Leishmania Vaccine Development: Progress and challenges in the context of other control strategies

Farrokh Modabber, Ph. D. Senior Advisor, Leishmaniasis

Decreasing SSG efficacy for VL treatment

GVIRF Bethesda March 2014

Sundar & Olliaro

Lots happened for VL management

1. New drugs & treatments: Miltefosine, Injectable Paromomycine, AmBisome, Drug combinations

Most significant advance:

Single-dose 10mg/Kg AmBisomefor visceral leishmaniasis in India.

Sundar S, et al. N Engl J Med. 362:504-12. 2010

Cure rate after 6 mo FU: **95.7%** (95% CI, 93.4 to 97.9)

Yes, Can be used in rural hospitals in Bangladesh 97% cure rate, No SAE

Dinesh Mondal, et.al. www.thelancet.com/lancetgh http://dx.doi.org/10.1016/S2214-109X(13)70118-9

Cost negotiated by WHO-MSF and Gilead to about \$120/typical patient

Local production in India, to be improved and may create competitive pricing

Drug Combination for VL (DNDi Trial) Sundar S, et. al. Lancet, **377**(9764):477-86, 2011

Treatment: Drug Combination Trial	Ampho-B 30 days in Hospital 15 injections	AmB 5mg/Kg x1 + Paro. 10X (11 days)	AmB 5mg/Kg x1 + Milt. X 7 (8 days)	Paro. 10x + Milt. X 10 (10 days)
Final cure (ITT) 95%CI FU 6 months	93.0% 87.5, 96.3	97.5% 93.3, 99.2	97.5% 93.2, 99.2	98.7% 95.1, 99.8

Estimated costs US\$ at 2008. Meheus F, et.al. PLOS Neg Trop. Dis. 7;4(9). pii: e818

Strategy	Drug cost	Other direct medical	Non- medical & indirect	Total cost
L-AmB + MF	95.7	14.8	12.8	123.4
L-AmB + PM	87.1	20.5	25.3	132.9
MF + PM	29.5	19.5	23.8	72.9
L-AmB 10	140.0	11.0	2.5	153.4
SSG	57.8	40.7	73.4	171.8

Not as efficacious in Africa.

WHO recommend: SSG+ Paromo

Trial supported by DNDi – done by Leish E. Africa Platform

New Developments

- 2. Commitment to eliminate VL (<1/10,000) in India, Nepal & Bangladesh by 2015? (availability of drug and diagnostic; daily payments to hospitalized patients in India, vector control; awareness, etc.
- Serious drug development program for VL (DNDi with major Pharma). NCE's identified and being developed
- Significant reduction in incidence of disease in major foci, India, Bangladesh, Nepal, Sudan, Kenya, Ethiopia, Uganda (LEAP), Brazil

"Reported" Incidence of VL in India

Dr Pradeep Das, Director, (RMRIMS), ICMR, Ministry of Health and Family Welfare, Patna, India

Factors responsible for decline:

Natural cycle (trough – unknown reasons)

Impact of treatments (Miltefosine, AmBisome) MSF, National Prog.

Elimination program: payment to patients, vector control

Reduced Incidence of VL in High endemic Foci

Bangladesh:

75/100 upazilas achieved <1 case/10,000 2012 40/100 Upazila reported 0 case till Aug. 2013 Shah Golam Nabi, Progrmme manger, DGHS, Mohakhali, Dhaka).

Nepal: Yearly reduction in incidence, lately ± 200/yr

East Africa: > 50% reduction in cases mortality highly reduced

1995-2005 LEAP countries (Sudan Kenya, Ethiopia, Uganda) had 40,000 VL cases/year (20,000 from Sudan)

with a mortality of about 4000 cases/year In recent years there are less than 50% with very low mortality (Head of LEAP, Dr A. M. Musa).

Vector control is controversial, but here a Demonstration project

Community-based insecticide impregnated Bed net.

Mondal, et al.'s EID Journal: Volume 19, Number 7—July 2013

Cutaneous Leishmaniases (CL) A neglected among Neglected Diseases – No Progress!

New World

- L. amazonensis
- L. (V) braziliensis
- L. (V) guyanensis
- L. Mexicana
- L. (V) panamensis
- L. (V) peruviana
- L. chagasi (infantum)

Old World

- L. aethiopica
- L. major
- L. tropica
- L. Infantum

Estimated 1,500,000 cases / year

GVIRF Bethesda March 2014

Human vaccines in clinical trials: Past

Past: First Generation Vaccines (Prophylaxis)

Killed parasites with or w/o BCG →Safe but no prophylactic efficacy

Addition of alum: (Alum-ALM+ BCG → CMI, not Ab!

One Phase-2 prophylactic trial in Sudan against VL: 544 randomized to single injection of Alum-ALM+BCG or Diluent. 2 year Follow up:

0 case in Vaccinated vs 4 in control

(Needed more studies, but not continued)

Khalil EA, et al. Ann Trop Paediatr. 26:357-61, 2006.

Issues: Use of FCS to grow parasite, Standardization & BCG lesions, ...

Second Generation Vaccines IDRI's vaccine: First defined r-Poly-Protein

Tri-fusion

TSA (20kDa) LmSTI1 (60kDa)

LeIF (40kDa)

+ MPL- SE (TLR-4 agonist)

IDRI Vaccines: Prophylactic and therapeutic efficacy in mice against challenge by needle but not by sandfly (C57 BI), protective in Balb/c. Safe and Immunogenic (Phase-1trials in US and India).

