COMBINATION VACCINES: HOW AND WHY? LESSONS LEARNED.

Global Vaccine and Immunization Research Forum Johannesburg, March 16, 2016 Michel De Wilde, MDWConsultant, LLC

STRONG RATIONALE EXISTS FOR COMBINATION VACCINES

- Fewer injections
- Higher rate of compliance with complex vaccination schedule
- Better vaccine coverage
- Timely vaccination schedule completed on time
- Reduced administration cost
- Lower storage space requirement
- Allows incorporation of additional vaccines in the schedule

STRONG RATIONALE EXISTS FOR COMBINATION VACCINES

- Fewer Injections
- Higher rate of compliance with complex vaccination schedule
- Better vaccine coverage
- Timely vaccination- schedule completed on time
- Reduced Administration cost
- Lower storage space requirement
- Allows incorporation of newer vaccines in the schedule

COMBINATIONS HAVE LED TO IMPROVED UPTAKE AND CLINICAL OUTCOMES VS. STANDALONE ALTERNATIVES (THAILAND EXAMPLE)

COMBINATION with HEPB SHOWED COVERAGE AND IMMUNOGENICITY GAINS

	DTPw + HB (separately)	Combined DTPw-HB	Net change
HB coverage (3 rd dose)	83.8%	93.8%	+10%
Seroconversion rate	88.4%	94.8%	+6.4%

STRONG RATIONALE EXISTS FOR COMBINATION VACCINES

- Fewer injections
- Higher rate of compliance with complex vaccination schedule
- Better vaccine coverage
- Timely vaccination schedule completed on time
- Reduced administration cost
- Lower storage space requirement
- Allows incorporation of additional vaccines in the schedule

CASE FOR COMBINATION VACCINES? EVOLVING UNDERSTANDING OF ACCEPTANCE OF MULTIPLE INJECTIONS IN DEVELOPING WORLD

Some countries in the developing world are reluctant to have > 2 shots per visit...

...But in the U.S., 3 injections in one visit is the norm

2015 U.S. Immunization Schedule

NEPAL:

- Introduced PCV at 6, 10 weeks and 9 months to avoid 3rd injection (with IPV + Penta) at 14 weeks
- Given reduced interval between 6 and 10-week injections, concerns raised about immunogenicity
- Avoidance of three injections at 14-week visit prioritized

BANGLADESH:

- Bangladesh introduced PCV and IPV to routine immunization schedule in 2015 with Penta
- District EPI managers/mothers influence decision 18-week visit rather than a third injection at 14 weeks

3 injections given at most visits from 2 to 15 months

4 injections given at 4 to 6 years of age

BUT THERE ARE OTHER CONSIDERATIONS

Scientific/Technical

- Immunological: "in the child"
- Physicochemical: "in the vial"
- Analytical; "in the lab"

Commercial

- Intellectual Property
- Access to all valences
- Access policies and pricing

Strategic

Introduction of new vaccines

BUT THERE ARE OTHER CONSIDERATIONS

- Scientific/Technical
 - Immunological: "in the child"
 - Physicochemical: "in the vial"
 - Analytical: "in the lab"
- Commercia
 - Intellectual Property
 - Access to all valences
 - Access policies and pricing
- Strategic
 - Introduction of new vaccines

SCIENTIFIC CHALLENGES: MULTIPLE TECHNICAL AND IMMUNO-LOGICAL BARRIERS CHALLENGE THE SUCCESS OF COMBINATIONS

"In the child"	"In the vial"	"In the lab"
Immune interference	Incompatibility of components	Analytical assay tests
Bystander interference	pH incompatibility over time	
Carrier-induced epitopic suppression	Variable absorption to adjuvant	

COMBO DEVELOPMENT CAN BE CHALLENGING AND IS NOT ALWAYS SUCCESSFUL...

...3 Case studies

CASE STUDY 1: GLOBORIX

Objective

Heptavalent for the Meningitis belt, incorporating MenAC into infant series

Composition

• D, T, wcP, HepB, Hib, MenAC-TT

Challenges

- Somewhat reduced immunogenicity of Men
- Timing/cost of product mismatched vs the development of MenAfrivac

Outcome

File withdrawn following the Article 58 day 120 questions

CASE STUDY 2: HEXAVAC

Objective

Hexavalent, primarily for Europe but other private markets as well.

