you will see will be the height of the wall. This is pre-set to 15 feet. Change to reflect the actual wall height you want to see.

Paint Interior Trim
This section is to be used when you are painting trim. There are child folders for different paint substrates such as:
Paint Interior Trim

Stain Interior Trim

Each sub section in turn is organized as follows. For this example we are using the Paint Interior Trim as an example:
Paint Interior Trim
Paint Primer & 2 Coats @ Crown Molding
Paint Primer & 2 Coats @ Picture Rail
Paint Primer & 2 Coats @ Cornice Molding
Paint Primer & 2 Coats @ Chair Rail
Paint Primer & 2 Coats @ Map Rail
Paint Primer & 2 Coats @ Wall Cap

Paint Primer & 2 Coats @ Baseboard

*** Note, that the order of these conditions are set correctly as we have set up the data. The Planswift program will move these conditions around as you use the Plugin.
This is a known issue and the fix is under way with a future Planswift upgrade.

Click on the green button for the condition that you want. Input the width of the trim. For a starting point all trim is assumed to be 1 foot wide. Then takeoff the length of
the trim.

The Stain Interior Trim works exactly as the paint.

Paint Exterior Wall by LF

This section is to be used when you are painting an exterior wall and taking off the wall by lineal feet. All exterior wall in this section is assumed to be a one sided wall.
There are child folders for different paint substrates such as:

Paint Exterior Wall CMU

Paint Exterior Wall Concrete Wall
Paint Exterior Wall EIFS Wall
Paint Exterior Wall Metal Siding
Paint Exterior Wall Clapboards
Paint Exterior Wall Shingles
Stain Exterior Wall Clapboards

Stain Exterior Wall Shingles

947

Each sub section in turn is organized as follows. For this example we are using the CMU as an example:
Paint Exterior Wall CMU
Paint Exterior CMU Block Filler & 2 Coats 1 Side 8'
Paint Exterior CMU Block Filler & 2 Coats 1 Side 9'
Paint Exterior CMU Block Filler & 2 Coats 1 Side 10'
Paint Exterior CMU Block Filler & 2 Coats 1 Side 11'
Paint Exterior CMU Block Filler & 2 Coats 1 Side 12'
Input other height
Paint Exterior CMU Block Filler & 2 Coats 1 Side 15'

*** Note, that the order of these conditions are set correctly as we have set up the data. The Planswift program will move these conditions around as you use the Plugin.
This is a known issue and the fix is under way with a future Planswift upgrade.

The first 5 conditions are pre-set so that you do not have to input the height of the wall. These heights are set up and the math is completed to calculate the SF of the wall
that you are to paint. As an example if you have a 9 foot wall to takeoff select this condition, takeoff the length of the wall and this length is calculated times the height of 9
foot for you. This method will cover 85% of what the average use will encounter.

For the times you have a wall of a different height click on the "Input other Height" folder and then the conditions inside this folder. As you use this condition the 1st
question you will see will be the height of the wall. This is pre-set to 15 feet. Change to reflect the actual wall height you want to see When you input the wall height the

description will change to reflect the wall height of the takeoff.

Paint Exterior Wall by SF

This section is to be used when you are painting an exterior wall and taking off the wall with the elevation view by square feet. This section contains all the direct
conditions. There are no child folders to this section.

Paint Exterior Wall CMU Wall Block Filler & 2 Coats
Paint Exterior Wall Concrete Wall Block Filler & 2 Coats
Paint Exterior Wall EIFS Wall Primer & 2 Coats
Paint Exterior Wall Metal Siding Primer & 2 Cots
Paint Exterior Wall Clapboards Primer & 2 Coats

Paint Exterior Wall Shingles Primer & 2 Coats
Stain Exterior Wall Clapboards Sealer & 2 Coats

Stain Exterior Wall Shingles Sealer & 2 Coats

Pick the condition you wish to use, by clicking on the green button, then takeoff the area in SF of the area to be painted.

Use the Boxout function of Planswift to deduct exterior openings from the base area.

CMU & Concrete Specialties

This is a small section to be used for specialty conditions with CMU or Concrete walls. This section contains the following types of coatings.
CMU-Concrete Stain Cover
CMU-Concrete Block Filler
CMU-Concrete Elastomeric Hydro Coating CMU-

Concrete Clear Hydro Sealer

Pick the condition you wish to use, by clicking on the green button, then takeoff the area in SF of the area to be painted.

