

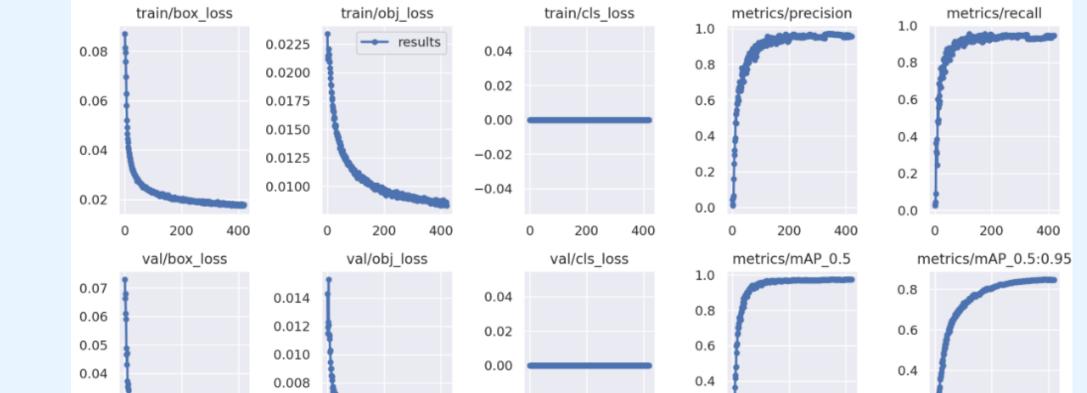
Real-time Road Accident Scene Recognition Using Computer Vision Applied to Drone Imagery

Ibrahima Ngom² Jean-Marie Dembélé¹ Kevin Leahy³ Ousmane Sadio² Adama Coulibaly ^{1,2} Marc Momar Tall² Ibrahima Diagne² Moustapha Ndiaye²

¹University Gaston Berger, Saint Louis/Senegal ²Ecole Supérieure Polytechnique, Dakar/Senegal ³Worcester Polytechnic Institute, Worcester/USA

Introduction

- Rapid urbanization has led to a variety of problems in road traffic, such as recurrent congestion and traffic accidents.
- To mitigate these problems, it is necessary to monitor and analyze traffic volumes in order to anticipate or detect anomalies in road traffic.
- This work proposes a solution for traffic accident scene recognition using computer vision applied to drone imagery.

