Universal Influenza Vaccines

Kanta Subbarao

WHO Collaborating Centre for Reference and Research on Influenza Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity

2020 Global Vaccines and Immunization Forum

Doherty Distitute

The burden of influenza

Global seasonal influenza-associated respiratory mortality

- Previous estimates were 250,000 to 500,000 deaths globally/year
- New estimates from 47 countries (1995-2015)
 - 291,243 to 645,832 deaths annually ~ 4.0 to 8.8/100,000 persons
 - Highest in sub-Saharan Africa, southeast Asia and persons older than 75 years (17.9-223.5/100,000 persons)
 - In children <5 years: 9,243-105,690 deaths annually
- 36,000 deaths and >200,000 hospitalisations/year in the US
- Ever present threat of pandemic influenza

Characteristics of the last 4 influenza pandemics and economic impact of a future pandemic

Pandemic year of emergence and common name	Area of origin	Influenza A virus subtype (type of animal genetic introduction/recombination event)	Estimated reproductive number <i>(34,</i>	Estimated case fatality	Estimated attributable excess mortality worldwide	Age groups most affected
1918 "Spanish flu"	Unclear	H1N1 (unknown)	1.2-3.0	2–3%	20–50 million	Young adults
1957–1958 "Asian flu"	Southern China	H2N2 (avian)	1.5	<0.2%	1–4 million	All age groups
1968–1969 "Hong Kong flu"	Southern China	H3N2 (avian)	1.3–1.6	<0.2%	1–4 million	All age groups
2009 -2010 "influenza A(H1N1) 2009"	North America	H1N1 (swine)	1.1–1.8	0.02%	100 000–400 000	Children and young adultsj

- The economic impact of a severe pandemic similar to 1918 could be ~5% of the global gross domestic product.
- The annual global cost of moderately severe to severe pandemics is ~\$570 billion, or 0.7% of global income.
- In contrast, pandemic preparedness has been estimated to cost \$4.5 billion, or less than \$1 per person

Distribution of influenza A haemagglutinin subtypes in nature

H1	KHS				The second se	1	
H2						1	
H3	KNS	200	A	Mer		1	
H4	 		A			10	
H5						1	
H6						10	
H7		200	A			1	
H8						1	
H9						1	
H10						3	
H11						3	
H12						3	
H13					a t		
H14						1	
H15						19	
H16							
H17							1
H18							144

Distribution of influenza A neuraminidase subtypes in nature

Circulation of influenza A viruses in humans in the last century

The haemagglutinin and neuraminidase are the main targets of the protective antibody response

Course of Immune Response During Influenza Infection

Source: Subbarao et al. Immunity 24, 5-9 (2006)

Limitations of current influenza vaccines

- Vaccines require months to manufacture
- Reduced effectiveness when vaccine and epidemic strains are antigenically mismatched
- Suboptimal efficacy in the elderly
- Short duration of protection
 - Antigenic drift results in need for annual reformulation
 - Antigenic shift requires a new vaccine component
- Most of the currently licensed influenza vaccines are generated in embryonated eggs

To prevent severe illness and death from pandemic influenza and it's complications.

An ideal influenza vaccine will

- induce a systemic and mucosal immune response directed at the HA, NA and conserved internal proteins of the virus
- protect against a broad range of influenza viruses, within a subtype and across subtypes

Option A	Option B	Option C		
Conventional Approach	Enhance the breadth of cross reactivity	The 'game changer' Approach		
Strain Specific Vaccines	Subtype Specific Vaccines	Universal Vaccine		

- Principle: Elicit strain-specific immunity
- Process:
 - Monitor genetic and antigenic drift in nature through surveillance
 - Determine when antibody elicited against previous vaccines fail to cross-react with drift variants
 - Prepare a new vaccine candidate

Approaches to improve breadth of immunity

- **Principle**: Elicit broadly cross-reactive subtype-specific immunity
- Goal:
 - Enhance the cross-reactivity of the Ab response
- Processes:
 - Oil-in-water adjuvants
 - Whole virion vaccines
 - Combine vaccine platforms
 - Select different viruses for development of CVVs
 - Select among existing influenza viruses
 - Select antigenically advanced variants
 - An ancestral/computationally optimized broadly reactive HA
 - Multivalent vaccine e.g. VLPs expressing different HAs
 - Combinations of antigens e.g. NP + M1 ± HA or T cell epitope vaccine + HA

Targets

- Hemagglutinin
 - Head
 - Stem
- Neuraminidase
- M2
- NP + M1
- T cell based protection

The most exciting development in the field: the HA stem epitope

Influenza viral spike (HA)

Red: highly variable Yellow: highly conserved

Increasing the breadth of vaccine protection

Fox, Quinn and Subbarao Drugs 2018

The challenges of universal influenza vaccine development

Technical challenges:

- Identify targets that are conserved across a wide range of influenza viruses
- Develop a vaccine strategy to induce an immune response that is
 - Sufficiently robust to confer protection
 - Elicited at the appropriate site (serum/mucosal antibody, pulmonary T cells)
 - Without adverse effects e.g. immunopathology

Regulatory challenges:

Immune correlates of protection and assays to measure them

Implementation:

- Who should be vaccinated, when and how often?

Seasonal Influenza Preparedness

Pandemic Influenza Preparedness

Thank you!

The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne is supported by the Australian Government Department of Health