Paint Windows

This is a section to be used for the painting of windows. Windows come in a variety of sizes, materials, types, and manufactures. All of this is ignored in this section, and we
are using the Window ID for each type of Window as identified by the Architect or Engineer.

948

Choose the window ID by number, in the properties box you can change the description to match the specifications of the window. Once this is done, then count each of
this type of window.

In this section you have a choice for a window that is painted and also for a wood window that is stained.

Paint Doors & Frames

This is a small section to be used for the painting of doors. Doors are broken apart by single or double doors, the transoms and sidelights, then for specialty doors.
Doors and frames are further broken apart by being hollow metal or wood. The door size is not a consideration as this makes little difference in the amount of
paint, or the man hour per door leaf. The sections are as follows. Paint Single Doors

Paint Double Doors
Transoms - Sidelights - Borrow Light
Specialty Doors
In turn, each section is further broken down into conditions for each section. For example at Paint Single Door you have the following door types to paint.
Paint Single HM Frame & HM Door
Paint Single HM Frame & Wood Door
Paint Single Wood Frame & Wood Door

Stain Single Wood Frame & Wood Door

Then in turn each of the above conditions will have separate conditions for the door and frame. This way you can adjust the cost of each as desired. At double doors the
math is set up to provide the painting for 1 double frame and 2 door leafs.

Paint Ceilings

This is a section to be used for the painting of ceilings. There are no child folders in this section, as it directly contains all the conditions for the ceiling painting. Here is a
screen shot of all the conditions for painting ceilings.

Paint Stairwells

This is a section to be used for the painting of stairwells. This section is broken down into the components of the stairwell starting from the inside of the exterior walls, and
then of the stairwell parts. Each type of conditions has the takeoff method for the type of takeoff needed. There are no child folders in this section, as it directly contains all
the conditions for the stairwell painting. Here is a screen shot of all the conditions for painting stairwells.

Paint Floors

This is a section to be used for the painting of floors. There are no child folders in this section, as it directly contains all the conditions for the floor painting. All floors are
taken off by SF. These are the conditions in this section:

949

Floor Power Acid Wash

Concrete Floor Sealer

Concrete Floor Stain

Concrete Floor Non-Traffic Enamel
Concrete Traffic Wear Enamel

Concrete Floor Paint

Paint Steel Shapes

Painting Steel is much more complex than other issue. The shape of the steel determines the square foot of paint are per lineal feet of steel. All steel is calculated in rough
this manner to determine the SF of the paint area.

Count of steel pieces x LF of each Steel x SF per LF of Steel = SF of Paint Area

The user must input the following
LF of Each Steel Piece
SF per LF of Steel
Steel Weight per LF

Using the example of a W-Flange beam here is the properties box for input of this information.

o

The questions might vary depending on the type of steel that is being painted. Also as a user be careful on the SF per LF you set up. This will vary depending on the position
of the steel in the structure.

The following steel shapes are available for takeoff in the database.
Paint Steel W-Flange
Paint Steel Square Tube
Paint Steel Rectangle Tube
Paint Steel C Channel
Paint Steel MC Channel
Paint Steel Tee

Paint Steel Angle

Each section has detailed conditions for each major size of steel. In general the thickness of the steel is not considered. For example the steel section with the MC Channel
conditions opened is show here.

950

Support
The developer of this PlanSwift library has worked in the construction software database industry for 15 years and works daily with estimators of all types.

Database Solutions planswift@database-solutions.com

- See more at: http://www.planswift.com/phpkb/article/painting-2255.html#sthash.mDKt9TAS.dpuf

951

Plumbing Standard (Check Links)

Plumbing Standard for plugin is a quick and easy database intended for swift takeoff of plumbing on a budget basis. This database covers all the major type of takeoff issues
that a plumbing contractor will encounter.

To Install

Open PlanSwift.

Go to the "Setting" Tab

Click on the "Import Plugin Package"

Follow the directions provided by Planswift.

After installation you will find "Plumbing Standard" in the "Templates" Tab ready for your use.

To Uninstall

Go to the plugin store tab and select Uninstall Plugins

Plugin Sections
The database is sequenced into :

Demo

Domestic Water

Drainage

Sanitary Waste

Drainage & Sanitary Misc
Fixtures

Plumbing Equipment
Medical Gas System
Vacuum System Compressed
Air System

Takeoff View:
This is a screenshot of the takeoff window. Notice the sequence of the folders on the right side.

s

Each folder is discussed in detail below.

