Salmonella vaccine development: Focus on TCVs and iNTS vaccines

Sushant Sahastrabuddhe, мо, мрн, мва GVIRF 2021

Agenda

- Landscape of TCVs
 - Vi-rEPA
 - BBIL
 - Biomed
 - Zidus
 - Biological E
 - SK Bioscience
 - Biofarma
- TCV: Next steps and challenges
- iNTS background and disease burden
- iNTS vaccines current status

Policy and Financing

- **Policy:**
 - WHO position paper: 2008; revised in 2018
 - Recommended use of TCV
- Vaccine supply:
 - 4 licensed in India
 - Typbar-TCV and **TYPHIBEV** pregualified by WHO

Financing:

- Gavi board has approved \$85M for TCV and the call is open for eligible countries to apply

Organisation mondiale de la Santé

Typhoid vaccines: WHO position paper - March 2018

153 Typhoid vaccines: WHO position paper – March 2018

Sommaire

Contents

No 13, 2018, 93, 153-172 and the list land

Introduction

In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes. They summarize essential background information on diseases and s and conclude with the current

Vaccins antityphoïdiques: note de synthèse de l'OMS - mars 2018

No 13

Introduction

Weekly epidemiological record

30 MARCH 2018, 93th YEAR / 30 MARS 2018, 93* ANNEE

Relevé épidémiologique hebdomadaire

Conformément à son mandat, qui prévoit qu'elle conseille les États Membres en matière de politique sanitaire, l'OMS publie une série de notes de synthèse régulièrement mises à jour sur les vaccina et les associations vaccinales contre les maladies ayant une incidence sur la santé publique internationale. Ces notes, qui portent essentiellement sur l'utilisation des vaccins dans les programmes de vaccination à grande échelle, résument les informa-

You are here: Library . News . Statements . New typhoid vaccine to receive Gavi support

New typhoid vaccine to receive Gavi support

Gavi has earmarked US\$ 85 million to fund the introduction of the vaccine in the world's poorest countries.

Geneva. 3 April 2018 - Governments across Africa and Asia can apply for funding to protect children against typhoid fever. Gavi, the Vaccine Alliance will support eligible countries to introduce the new typhoid conjugate vaccine into their routine immunisation schedules.

"The typhoid conjugate vaccine will not only save lives but also bolster the fight against anti-microbial drugresistance," said Dr Seth Berkley CEO of Gavi, the Vaccine Alliance. "Expanding vaccine coverage will play an important role in reducing illnesses and deaths from typhoid. Gavi is looking forward to working with countrie to support the introduction of this safe and effective vaccine.

The WHO announced the pregualification of the first typhold conjugate vaccine (TCV), Typbar-TCV, in December 2017. Earlier that month the Gavi Board approved US\$ 85 million for 2019-2020 to support its introduction in developing countries. The first introductions are expected to take place in 2019.

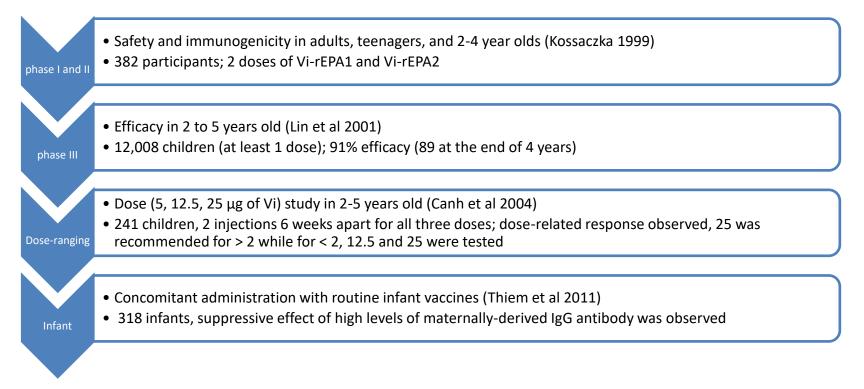
In October 2017, WHO's Strategic Advisory Group of Experts on Immunization (SAGE) re-emphasised the importance of the use of typhoid vaccines in tackling the increase in anti-microbial resistance in low- and mi income countries, as well as for the control of endemic typhoid.