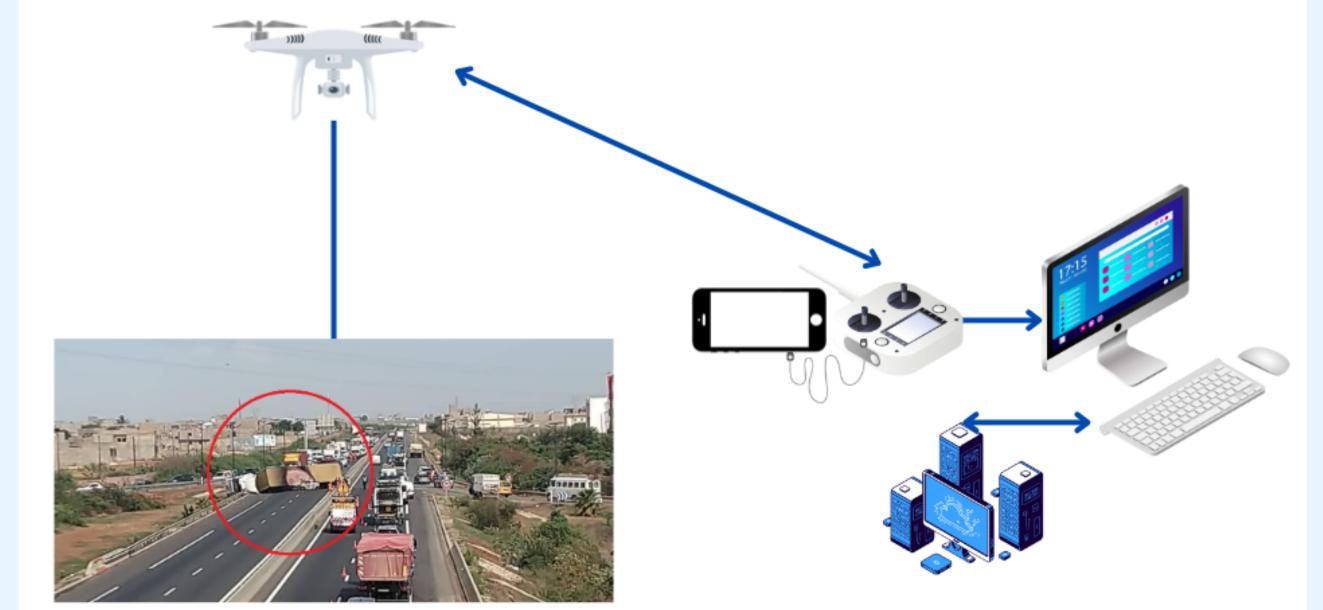

Materials and method

System overview

Results

The pre-trained weight yolov8x was used for training, validation and testing of the model due to its

Train and validation



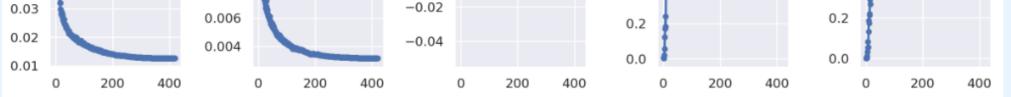

performance.

Figure 1. Accident scene

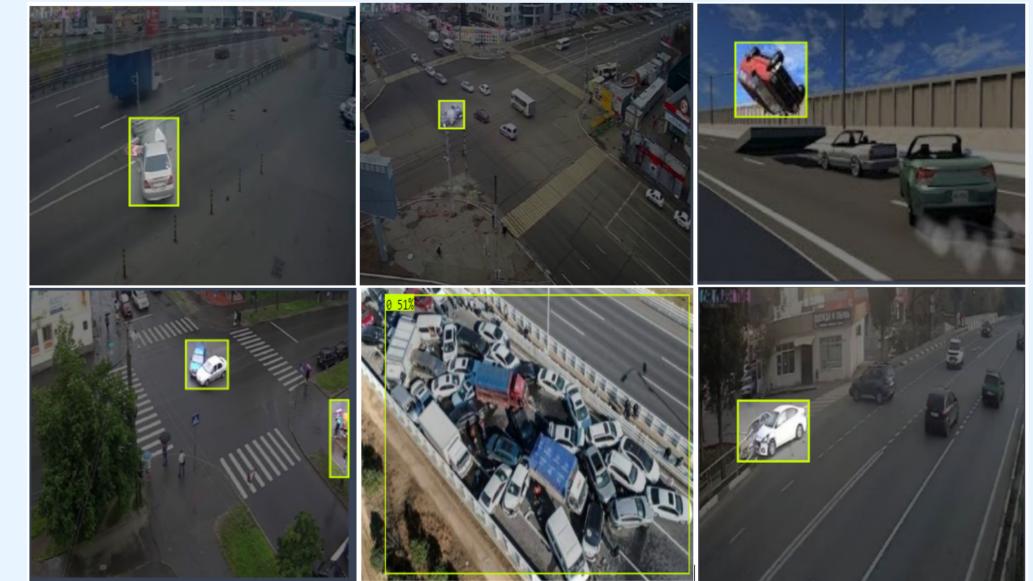

- Traffic accidents are sudden, unforeseen or perhaps foreseeable events that cause damage to people, property and the environment (Figure 1).
- **Method** The method used in this work is an approach for detecting accident scenes in road 2. traffic images and locating the accident site in real time. It involves the collection and transmission of real-time traffic image and video data, the analysis of the data for accident detection and location

Figure 4. Training graphs

- Training and validation images are 640 x 640.
- The model is trained on Roboflow with confidence and overlap thresholds of 50%.
- 2. Recognition results

Figure 5. Recognition results

- Various accident scenes are recognized in aerial images and video sequences.
- The metrics used to evaluate the performance of our model were computed by Roboflow 100 and are: mean accuracy (mAP), precision, recall and F1 score. The model performance are showed in table below:

Precision Recall mAP 94.4% 91.3% 95.3%

Figure 2. System modeling

3. Materials and tools

Figure 3. UAV Mavic Air 2S

Table 1. Performance table

- These rates show a good performance of the model.
- The results are satisfactory in spite of some cases of false negatives observed on roads with an advanced level of deterioration.

