CEPI

Transformative Concepts for Mass Vaccination and Pandemic Response

Global Vaccine Immunization Research Forum, 2021

Matthew Downham, PhD Sustainable Manufacturing Lead, CEPI (London, UK) 22nd February 2021

Innovation in a time of crisis for LMIC deployment – Pros & Cons

Technologies not yet licensed, may have application/s, accelerated in Covid-19 context

Pros

Media attention & global visibility (public health problem drives **potential innovative solutions**)

Numerous research funding opportunities

Focused momentum to solve health challenge

Not available in time for crisis (public perception, confusion, solution acceptance / "backfire")

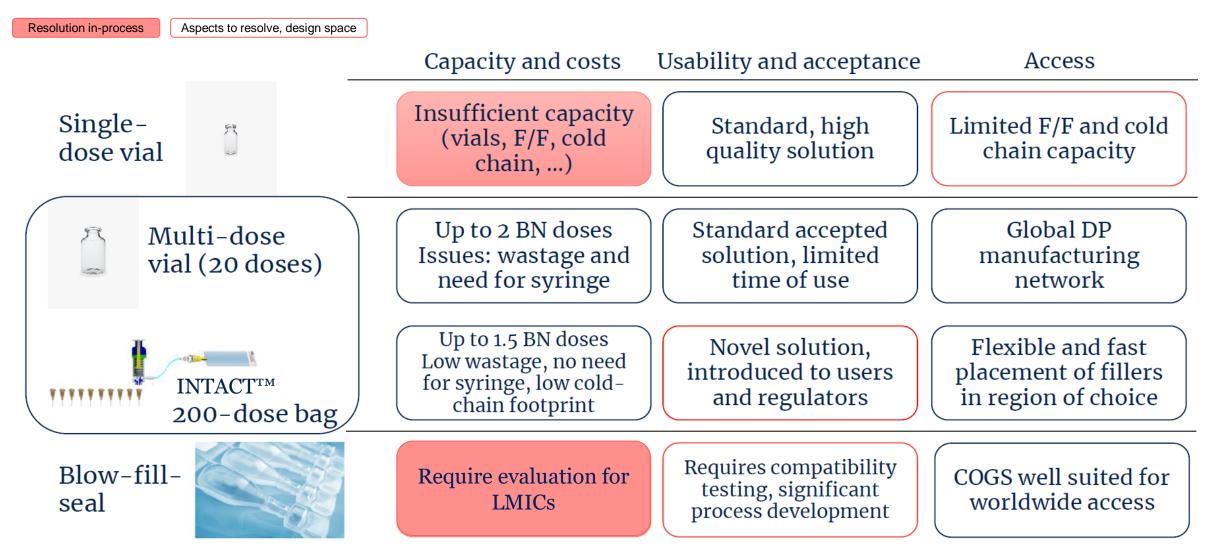
Programmatic suitability requirements not met

Not affordable or sustainable

By Q4/2021 innovations*:

- Blow fill seal technologies
- Multi-dose bag systems

Next generation innovation:


- Micro-array patches
- Oral delivery
- Thermostable formulation

Key trade-off:

Cons

Perceived public health need and potential impact (e.g. hesitancy) vs realistic timeline and product profile

Vaccine drug product approach to achieve billions (BN) of doses

Approach to achieve BN of doses reveals gaps that drive opportunities for innovation/s

Sensitivity: CEPI Internal

Blow-fill-seal (BFS) primary container

- BFS technology is a method of producing **liquid-filled single/multi-dose containers**: formed, filled, sealed in a continuous, automated system
- An advanced aseptic process for packaging numerous sterile pharmaceutical products

Single and multi-dose

Sensitivity: CEPI Internal

- Multiple mono-dose BFS design used for GSK Rotarix[™]
- Global Good: low cold chain volume ampoule
- Delivered with AD/RUP needle & syringe separate needle, design dependent

Single and multi-dose BFS containers

Ampoule (prototype)

Container with insert septum (prototypes)

Blow-fill-seal (BFS) primary container

- BFS technology is a method of producing **liquid-filled single/multi-dose containers**: formed, filled, sealed in a continuous, automated system
- An advanced aseptic process for packaging numerous sterile pharmaceutical products