The WHO released on the 30th of March a revised typhoid position paper to include the new conjugate vaccine. The paper advises that the new vaccine can be administered to children as young as six months old and provides longer-lasting immunity than previously available vaccines. With approximately 30% of the typhoid burden occurring in children under five years of age, this vaccine could greatly impact disease burder The fact that it is suitable for young children also means it can be easily incorporated into routine vaccination schedules

Vaccines vs typhoid

VACCINES

TYPHOID


0

TAKING ON TYPHOID: A RESEARCHER'S VIEW ON THE NEW

Vi-rEPA clinical trials (First TCV developed)

- US NIH transferred the technology to Lanzhou Institute of Biological Products (LIBP), part of the China National Biologics Group (CNBG)
- LIBP conducted additional trials and with the help from PATH, are working to get in-country licensure in China and eventual WHO PQ

Typbar-TCV

- First WHO Prequalified TCV (2018)
- Licensed in India plus multiple other countries
- Underwent human challenge study at Oxford University
- Being used in all efficacy, delivery campaigns and effectiveness studies as below:

(*

- Nepal: 25000 participants
- Bangladesh: 50000 participants
- Pakistan: 250000 participants
- Malawi: 24000 participants
- Navi Mumbai, India: 200000 participants
- Gavi supported vaccination campaigns started in Pakistan, Zimbabwe, Liberia
- Ongoing and additional campaigns are affected by COVID-19

Navi Mumbai Municipal Corporation launches the world's first public-sector typhoid conjugate vaccine campaign Print in September 72, 2019 bit for Adminio Das Medical Office, Gidal Immunistrato Division, Center for Gidal Imalia, US

hotos: A new vaccine to combat XDR typhoid in istan

Drug resistance and typhoid in Zimbabwe: Using TCVs for outbreak control

Pedatyph[™]: Vi-TT (Biomed)

- Licensed for more than 3 months of age in 2008 in India.
- Single dose of 0.5 ml, followed by booster at 2.5 to 3 years age

IAN VACCINES & IMMUNOTHERAPEUTICS 4 VOL: 12, NO. 4, 939-945 //dx.doi.org/10.1080/21645515.2015.1117715 Taylor & Francis

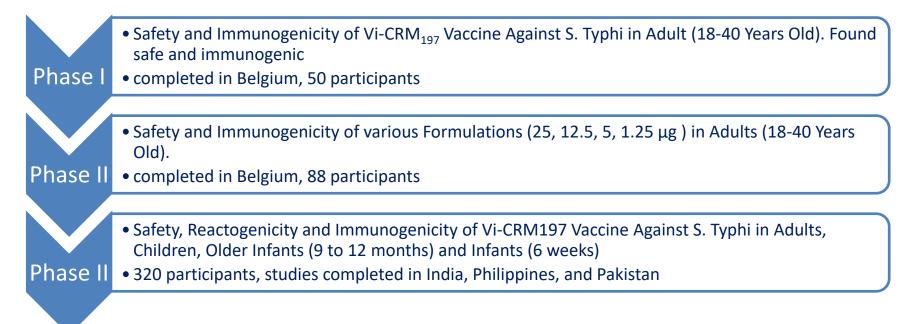
Efficacy and safety of vi-tetanus toxoid conjugated typhoid vaccine (PedaTyph™) n Indian children: School based cluster randomized study

Monjori Mitra", Nitin Shah⁶, Apurba Ghosh^{*}, Suparna Chatterjee², Iqbal Kaur⁴, Nisha Bhattacharya", and Suparna Basu^{*} Institute d'Alid Heah, Kolka, India, "Department of Pedarics, Lion: Trachand Bap Hogala, Sion West, Marchai, India, "Department of Pharmacholy, Nishita e Potspriadare Medical Boatson and Reserch, Kidaka, Micig, "Drapartet of Microlobolou, LUCA, Girl Houvian Lein

- Safety and immunogenicity in 169 subjects > 12 weeks with a comparison group (Vi) of 37 children > 2 years
 Four-fold or greater rise in antibody titer of each group on ELISA which was statistically equivalent to Vi-rEPA
 Effectiveness trial completed in Kolkata with 2000 children (6m to 12 years) http://ctri.nic.in/Clinicaltrials/showallp.php?mid1=4714&EncHid=&userName=Vi-TT
 - 2 doses at 6 weeks interval in children 6 mths to 12 yrs
 - Authors report 100% VE after 1 year of follow up
 - No plans yet of WHO PQ application