Demo

The Demo section provides takeoff for miscellaneous issues that a plumbing contractor will encounter such as demolitions and removal. The child folders here are: Plumbing
Demolition

Plumbing Remove & Re-install
Cut & Patch

Core Drill at Floor

Core Drill at Wall

To use this section open up the folder you wish, click on the green button to takeoff the condition and mark this condition on the drawings.
All conditions in this section are count activities.

Domestic Water

952

The domestic water section provides takeoff for water piping of different types and diameters. The piping is set up on a budget basis with the lineal footage of the pipe as the
only takeoff consideration. This section is organized as a parent-child folder arrangement. Under each major folder is a child folder with the material spec of the pipe. The
parent child folders are organized as follows:

Domestic Water - Underground

Domestic Water Underground Copper Sweat
Domestic Water Underground Copper Press Fit
Domestic Water Underground CPVC Sch 80
Domestic Water Underground CPVC Flowguard
Domestic Water Underground PEX

Domestic Water - Interior

Domestic Water Interior Copper Sweat
Domestic Water Interior Copper Press Fit
Domestic Water Interior CPVC Sch 80
Domestic Water Interior CPVC Flowguard
Domestic Water Interior PEX

Domestic Water Misc

Water Manifold

Water Flexible Connectors & Hose

Water Backflow Preventer

Water Anti Siphon Vacuum Breaker Water
Pressure Regulators

In each child folders the takeoff conditions are there for the each size of pipe.

This is a screen shot of this section with one child folder opened up.

The fittings of the pipe are not available in this section. There will soon be a different assembly template database for detailed pipe takeoff with fittings.

Drainage

The drainage section provides takeoff for drainage piping of different types and diameters. The piping is set up on a budget basis with the lineal footage of the pipe as the only
takeoff consideration. This section is organized as a parent-child folder arrangement. Under each major folder is a child folder with the material spec of the pipe. The parent
child folders are organized as follows:

Drainage - Underground

Drainage Underground Cast Iron SV
Drainage Underground Cast Iron XH
Drainage Underground Cast Iron Ho-Hub
Drainage Underground PVC DWV Drainage
Underground ABS DWV

Drainage - Aboveground

Drainage Above Ground Cast Iron SV
Drainage Above Ground Cast Iron XH

953

Drainage Above Ground Cast Iron Ho-Hub
Drainage Above Ground PVC DWV
Drainage Above Ground ABS DWV

This is a screen shot of this section with one child folder opened up.

Sanitary Waste

The Sanitary Waste section provides takeoff for waste piping of different types and diameters. The piping is set up on a budget basis with the lineal footage of the pipe as the
only takeoff consideration. This section is organized as a parent-child folder arrangement. Under each major folder is a child folder with the material spec of the pipe. The
parent child folders are organized as follows:

Waste - Underground

Waste Underground Cast Iron SV

Waste Underground Cast Iron XH

Waste Underground Cast Iron Ho-Hub
Waste Underground Duriron

Waste Underground PVC DWV

Waste Underground ABS DWV

Waste Underground Polypropylene DWV
Waste Underground Fuseal

Waste - Above Ground

Waste Inside Cast Iron SV

Waste Inside Cast Iron XH

Waste Inside Cast Iron Ho-Hub

Waste Inside Duriron

Waste Inside PVC DWV

Waste Inside ABS DWV

Waste Inside Polypropylene DWV

Waste Inside Fuseal

Waste Copper DWV

This is a screen shot of this section with one child folder opened up.

954

Drainage & Sanitary Misc

The Drainage & Sanitary Misc section provides takeoff for miscellaneous issues of drainage and waste piping that you will encounter to takeoff. This is a section of equipment
and fixtures required to be taken off with drainage and waste piping. Each child folder of the section has the conditions.

Sanitary Drains

Roof Drains

Roof Penetration and Boot
Area Drain

Trench Drains

Sanitary Pumps

Grease Interceptors

Package Sanitary Pump Station

This is a screen shot of this section with one child folder opened up.

Fixtures

The Fixtures section provides takeoff for all types of fixtures that you will need for standard takeoff issues. All fixtures are taken off by the count method. Each child folder of
the section has the conditions.

Fixtures - Bath

Fixtures - Laundry

Fixtures - Medical

Fixtures - Emergency

Fixtures - Drinking Fountain

Fixtures - Kitchen

Fixtures - Other

This is a screen shot of this section with one child folder opened up.