Composition

D, T, acP, HBV, Hib, IPV

Challenges

- Reduced HBV titers vs. licensed comparators
- Few SIDS cases temporally associated (causality later excluded)

Outcome

- Licensed in 2000, suspended by EMA in 2005
- Large commitments for re introduction, vaccine ultimately withdrawn by manufacturer

CASE STUDY 3: PROQUAD • MERCK

Objective

- Increase compliance and timeliness of MMR and varicella vaccination
- Reduced number of injections
- Target HIC market

Composition

Measles, Mumps, Rubella, Varicella

Challenges

- Higher varicella titers required for adequate immunogenicity
- Elevated febrile seizure risk identified post-licensure

Outcome

- Licensed in 2005
- In 2009, new ACIP recommendation as a 2nd dose at 4-6 years only

...BUT SUCCESSFUL COMBINATIONS HAVE LED TO EFFECTIVE VACCINES WITH GLOBAL IMPACT

...2 case studies

CASE STUDY 1: PENTA

Objective

Pentavalent infant vaccine for L&MICs

Composition

• Diphtheria, Tetanus, wcPertussis, HepB, Hib

Advantages

- Emerged as successor to DTP
- Shots reduced from 9 to 3
- Allowed the introduction of Hib

Outcome

- After hiccups, now available in world's 73 poorest countries from 6 manufacturers
- Increased coverage

Source: Gavi: Pentavalent Vaccine Support

CASE STUDY 2: MMR

Objective

• Trivalent pediatric combination for the world

Composition

• Measles, Mumps, Rubella

Advantages

- Available for >40 years
- Components developed as individual vaccines prior to combination

Outcome

- Similar titers elicited vs. standalone vaccines
- Where widely used, >99% reduction in incidence of each disease

BUT THERE ARE OTHER CONSIDERATIONS

- Scientific/Technical
 - Immunological: "in the child
 - Physicochemical: "in the vial"
 - Analytical; "in the lab"

Commercial

- Intellectual Property
- Access to all valences
- Access policies and pricing
- Strategic
 - Introduction of new vaccines

ANTIGEN AVAILABILITY AND INTELLECTUAL PROPERTY HAVE IMPACTED THE DEVELOPMENT OF COMBINATION VACCINES...

Introduction

- Combination vaccines first emerged in vaccinology in 1949 when DTP was licensed
- As the number of available vaccines grew and the immunization got crowded, the incentive to reduce the number of injections grew, particularly for the primary schedule in infants
- The stage was set for hexavalent combinations in the 1990s with the availability of HepB and Hib and a shift to IPV

Main drivers

Antigen availability

Initially, no manufacturer had all the valences available to make a hexavalent

Intellectual property

Vaccines had become commodities but IP covering recHepB became a huge driving force

...AND HAVE SHAPED THE DEVELOPED WORLD VACCINE INDUSTRY!

Combination strategies varied by player

Sanofi and Merck

- Formed a joint venture in Europe in 1994
- Started development of Hexavac

GSK

- Elected to go "alone"
- Obtained D and T through a agreement with Chiron Behring

Other players

- Excluded from the combo market in the developed world
- e.g. Sclavo/Chiron despite an excellent acP

Future developments

 In the developing world, a lot of movement is taking place already between DCVMs and MNCs; it can be expected that combination vaccines will drive further change in the landscape

BUT THERE ARE OTHER CONSIDERATIONS

- Scientific/Technical
 - Immunological: "in the child
 - Physicochemical: "in the vial"
 - Analytical; "in the lab"
- Commercia
 - Intellectual Property
 - Access to all valences
 - Access policies and pricing
- Strategic
 - Introduction of new vaccines

THE INTRODUCTION OF NEW VACCINES WILL FURTHER INCREASE COMPLEXITY

Note: All figures are based on GAVI-funded vaccines only

COMBOS ADDRESS CONCERNS ACROSS EACH OF THESE AREAS

- Simplifying administration by decreasing volumes and combining antigens into fewer shots
- Providing greater access to vaccines in the developing world via material cost savings
- Minimizing cold chain supply challenges by decreasing the number of SKUs and total shipment volume required

GOING FORWARD: CONSIDERATIONS FOR NEW COMBINATIONS

- Epidemiology (age group and geography of burden)
- Technical and immunological risks
 - CMC complexity (formulation, analytical, failure rate)
- Route of administration (oral versus parenteral)
- Regulatory pathway
 - e.g. do correlates exist for all antigens?
 - e.g. article 58 vs local vs other
- Needed partnerships/licenses