Rapid Response Platforms for COVID-19 Vaccine

Dr. Melanie Saville, Director of Vaccine R&D, CEPI

February 2021

CEPI's strategic portfolio targets

Lassa

MERS-CoV

Rift Valley Fever

Chikungunya

Disease X

Advance at least one vaccine for each pathogen through phase IIa and stockpile within five years of funding

Nipah

Support activities enabling late stage development, prequalification and access Advance through phase I multiple rapid response platforms with potential to significantly improve speed of vaccine development against multiple pathogens

Acting fast and early

R 9. 3

Rapid progress in vaccine innovation

Year in which US vaccine was licensed

Data source: Our World in Data

Jan – April 2020: Ignition Funding

mRNA/LNP platforms demonstrated the speed of these technologies can be applied to address rapid responses against COVID

Today - 11 CEPI-supported vaccines **#**

	DNA / mRNA			Viral vector			Protein		
COVID-19	Inovio	Moderna	CureVac	Merck / Themis	AstraZeneca / Univ. Oxford	University of Hong Kong	Novavax	Clover BioPharma	Biological E
Location	USA	USA	Germany	USA / Austria	UK	China	USA	China	India
Platform	DNA	mRNA	mRNA	Viral Vector	Viral Vector	Viral Vector	Protein	Protein	Protein
Antigen / Adjuvant	Full-length S protein	Full-length S protein	Full-length S protein	Full-length S protein	Full-length S protein	Receptor Binding Domain / ASo3	Full-length S protein / saponin-based Matrix-M	Full-length S protein/AS03 or CPG1018	Monomer RBD /CpG-alum
Current phase	Phase II	Efficacy demonstrated Temporary approval granted by at least one Stringent Regulatory Authority	Phase II/III	Phase I	Efficacy demonstrated Temporary approval granted by at least one Stringent Regulatory Authority	Preclinical	Phase III Efficacy demonstrated	Phase I	Phase I

+ CEPI has also supported SK bioscience COVID-19 vaccine candidate as part of 'Wave 2' investments

World wide vaccine landscape; clinical trial status.

CEPI-funded

¹ U.HK programme distinct from CEPI-funded programme

² Phase III segment remains partial clinical hold by FDA

Lessons from rapid response platforms (mRNA)

Despite remarkable achievements to date, several challenges still lie ahead for mRNA platforms

Productivity

Thermal stability

Manufacturing footprint

Improve tolerability

Limited footprint for mRNA manufacturing capabilities globally

Current thermal stability claims for mRNA formulations

	Moderna ¹	Pfizer/BioNTech ²	Curvevac	Imperial ³	Arcturus ⁴	Walvax
Shipment	-20 ⁰ C (up to 6 mo)	-70 ⁰ C	Not disclosed	-70 ⁰ C or 2-8 ⁰ C	Lyophilized DP being tested at 2-8°C & RT	Not disclosed
Post-thawing	2-8 ⁰ C (up to 30 days) RT (up to 12 hrs)	2-8 ⁰ C (up to 5 days)	2-8 ⁰ C (up to 3mo)	2-8 ⁰ C (data up to 3months available)		Not disclosed

Note: Several claims have yet to provide supportive data

The need for global equitable access

A global crisis requires a global solution

Even if a safe and effective vaccine were developed, how would it be manufactured and delivered to the billions around the world?

The Access to COVID-19 Tools (ACT) Accelerator was established as a global solution to accelerate the development, production and deployment of vaccines diagnostics and therapeutics.

By acting **now**, we will save millions of lives and protect the livelihoods of billions more.

14

COVAX

CEPI

COVAX launched to end the acute phase of the pandemic by the end of 2021. Co-led by CEPI, Gavi, WHO. Partners include UNICEF, World Bank, civil society organisations, and others.

COVAX on track to deliver on aim to develop, manufacture and enable global equitable access to 2 billion doses of COVID-19 vaccine.

190 participating economies – 92 LMICs.

First right of refusal to potentially over 1 billion CEPIsupported COVID-19 vaccine doses.

Delivery in first half of 2021, anticipated to begin Q1 contingent with regulatory approvals and countries' readiness for delivery.

Building on rapid response platforms for the future

Speed is of the essence in outbreak response

With COVID-19 it took about **300 days** from virus characterisation to submission of phase 3 data.

CEPI's aspiration is reduce this time to **100 days** for future outbreaks.

First test with **new variants** for COVID-19

Looking to the future

CEPI

M S

COVID-19 provides an opportunity to think about how we systematically reduce the risk of naturally occurring threats

Trends are converging in a way that could make the world better prepared for the next pandemic:

- Political will to invest in health security
- **Revolution in vaccinology**, with multiple new platforms approved
- Global desire to reduce pandemic risk

Viruses are collective, transnational threats. They should be tackled collaboratively in future

- Develop global end-to-end global R&D system and financing model for preparedness and response
- COVAX can serve as a model