Medical Gas System and Vacuum System

The Medical Gas system and the Vacuum system both work in the same manner so they are discussed together. For each section there is a folder for the pipe, and then another
folder for the outlets.

The folders are as follows and each folder has the conditions you need for takeoff.

Medical Gas System
Oxy/Med GasPipe - Copper
Medical Gas Outlets

955

Vacuum System
Vacuum Pipe - Copper
Vacuum Outlets

This is a screen shot of this section with one child folder opened up.

&2

Compressed Air System

The Compressed Air System is compressed of several folders with the compressed air pipe and drops then another folder for the equipment. The folders are as follows and
each folder has the conditions you need for takeoff.

Compressed Air Pipe Copper
Compressed Air Pipe Black Steel
Compressed Air Pipe Gal Steel
Compressed Air Pipe Polypropylene
Compressed Air Equipment

This is a screen shot of this section with one child folder opened up. Notice the drops are with the pipe as a count condition.

o

Upgrades

The Budget Concrete Template will receive an upgrade in the spring and fall of 2012. As a purchaser of the template you can receive this upgrade at no cost.

If you own the database | will put your suggestions into the upgrades. Just email the developer at planswift@database-solutions.com

Support

The developer of this PlanSwift library has worked in the construction software database industry for 15 years and works daily with estimators of all types.

Database Solutions planswift@database-solutions.com

- See more at: http://www.planswift.com/phpkb/article/plumbing-standard-2254.html#sthash.9g5YLwfu.dpuf

956

Multiline Tool (Needs Image)

Multiline Tool [«
Items Included:

Multiline

Requirements

No special requirements.

Install Notes

Files Needed Multiline.SwiftPluginPackage from PlanSwift Plugin Store

Steps

1. Open PlanSwift if it is not already open.
2. Go to Plugin Store Tab and make the necessary steps for downloading the plugin.
3. When download is finished choose "Open”. This will process the installation.

After installation you will find Multiline Tool in Linear Dropdown Menu on the Home Menu Tab.
Removal Notes

1. Open PlanSwift if it is not already open.

2. Go To Plugin Store Tab

3. Click on the Uninstall Plugin button in Plugin Tools Section
4. Choose "Multiline” and proceed with Next

Usage

This tool is for fast drawing of a multiple parallel lines. Custom options include:
* # of Lines — Number of additional elements, that will be created -

® Offset — Distance between elements -

® Justification — the side where the additional sections(items) will be created -
Each Section As New Item ChekBox -
New Item Type List -

Auto Generate ChekBox

Methods(available in Multiline Section Only -)

1. Draw Multiline — for drawing the additional sections for first time
2. Refresh Multiline — for redrawing additional sections in these events

«OnPointMoved

957

958

Select and Set (Check Links)

Select and Set allows you to select sections and set properties on all the selected sections. You can use for multiplying your sections also.
How to use:

1. Select the sections of the items you want to set a property on.
2. Click on the Select and Set Icon (Home Tab).

3. Type in the property you want to set.

4. Type in the text value you want on that property you specified.

You can view in the Estimating tab (with sections showing) the properties you set on the sections. You can turn on show sections by clicking on the filter button and checking
sections. Also add properties you want as columns with the columns button.

Warning:

Be very careful what property you set. It will overwrite the existing value on that property. May not work well with counts should work fine with label counts. Planswift does
not provide support for this plugin.

For More Information : https://plugins.planswift.com/plugin-details/planswift-tools/select-and-set/

959

Shape Stamper (Check Links)

How to use:

1. Select the section you want the shape of.
2. Click on the "Get Shape" icon on the top bar.
3. Select the sections you want to apply that shape to.

4. Click on the "Stamp Shape" icon on the top bar. You can select a item and get its shape. Then stamp out other items with that same shape.

Warning: AS IS Be very careful. It will overwrite the existing value on the DigitizerData property. May not work well with counts because you may have double stacked nodes
which will make two counts on top of each other. Depending on how you recorded the item you got the shape from. PlanSwift does not provide support for this plug-in.

For More Information: https://plugins.planswift.com/plugin-details/planswift-tools/shape-stamper/

960

Area Pro (Check Links)

Items Included:

Items
Area Pro

Page Items Area Pro Section Functionality:

Area Pro Plug-in will install a new digitizer item, enables you to receive calculated information for Area Items™ with Subtraction about:
Total Openings Area

Total Openings Linear Total

Gross Area

Gross Linear Total

Gross Volume Installation:

Open PlanSwift if it is not already open.
Go to "Download Plugins" Sidebar and make the necessary steps for downloading the plugin.