ZYVAC TCV: Vi-TT (Zydus Cadila)

- Licensed in India (2018)
- Single dose 25ug from 6 months of age onwards
- Being marketed in the private market in India
- Plans to go for WHO PQ

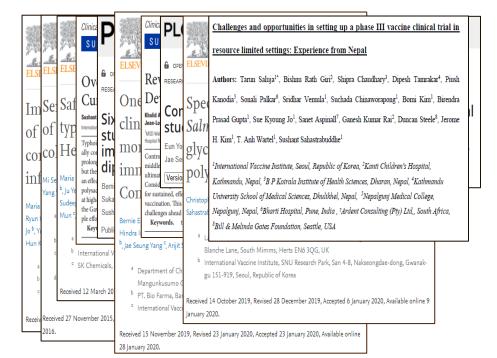


Vi-CRM₁₉₇ (GVGH): TYPHIBEV

•Developed by GSK Vaccines Institute for Global Health (GVGH, formerly NVGH)

•Have used CRM₁₉₇ as carrier protein

•CRM₁₉₇ is a non-toxic mutant of diphtheria toxin



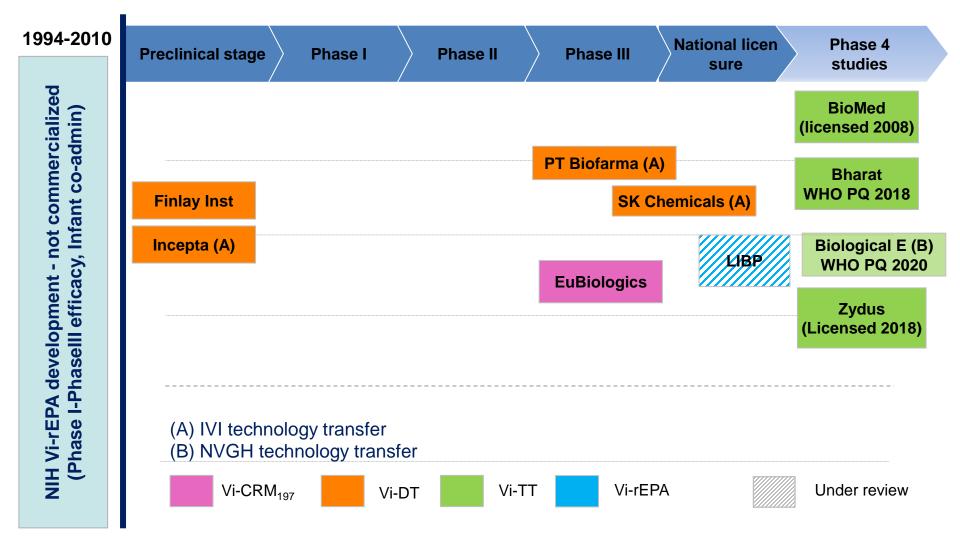
- Technology transferred to Biological E in 2013; BE further developed the vaccine, including manufacturing process optimization and scale-up; preclinical and clinical studies were completed in India
- After DCGI approval in March 2020, TYPHIBEV was prequalified by WHO in December 2020

Vi-DT: SK Bioscience

- Technology transfer completed in 2013 from IVI
- Preclinical studies completed in 2015
- Phase I and II clinical trials completed in the Philippines
- Concurrent phase III studies in Nepal and Philippines completed
- KMFDS submission done in Jan 2021, WHO PQ submission targeted for Sep 2021

Brief overview of Vi-DT SK clinical trials

Phase	Study Design	Sample size	Test Vaccine /Comparator	Country	Status	Safety Database (test vaccine)
I	Safety & Immunogenicity	144 subjects (2-45 yrs)	Vi-DT, 25 μg/0.5 mL SD/ Typhim Vi®	Philippines	Completed	72 subjects
Obser- vational study	Phase I Long-term follow up study	144 subjects (2-45 yrs)	N/A	Philippines	Year 3 completed	-
II	Safety & Immunogenicity	285 subjects (6-23 months)	Vi-DT, 25 μg/0.5 mL SD/ Fluquadri/ Placebo	Philippines	Ongoing, pCSR available in Sep 2019	228 subjects
Obser- vational study	Phase II Long-term follow up study <i>(TBD)</i>	285 subjects (6-23 months)	N/A	Philippines	Target start (2021)	-
III	Immune Non- inferiority, L2L Consistency & Safety	1800 subjects (6 mths-45 yrs) 360 (MMR)	Vi-DT, 25 µg/0.5 mL MD/ Typbar TCV™	Nepal	Completed	Approx. 1350 (+180) subjects
Ш	Immune Equivalence & Safety	1800 subjects (6 mths-45yrs)	Vi-DT, 25 μg/0.5 mL SD/ MD	Philippines	Completed	Approx. 1500 subjects
Total Safety Vi-DT database						