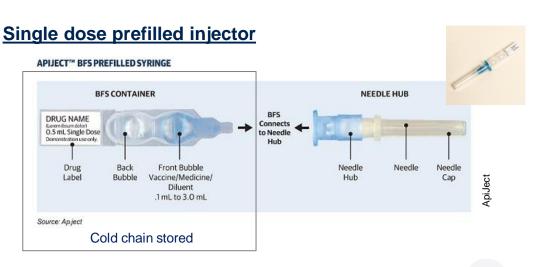
Single and multi-dose

- Multiple mono-dose BFS design used for GSK Rotarix™
- Global Good: low cold chain volume ampoule
- Delivered with AD/RUP needle & syringe separate needle, design dependent

Single dose prefilled injector (ApiJect platform)

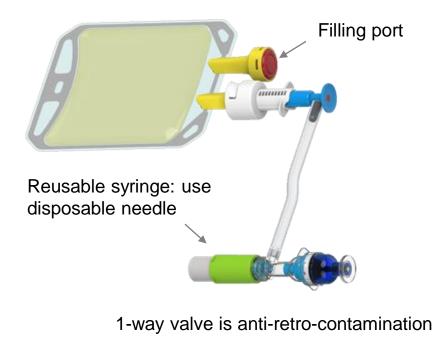
- Parenteral injection capability AD feature preventing reuse expected to be developed in line with programmatic suitability requirement
- DH&HS \$138M USD contract (stockpile 45M per month in SC)
- US International Development Finance Corporation \$590M loan for BSL-2 "Gigafactory" (RTP) - 250M doses per month on ≤15 isolated lines

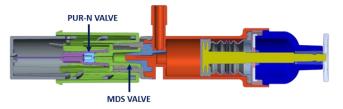
Single and multi-dose BFS containers

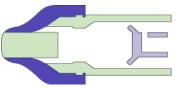


Ampoule (prototype)

Global Good




Sensitivity: CEPI Internal


5

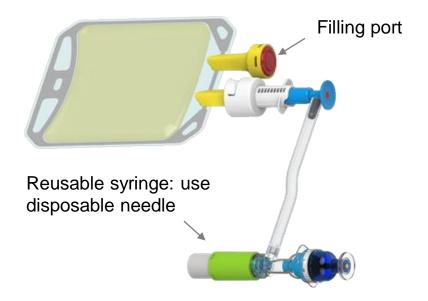
Rommelag

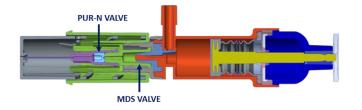
Multi-dose pouch (INTACT[™] Solutions)

Sensitivity: CEPI Internal

One-way valve in multi-dose syringe

1. Secure disposable needle

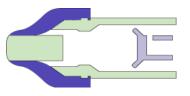




3. Dispense needle

Multi-dose pouch (INTACT[™] Solutions)

1-way valve is anti-retro-contamination



INTACT™ Solutions platform

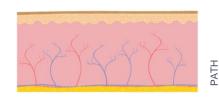
- Multidose container for mass vaccination, enables rapid administration, lower cold chain footprint per dose
- One-way valve, prevents ingress of contamination into the container as doses are dispensed
- Could significantly expand F/F capacity for C19 vaccines through use of 200-/400-dose pouches and alternative filling facilities
- Fillers can be installed flexibly at existing CMOs, low environmental requirements and high capacity

Technology status

- Advanced prototypes with COVAX engagement
- PATH HCD simulated use evaluation ongoing (Seattle, Kenya, Zambia)

Sensitivity: CEPI Internal

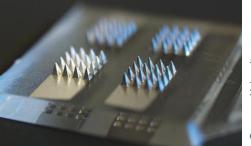
One-way valve in multi-dose syringe


Abbreviations: HCD, human centered design; F/F, fill-finish; CMO, contract manufacturing organizations

Micro-array patches (MAP)

First vaccine-MAP could be licensed in 5 years

- MAPs consist of hundreds of tiny projections that penetrate the top dermal layer delivering vaccines or drugs into the skin
 - Several Ph.1 studies completed for influenza vaccines (Georgia Tech, Vaxxas, CosMED, Zosano Pharma)
 - Phase 1 MR clinical trials to be initiated in 2021 (Vaxxas, Micron)
- Some platforms require an applicator for delivery
- Wear times range from seconds to hours to release API, depending on design
- PATH Center of Excellence for MAP Technology
- <u>VIPS</u> (Gavi, WHO, UNICEF led collaboration with PATH and BMGF) top tier prioritized technology
 - Action plan in development (5 yr strategy finalized, multiple funders engaged)