When download is finished choose

For more information : https://support.planswift.com/solution/articles/13000002693-area-pro
Concrete for Budget Takeoff (check links)

Concrete for Budget Takeoff plugin is a quick and easy database intended for swift takeoff of concrete without a lot of detail. This database covers all the major type of concrete
and is intended to all for takeoff to gather the SF of forming, CY of concrete and the SF of finish.

To Install

Open PlanSwift.

Go to the "Setting" Tab

Click on the "Import Plugin Package"

Follow the directions provided by Planswift.

After installation you will find "Budget Concrete" in the "Templates" Tab ready for your use.

To Delete

Go to the "Templates" Tab
Right click on the "Budget Concrete" Tab
Click on "Delete Tab"

Plugin Sections

The database is sequenced into :
Footings & Pile Caps
Columns & Piers
Walls
Slab - SOG
Slab - Elevated
Slab - Misc Work
Misc Concrete
Reinforcing
Concrete Purchase

Finish, Cure & Seal

Takeoff View:
961

This is a screenshot of the takeoff window. Notice the sequence of the folders on the right side.

P

Footings & Pile Caps

The footings & pile cap section provides takeoff of concrete, forms and finish for the following conditions:
Continuous Footings Assembly - Formed both sides

Continuous Footings Assembly - Formed one side

Continuous Footings Assembly - not formed

Column or Pier Footing Assembly Rectangle

Column or Pier Footing Assembly Round

Column or Pier Footing Assembly Octagon

Pile Cap Assembly Rectangle

Pile Cap Assembly Round

Pile Cap Assembly Octagon

The assemblies for round shape will use the diameter for both the forming and volume calculations.

The assemblies for octagon will use the lineal foot of one side of the octagon for the forming and volume calculations.

Each assembly has a part for the takeoff of the concrete, the forming, and the finish.

This is a screen shot of the footing & pile cap section.

o

The takeoff properties for each assembly in this section is as follows:

962

The user will input the dimension information based on the geometry of the condition and revise the waste if desired.

Columns & Piers

The columns & Piers section provides takeoff of concrete, forms and finish for the following conditions:
Columns - Rectangle

Columns - Round

Columns - Octagon Piers - Rectangle

Piers - Round

Piers - Octagon

Sonotube Concrete

The assemblies for round shape will use the diameter for both the forming and volume calculations.

The assemblies for octagon will use the lineal foot of one side of the octagon for the forming and volume calculations.

The assembly for sonotube allows for sonotube of 8 inches to 42 inches in all standard diameters for sonotube.

Each assembly has a part for the takeoff of the concrete, the forming, and the finish.

This is a screen shot of the Columns & Piers section.

Walls

The Walls section provides takeoff of concrete, forms, bulkhead form, and finish for the following conditions:
Wall Concrete Grade Beam

Stem Wall

Pilasters @ Concrete Wall

Wall Brickshelf

Wall Boxout by Count

Sonotube Concrete

The assembly for walls and grade beam allows for the takeoff of:
Wall Concrete
Wall Form
Wall Bulkhead Form
Wall Column Beam Pockets

Wall Top Finish

The assembly for stem wall allows for the takeoff of:
Wall Concrete
Wall Form

Wall Top Finish

963

The assembly for pilasters allows for the takeoff of:
Wall Concrete

Pilaster Wall Form Pilaster Top Finish

The assembly for wall Brickshelf allows for the takeoff of:
Brickshelf concrete Deduct

Brickshelf Form

The Wall Boxout assemblies allow for the takeoff of:
Wall Boxout Concrete Deduct
Wall Boxout Form

The takeoff properties of the concrete wall assembly are as follows.

o

Slab - SOG

The SOG section provides a series of assemblies for taking off different types and conditions of typical slab on grade conditions. The takeoff assemblies are as follows:
Mud Slab

Column Diamonds

SOG Exterior - Edge Formed all Sides

SOG Interior - No Edge Form

SOG Construction Joint Form SOG

Thickened Edge

SOG Thickened Slab by LF

SOG Thickened Slab by Area SOG

Boxout

The assembly for Mud Slab allows for the concrete - form - finish takeoff of a mud slab in the construction work zone.

The assembly for Column Diamonds is specific to takeoff the column diamonds of an interior SOG. This is a count assembly where you count the column diamonds then in the
properties set the length and width of the diamond

The assembly for SOG Exterior - Edge Formed all Sides is for exterior SOG in which the entire slab is formed

The assembly for SOG Interior - No Edge Form is for interior SOG in which the slab is poured up against a wall and therefore an expansion joint is required in lieu of the edge
form.