Biofarma Vi-DT

- Phase I study (completed): To generate safety and immunogenicity data in adults and children (100 subjects; 2 to 5 years old age and 18 to 40 years old age)
 - Progress/result: 100% seroconversion (defined as four-fold rise in titer) after first dose in both adult and children Vi-DT group; while 88% in control group. No rise in GMT after the second dose; Data published in "PLoS One".
- Phase II study (on-going): To generate safety and immunogenicity data in 6 months to 40 years of age participants (600 subjects; 6 months to 40 years old)
 - Progress/result: Satisfactory data in infants. Infants group shows highest response followed by adults and children groups per the GMT. 100% seroconversion is seen in adults and children groups and 98% in infants' group. Data published in "IJID".
- Phase III study (on-going): To evaluate immunogenicity of Vi-DT compared to WHO PQ'ed vaccine in adults, children and infants (3,071 subjects; 6 months to 60 years old)
 - Initiated study in Jan 2020. Due to severe cases of COVID-19 in Indonesia, enrollment was on-hold till December 2020, restarted again.

Typhoid conjugate vaccine pipeline

Next steps and Challenges

- There will be at least 2 more WHO PQed vaccines by 2022-23 with robust manufacturing capacity; however, the demand is uncertain
 - Lack of clarity of disease burden
 - Limited data from some regions (LatAm, North Africa, Middle-East)
 - Choice of vaccination strategy
 - Focal outbreaks of typhoid
- Lot of work is still needed around generating the potential health impact from TCVs
- A strong network of global and national partners, policy makers, and healthcare workers is needed to realize the dream of typhoid elimination

Steele et al 2020

Why iNTS?

- The burden of iNTS disease, caused by Salmonella Typhimurium and Salmonella Enteritidis, is a serious public health concern in Sub-Saharan Africa
- 600,000 to 3.4M cases of iNTS disease occurred globally in 2010*. >50% of cases of iNTS disease occur in Sub-Saharan Africa. Case-fatality rates commonly reported at ~15-20%
- ~622,000 cases estimated in 2017 (490,000 800,000). ~68,000 deaths in 2017**
- High prevalence of iNTS disease seen in children under 3 years of age
- Clinical presentation is most commonly with fever alone: diagnosis not usually possible
- Diagnosis requires blood culture facilities that are uncommon in Sub-Saharan Africa
- Antimicrobial drug resistance to iNTS isolates, including MDR, is common. Emergence of fluoroquinolone and ceftriaxone resistance makes treatment increasingly difficult
- Effective methods for disease control as improvement to water supply and
 sanitation is lagging and cost prohibitive in endemic countries

iNTS burden: GBD 2019

Burden: mainly Sub-Saharan Africa Incidence: 49.4 / 100k (Ao et al., 2010) Deaths: 681,316¹ [415,165 – 1,301,520] (Ao et. al, 2010) DALYs: 26 / 100k (Kirk et al., 2010) *DALYs may be underestimated due to HIV *Estimated at *region*, not *country* level

DALYs due to iNTS in 2010

INTS (DALYs/100k) No data 0-5 5.1-10

50.1-100 100.1-20

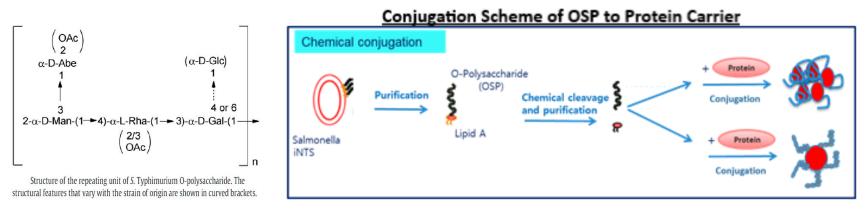
14

Source: JS Lee using Kirk et al.'s estimates

Note: DALYs due to iNTS were only available at the 2010 WHO regional-level by Kirk et al.,

thus the map should not be interpreted at the country-level.