Sensitivity: CEPI Internal

Micro-array patches (MAP) – next generation

Technology status (COVID-19 vaccine):

- Swansea University IMPACT
 - Coated microneedle array/smart device (skin biomarker monitoring)
- UPMC: dissolvable array/subunit vaccine (<u>PittCoVacc</u>)
- Vaxess dissolvable, MIMIX[™] Smart Release patch, pre-fusion spike protein
 - o Single dose, self applied, room temperature stable
 - o Combined COVID-19 and QIV (Medigen Vaccine Biologics Corp)
- Verndari VaxiPatch[™] (coated array), SARS-CoV-2 recombinant spike receptor binding domain protein
- UCONN: dissolvable array, additive, micro-mold fill/finish process, spike protein (BARDA funded)

Abbreviations: UPMC, University of Pittsburgh Medical Center; BARDA. Biomedical Advanced Research and Development Authority; UCONN, University of Connecticut; IMPACT, Institute for Innovative Materials, Processing and Numerical Technologies;

Oral delivery

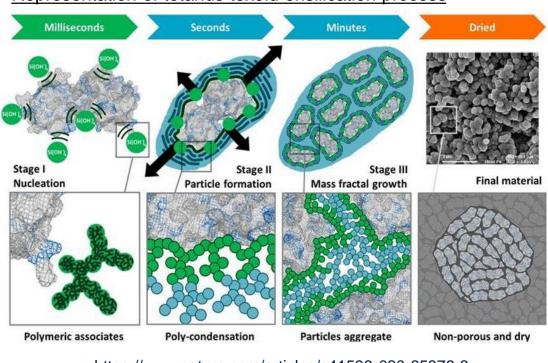
- GI tract mucosal delivery oral, stomach, small intestine
- Capsule and tablet based, pain free, self administration
- Live-attenuated and inactivated vaccines for enteric disease
- Oral subunit, DNA and mRNA vaccines in development

Technology status (COVID-19 vaccine)

- Esperovax EGRESS RD (BARDA funding)
 - mRNA (spike protein) oral eVLP delivery technology
 - Pill based approach yeast engineered lipid particles containing mRNA
- Vaxart VAAST™ oral vaccine platform
 - Phase I clinical development stage
 - Temperature stable Ad5 vector delivery via tablet (antigen + adjuvant)
- Symvivo's bacTRL[™] Gene Therapy Platform
 - Phase I clinical trial stage

mRNA Vaccine thermostability

- Some current mRNA formulations require ultra cold storage to maintain stability (≤ -70°C) – needs resolving
- Lyophilized / dry powder formulations in development; potential for improved thermostability and supply chains
- Innovations to ensure mRNA vaccine stability of crucial importance to ensure applicability of vaccines to LMIC settings



Innovations in vaccine thermostability

Technology status (COVID-19 vaccines)

- Centre for Sustainable & Circular Technologies
 - Universities of Bath + Newcastle)
 - Ensilication process encase protein e.g. tetanus toxoid vaccine RT
- <u>Ziccum</u> air drying Laminar-Pace technology
- Imperial College London ionic liquid, preventing aggregation
 - Stable (RT, 50 days) self-amplifying RNA vaccine
- <u>Stablepharma</u> StablevaX[™] trehalose
 - Liquid vaccine loaded into a sponge placed in syringe hub and dried

Representation of tetanus toxoid ensilication process

Stablepharma

Conclusion

- Covid-19 pandemic has presented an unparalleled opportunity to accelerate innovative technologies
- The pandemic has also:
 - Increased the visibility of global public health inequity
 - Geo-economy differences in health system infrastructure
- Elevated the considerations to develop and deliver a truly 'global' Covid-19 vaccine:
 - Trade off in 'first past the post' vs time to develop sustainable and deployable vaccines
 - Country readiness and acceptability
- Immediate, rapid response technologies versus novel innovations on a longer lead time (possibly more applicable to next generation vaccines and presentations)
- Covid-19 has demonstrated that deployment challenges, under the compressed timelines of a pandemic, drive technology innovation to facilitate rapid, mass, public health vaccination campaigns

Global Vaccine and Immunization Research Forum

BILL& MELINDA GATES foundation