The assembly for SOG Construction Joint Form is specifically to take off the bulkhead construction joint form of larger SOG when you have to pour the larger slab in pours by
bays.

964

The assembly SOG Thickened Edge is specific for the thickened edge portion only of a SOG. This assembly only brings in the additional formwork and required for the thickened
edge. The thickened edge is assumed to be monolithic with the slab. The interior side is assumed to slope at a 45 degree angle up to the nominal SOG. This is concrete only as
there is no forming for this condition.

The assembly SOG Thickened Slab by LF is for a thickened section of the slab in the interior of the SOG that is take off by lineal feet. For example along a bearing wall line
where the SOG is thicker for structural reasons. The slope on both sides is assumed to be at a 45 degree angle. This is concrete only as there is no forming for this condition.

The assembly SOG Thickened Slab by Area is for a thickened section of the slab in the interior of the SOG that is take off by area SF. For example at a chimney area where extra
support is required. The calculation is a straight area times depth for the concrete. Since the slope on the edge is not taken into account the waste is changed to 10 %. Increase
the waste if you desire. This is concrete only as there is no forming for this condition.

The assembly for the SOB Boxout is specific to the Boxout of a slab. This assembly will give you the items for the deduct of the concrete in the SOG and the add for the Boxout
form. This is an alternative to the using the Boxout feature in the area calculation.

For each of the above assemblies in the properties window you will be asked in the questions pertaining to that condition. For example here is the properties for the SOG
Exterior - Edge Formed all Sides.

5

Slab - Elevated

The elevated slab section provides a series of assemblies for taking off different types and conditions of typical elevated slabs. This includes both slab on metal deck, structural
slabs, and pan or dome slabs. The takeoff assemblies are as follows:

Slab on Metal Deck

Slab on Metal Deck Construction Joint
Slab on Metal Deck Boxout

Structural Slab

Pan Slab

Structural or Pan Slab Boxout

Structural or Pan Slab Construction Joint

The assembly for Slab on Metal Deck is for a slab on metal deck and the exterior edge form. This assembly will use the average depth of the metal deck concrete. This takes
into account the concrete in the flukes of the metal deck. The average depth should be provided by the deck supplier.

The assembly for Slab on Metal Deck Construction Joint Form is specifically to take off the bulkhead construction joint form of larger slab when you have to pour the larger
slab in pours by bays.

The assembly for the Slab on Metal Deck Boxout is specific to the Boxout of the slab. This assembly will give you the items for the deduct of the concrete in the slab and the ad
for the Boxout form. This is an alternative to the using the Boxout feature in the area calculation.

The assembly for the Structural Slab is specific to a self supporting structural slab that is bottom formed and supported with shoring till the concrete is cured. Additional lines
for the bottom form and the shoring are added. The shoring is calculated in cubic feet , therefore the properties will ask for the height above the finish floor of the structural
slab.

The assembly for the Pan Slab is specific to a self supporting pan filled structural slab that is bottom formed and supported with shoring till the concrete is cured. Additional
lines for the bottom form and the shoring are added. The shoring is calculated in cubic feet, therefore the properties will ask for the height above the finish floor of the
structural slab.

965

The assembly for the Structural or Pan Slab Boxout is specific to the Boxout of the slab. This assembly will give you the items for the deduct of the concrete in the slab and the
add for the Boxout form. This is an alternative to the using the Boxout feature in the area calculation.

The assembly for the Structural or Pan Slab Construction Joint is specifically to take off the bulkhead construction joint form of larger slab when you have to pour the larger
slab in pours by bays.

Slab - Misc Work

The Miscellaneous Work slab section provides a series of assemblies for taking off different types of slabs.
Topping Slab

Topping Slab Construction Joint

Topping Slab Boxout

Equipment Pad

The assembly for Topping Slab is for a the topping slab that is poured for the finish surface on a slab. In this case the topping slab is not designated as being on grade or
elevated, but as a topping slab. The assembly brings in the concrete, forms, and finish of the topping slab.

The assembly for Topping Slab Construction Joint is specifically to take off the bulkhead construction joint form of the topping slab when you have to pour the larger slab in
pours by bays.

The assembly for the Topping Slab Boxout is specific to the Boxout of the slab. This assembly will give you the items for the deduct of the concrete in the slab and the ad for
the Boxout form. This is an alternative to the using the Boxout feature in the area calculation.