Source: Ruchita Balasubramanian et al (2018): The global burden and epidemiology of invasive non-typhoidal *Salmonella* infections, Human Vaccines & Immunotherapeutics, DOI: 10.1080/21645515.2018.1504717


Global Landscape: iNTS vaccines

Name	Description	Developer	Stage of development	References
O:4,5/O:9-flagellin	O:4,5/O:9 Conjugate	University of Maryland	Preclinical	50,69
O:4,12-TT	O:4-TT Conjugate	NIH	Preclinical	51
Os-po	O:4-porin Conjugate	National Bacteriology Laboratory, Stockholm	Preclinical	146
O:4,5/O:9-CRM ₁₉₇	O:4,5/O:9 Conjugate	NVGH	Preclinical	145
WT05	Live attenuated	Microscience, Wokingham Berkshire	Phase 1	147
CVD 1921 and CVD 1941	Live attenuated	University of Maryland	Preclinical	148
S. Typhimuirum ruvB mutant	Live attenuated	Seoul National University	Preclinical	149
Salmonella hfq deletion mutant	Live attenuated	Indian Institute of Science Bangalore	Preclinical	150
SA186	Live attenuated	lstituto Superiore di Sanità Roma	Preclinical	151
MT13	Live attenuated	KIIT University Odisha	Preclinical	152
Various	Live attenuated, DNA adenine methylase mutants	University of California, Santa Barbara	Preclinical	153,154
Various	Live attenuated, regulated delayed attenuation	Arizona State University	Preclinical	155-157
Porins	S. Typhimurium porins	National Bacteriology Laboratory, Stockholm	Preclinical	146
OmpD Outer membrane protein		University of Birmingham, UK	Preclinical	73
S. Typhimurium and S. Enteritidis GMMA	Generalized Modules for Membrane Antigens	NVGH	Preclinical	65,158,159

*an exhaustive list, particularly of all candidate vaccines in preclinical studies, is beyond the scope of this review

IVI iNTS Vaccine Project - Current Status

- POC of the trivalent vaccine concept (iNTS OSP conjugates, with Vi-conjugate) achieved, by demonstrating >90% seroconversion (defined as ≥4-fold increase of anti-OSP IgG over baseline) through immunogenicity testing in mice
- Process development to produce Purified O-Specific Polysaccharides of S.
 Typhimurium and S. Enteritidis through a scalable process completed at pilot scale
- Process development for producing conjugates of OSPs of ST and SE with carrier protein (Diphtheria Toxoid) through a scalable process completed at pilot scale
- Technology transfer to produce batches for Tox Study to be initiated in Mar 2021, with tox batches production planned in Q1-2022; Tox study completion & reporting expected by Q1-2023
- Work on Clinical Development Plan (CDP) and CDP initiation proposal in Q2-2022 for new grant submission to Funding Agencies to seamlessly move the project to the next stage upon completion of tox studies

Acknowledgements

Manufacturers

- SK bioscience
- PT Biofarma
- Incepta vaccines limited
- Bharat Biotech Ltd.
- Biomed
- Zydus Cadila
- Biological E
- Lanzhou Institute of Biological Products
- Finlay Institute
- Walvax
- Eubiologics

BILL& MELINDA GATES foundation

- Anita Zaidi
- Duncan Steele
- Calman Mclennan
- Megan Carey
- Lyou-Fu Ma
- Evan Sturtevant
- Shauna Metschke
- Zoey Diaz
- Tina Lorenson
- Pat Brill Edwards

Regulatory

Authorities

Korean MFDS

Nepal DDA

Nepal NHRC

Philippines NRA

Indonesia BPOM

•

Raysam Prasad

- Kate O'Brien
- Adwoa Bentsi-Enchill
- Joachim Hombach
- Thomas Cherian
- Carmen Rodriguez
- Olivier Lapujade
- Ivana Knezevic

Study sites

- Research Institute for Tropical Medicine, Philippines
- Dr. Cipto Mangunkusumo National General Hospital, Indonesia
- Sites in Nepal and Philippines

THANK YOU