3. Image coordinate extraction

Wa	ypoints (24) Tracks	Routes Real-Time					
	type	ident	Latitude	Longitude	y_proj	x_proj	comment
3	WAYPOINT	DJI_0010	14,680227166	-17,466974777	14,680227166	-17,466974777	Accident1
	WAYPOINT	DJI_0011	14,680225138	-17,466975027	14,680225138	-17,466975027	Accident2
\times	WAYPOINT	DJI_0014	14,67992975	-17,466868361	14,67992975	-17,466868361	Accident3
3	WAYPOINT	DJI_0015	14,679929138	-17,466871805	14,679929138	-17,466871805	Accident4
	WAYPOINT	DJI_0016	14,680001555	-17,466860833	14,680001555	-17,466860833	Accident5
	WAYPOINT	DJI_0017	14,680001694	-17,466860916	14,680001694	-17,466860916	Accidente
	WAYPOINT	DJI_0018	14,680000472	-17,466862583	14,680000472	-17,466862583	Accident
	WAYPOINT	DJI_0019	14,679999583	-17,466862527	14,679999583	-17,466862527	Accident8
	WAYPOINT	DJI_0020	14,679996222	-17,466861694	14,679996222	-17,466861694	Accidents
	WAYPOINT	DJI_0021	14,679995861	-17,466863083	14,679995861	-17,466863083	Accident
	WAYPOINT	DJI_0022	14,679985972	-17,466846166	14,679985972	-17,466846166	Accident
	WAYPOINT	DJI_0023	14,679986638	-17,466845666	14,679986638	-17,466845666	Accident1
	WAYPOINT	DJI_0024	14,679982083	-17,466846694	14,679982083	-17,466846694	Accident1
	WAYPOINT	DJI_0025	14,679981666	-17,466848	14,679981666	-17,466848	Accident1
	WAYPOINT	DJI_0026	14,679977972	-17,466847055	14,679977972	-17,466847055	Accident1
	WAYPOINT	DJI_0027	14,679979	-17,466847583	14,679979	-17,466847583	Accident1
	WAYPOINT	DJI_0046	14,680535416	-17,466943888	14,680535416	-17,466943888	Accident1
	WAYPOINT	DJI_0047	14,680535138	-17,466943444	14,680535138	-17,466943444	Accident1
	WAYPOINT	DJI_0048	14,680535694	-17,466943277	14,680535694	-17,466943277	Accident
	WAYPOINT	DJI_0049	0	0	0	0	Accident
	WAYPOINT	DJI_0050	0	0	0	0	Accident2
	WAYPOINT	DJI_0051	0	0	0	0	Accident2
	WAYPOINT	DJI 0052	0	0	0	0	Accident2

Figure 6. Image coordinate extraction

This tool extracts geographic coordinates, comprising latitude and longitude. These data are stored in a database for decision-making purposes.

Conclusion

The model has high accuracy, precision, recall on both training and testing datasets which mean that it effectively learns patterns from pre-processed accident data and generalizes wellin new cases.

- UAV Mavic Air 2S: data collection;
- Android phone: mapping mission planning;
- A computer: hosting the gnrgps tool for extracting coordinates;
- YOLOv8: model for train, validation and test.
- **Dataset** The model was trained and tested on an image database consisting of a set of 6123 urban road images distributed as follows:
 - 4287 images or 70% for model training;
 - 1224 images or 20% for validation;
 - 612 images or 10% for testing.
 - The images are annotated with Roboflow and a part of the dataset (train, valid) has been provided in open access by the Roboflow platform.
 - The images collected by the drone are used to test the detection.

References

[1] G. Leduc, "Road Traffic Data: Collection Methods and Applications," JRC Technical Notes, vol. 47967, no. 2008, pp. 1–55, 2015.

[2] H. A. Najada and I. Mahgoub, "Anticipation and Alert System of Congestion and Accidents in VANET Using Big Data Analysis for Intelligent Transportation Systems," IEEE, vol. 1, no. 16, pp. 1–8, 2016.

[3] S. M. Butt, "A Review Paper on Accident Detection System Using Intelligent Algorithm for VANET," Journal of Information Engineering and Applications, vol. 6, no. 5, pp. 25–30, 2016.

Laboratoires de recherche: LANI (UGB), LITA (ESP/UCAD)