The assembly for Equipment Pad is used to takeoff the misc equipment pads that you will have for equipment settings.

Misc Concrete

The Miscellaneous Concrete section provides a place for sidewalk and metal pan stair assemblies. The assemblies in this section are as follows:
Sidewalk by LF

Sidewalk by Area

Metal Pan Landings

Metal Pan Risers

The assembly Sidewalk by LF is intended to for sidewalks where the user would like to takeoff the sidewalk by the lineal foot. Takeoff the sidewalk by the lineal feet of the
centerline of the walk. This assembly will take off the forming, concrete, finish and the liquid curing white pigment finish used on sidewalks. The sidewalk concrete depth is set
to 4" and the width is set to 4'. These are the normal dimensions for sidewalks but can be changed by the user if desired.

The assembly Sidewalk by Area is intended to for sidewalks where the user would like to takeoff the sidewalk by the area square foot. This assembly will take off the forming,
concrete, finish and the liquid curing white pigment finish used on sidewalks. The sidewalk concrete depth is set to 4" as this is the normal depth of sidewalks, but can be
changed by the user is need be. The edge form calculation will use the external lineal feet of area.

The assembly Metal Pan Landings is intended for takeoff of the metal pan landings of a stairwell. Count the landings with the takeoff and input at the properties tab for the
input of the lending length, width, and the depth of the concrete.

The assembly Metal Pan Risers is intended for takeoff of the metal pan riser of a stairwell. Count the risers with the takeoff and input at the properties tab for the input of the
riser, width, and the depth of the concrete.

Forming Misc

The Forming Misc section provides a place for other forming issues that the user may wish to takeoff. The point of the entire database is for budget concrete so these specific
conditions are not a part of the assemblies that are listed above. This section is not set up as assemblies but as a section to takeoff the parts for all these conditions. This
section is broken down as follows:

Keyway & Chamfer
Vapor Barriers

Anchor Bolts & Templates

966

Rigid Insulation
Set Steel in Concrete

Crack Control

The section for Keyway & Chamfer holds the items for keyway for 2x4, 2x6, and upset keyway. Also Edge chamfer item is here.

The section for Vapor Barriers contains the vapor barriers in 4 mill, 6 mill and for moistop.

The section for Anchor Bolts & Templates contains anchor bolts from 1/2" up to 2" in all nominal sizes. Also included are anchor bolt templates for 2-4-6-and 8 anchor bolt
sets.

The section for Rigid Insulation contains rigid insulating for both under slab and foundation insulation form 1" to 3" in all nominal sizes in between.

The section for Set Steel in Concrete contains numerous types of embedded steel shapes and conditions.

The section for Crack Control contains conditions for saw cut of slab, zip strips and hand tool of joints.
Reinforcing

The Reinforcing section provides a place for reinforcing issues that the user other forming issues that the user may wish to takeoff. The point of the entire database is for
budget concrete so these specific conditions are not a part of the assemblies that are listed above. This section is not set up as assemblies but as a section to take off the parts
for all these conditions. This section is broken down as follows:

Rebar

Rebar CAD Weld Connections
Rebar Threaded Connectors
Rebar Dowels

Welded Wire Mesh

This section will be greatly upgraded in the next release of this database.

The Rebar section provides conditions for all nominal rebar sizes from #3 to # 14.

The Rebar CAD Weld Connections section provides conditions for all rebar CAD weld connections in al nominal rebar sizes from #3 to # 14.

The Rebar Threaded Connectors section provides conditions for all rebar threaded connections in all nominal rebar sizes from #3 to # 14.

The Rebar Dowel section provides conditions for all rebar dowels in all nominal rebar sizes from #3 to # 8

The Welded Wire Mesh section provides area SF conditions for every wire mesh size available.

Finish, Cure & Seal

The Finish, Cure & Seal section provides a place for finishing activities to placed concrete. The point of the entire database is for budget concrete so these specific
conditions are not a part of the assemblies that are listed above. This section is not set up as assemblies but as a section to takeoff the parts for all these conditions. The
section is broken down as follows:

Finish Flatwork

Other Finish

Concrete Rubbing & Grind
Curing

Seal & Hardener

The Finish Flatwork Section is the placeholder for specific finish options, color, and shake on products.

The Other Finish Section is a place for top of wall and stair finish.

967

The Concrete Rubbing & Grind Section is the p[lace for grind, sandblast, rubbing, and bush hammer of the concrete finish.

The Curing Section provides other options for curing.

The Seal & Harder section provides for specific types of sealers and hardeners

Upgrades

The Budget Concrete Template will receive an upgrade in the spring and fall of 2012. As a purchaser of the template you can receive this upgrade at no cost.

If you own the database | will put your suggestions into the upgrades. Just email the developer at planswift@database-solutions.com

Support

The developer of this PlanSwift library has worked in the construction software database industry for 15 years and works daily with estimators of all types.

David Ayers

Database Solutions planswift@database-solutions.com

- See more at: http://www.planswift.com/phpkb/article/concrete-for-budget-takeoff-2226.html#sthash .VSaiaYud.dpuf

968

Outdated / Don't Need

969

Callouts

° This is an error panel

0 This is a green success panel

E This is a purple Note panel

o This is a blue info panel

A This is a yellow “Warning” Panel

970

PlanSwift Knowledge Base - - - - - - - - - o oo 27

REIEASE NOES - - « + ¢« v o e e e e e e e e e e e e e 28
Release Notes HiStory: - - - -+« « v v v oo e 29
Release Notes v.11.0.00.129 (Release Date: July 10, 2023)- - - - - -« o oo oo i oo 30
Release Notes v.11.0.0.89 (Released: 09/08/2022)- - - « « « « « vttt 32

Workaround for Storages Settings - - - - - - - o oo oo 34
Release Notes v.10.03.0.56 Released: 03/03/2022. - - - - - - - - - o oo oo 35
Release Notes v.10.03.0.50 Released: 07/21/2021- - - - -+« o o oot 37
Release Notes v.10.03.0.48 Released: 05/18/2021- - - - - - - o o oo oo 38
Release Notes v.10.02.05.41 Released: 04/30/2020- - - - -« « « v o o o i it i 40
Release Notes v.10.02.05.40 Released: 03/19/2020- - - - - - - - o o o oo 42
Release Notes 10.2.4 (03/2019) - -+« « « + « + v o o oo oo 44
Release Notes 10.2 (3/28/2018) - - - - - - o o oo 45
New Sample Content - - - - - .« o o oot 47

New Sample TemMPIates: - - - - -« o v v vttt e e 48

NEW SaMPIE PIANS -« « 49

NEeW Sample Parts - - - - -« « « v v vt et e 57

New Sample ASSEMDBIIES: - - « « « « « « v v 58

Release Notes 10.1.1.8 (includes 10.1.1.7) - - -+« « « oottt e e e 59
Release Notes ConstructConnect Platform Plugin Released: 07/09/2020 - - - - - - - -« o o v oo 60
KNOWN ISSUES LOG -+ + + + + « « « + v s v s s e et e e e e e e e e e e e e e e e e e 61

The PlanSwift Customer Portal (MYAGCOUNEY « « « « « « « v vt vttt e et e 62
Registering for a MyAccount Profile - - - - - - - - o 69
How an Admin Creates MyAccount Profiles for Users. - - - - - . . . o oo i 72
Resetting or Changing Your Account Password- - - - - - - - - . . oo 73

Installing and Licensing PlanSwift - - - -+« « « o o oo e e 75
SYStEM REQUIFEMENES « « « « « « « « « ¢ v e e e e et e e e e e e e et e e 76

Does PlanSwift Run on Windows 10? Windows 11? Windows 3657- - - - - - - - -o oo 78
Can | Install PIanSWift 0N @ MaAC? -« « « « « o o o v e e e e e e e e e e e e e e e 79
Windows Version Compatibility: « -« « « « « oo 80
Downloading and Installing PlanSwift - - - - - -+« o oot 82
Upgrading PlanSwWift - -« « o oo 86
Using PlanSwift Automatic Updates. - - - - - - -« o et 87
Required (Mandatory) Updates - - - - - -+« « v vt e 92

How To: Uninstall PlanSwift- - - - - - -« oo v oo 94
Licensing PlanSwift (ACtivation) - - - - -+« « o o oot 98
Deactivating Your License (to Use on a Different Machine)- - - - - - - - - -o 929
PlanSwift Licensing FAQS: - - - - - - - o oo oo 102
Activation Errors & Troubleshooting 104
Troubleshooting Activation Errors 105

Manually Activating PlanSwift107

Can | Avoid Manual
Activation? QA3 e

Manual Deactivation

Manually Activating a One-Time PlanSwift License

Manual Licensing
FAQs120