Trials in Colombia, Brazil (CL), Peru (ML), Accelerated time to cure in CL and ML patients when used in combination with chemotherapy

Trials against PKDL & DCL showed No therapeutic efficacy with or without chemotherapy.

New vaccine focused on VL: KSAC+ GLA - SE being developed

Is a TLR-4 agonist a good adjuvant for human leishmaniasis??? In mice, CpG (TLR-9 agonist) enhances MPL-SE activity

York University- Adenovirus vector with 3 genes of *Leishmania* Phase-1 completed, awaiting further trial (Prof. Paul Kaye)

ChAd63-KH: Talenew Therapeutic Tvaccine Tor TvL Tv Tr KDL Tr

Program@PI:@Paul@Kaye2

KMP-11
synthetic
HASPB

The
2A2
Engineered
Giversity

ChAd632

- ➤ produced din to suspension to ture derocell deligione to rescalable de manufacture de la produced de la produce de la produce
- ➤ Safety@and@mmunogenicity@data@available@from@hundreds@bf@volunteers@@

Preclinicalproof

of

of

of

oncept....

2

➤ Marooftt.al.21D.22012.2205:853-632

LEISH1: A study to assess the safety and immunogenicity of a new Leishmania vaccine candidate ChAd63-KH ISRCTN ISRCTN07766359

The atlinical atrial.... 2

Phase string, frime only "?

- ➤ Excellentsafetyprofilesconfirmed
- ➤ Excellent⊡evelsঊbf©CD8†?T©cell@responses@breadth@@magnitude@/@%@responders)?

LEISHDNAVAX Prevention and therapy of all forms of leishmaniasis

(Provided by Dr Christiane Juhls, Mologen on behalf of Consortium)

Vaccine: No clinical studies yet

Mixture of 5 highly conserved, highly immunogenic *Leishmania* antigens encoded by small minimalistic linear DNA expression vectors

Ready to enter clinical Phase 1 trial:

- Preclinical efficacy and safety proven
- CD4 and CD8 T cell responses against all Drugs for Neglected Diseases initiative 5 antigens detected in target populations
 - Clinical sites (VL, India & CL, Tunisia) selected, study plan outlined, clinical immunomonitoring established
 - Indian pharmaceutical partner identified **GVIRF Bethesda March 2014**

Vaccine or Immune Res. Modifiers (IRM) for Therapy

- Used in therapy (Convit et. al. Venezuela in thousands of patients)
- Alum-ALM+ BCG + antimonial on persistent PKDL, difficult to treat with drugs alone. PoC trial.

 Day
 Drug alone
 Drug + Vaccine

 60
 8/15 (53%)
 13/15 (87%)

 180
 6/15 (40%)
 15/15 (100%)

 (Final)
 2 relapsed
 All cured
 p<0.004</td>

 Musa AM, et al.. Trans R Soc Trop Med Hyg. 2008; 102:58-63.

Musa A et.al. Trans. Roy. Soc. of Trop. Med. & Hyg. 102, 58—63, 2008

Can also be used to reduce dose of drug

Immunotherapy of CL in Brazil

Machado—Pinto J. et al. Int. J. Dermatol. 41:73-8, 2002

Mayrink's vaccine registered as adjunct to low –dose antimony In Brazil, but not used

Drugs for Neglected Diseases initiative

duration of treatment (days)

Progress in Control of Cutaneous Leishmaniasis

No Major Advance

Situation: Increased resistance to Antimonials, (R-L.tropica isolated)

Increased incidence due to war, population displacement

Other control measures have failed

No acceptable, affordable and safe treatment is available AmBisome, Miltefosin (costly, variable results), thermotherapy, ... Unsatisfactory

Need vaccine and Immune Response Modifier to enhance cure: to shorten time to cure, reduce scars.

Opportunities:

- 1- CpG as adjunct to chemotherapy. D-35, D. Verthelyi, et al. NIH/FDA
- 2- Live challenge to evaluate vaccines (needle infection standardized for *L. major*, can be done in certain foci (without HIV)

Immune Response Modifier as Adjunct to Therapy

Flynn B1, Wang V, Sacks DL, Seder RA, Verthelyi D.

Prevention and treatment of cutaneous leishmaniasis in primates by using synthetic type D/A oligodeoxynucleotides expressing CpG motifs.

. Infect Immun. 2005 Aug;73(8):4948-54.

Leishmanization an ancient practice also used in Israel, Uzbekistan and Iran Standardized for live challenge studies in Iran (Khamesipour, A, et al. Vaccine 23:3642-48. 2005)

Seed Bank & Stabilates from well characterized L.major

Strong LZ lesion

Iran

18 volunteers injected with live L. major followed for 1 year

Natural infection

All developed lesion and all lesions healed **Mean duration to scar formation= 166.6 days (SD =67.65)**

14 recovered Volunteers injected again + 4 new volunteers

14/14 protected no ulcer = 100% protection 4/4 developed lesion, healed in 142.00 days (sd=88.30)

In larger Leishmanization programs, there were 2-4 % reinfection. About 50/1000,000 developed non-healing (recorded).

G۷

Vaccine Needs

- For VL Short term: Implement available control measures
 Long term: An affordable field friendly safe live
 vaccine: Much like BCG, smallpox vaccine
- One candidate: Live attenuated (i.e. p27-KO L. donovani, Nakhasi, Fujiwara et al. Better than registered vaccine for dogs.
- Consider cost of development and implementation for all vaccines.
- For CL, Vaccine is urgently needed, since there are no effective control measures. Use leishmanization as challenge to evaluate candidate vaccines quickly & costeffectively. (must be done with caution in HIV- free foci). All participants are protected either by candidate vaccines or leishmanization.

THANK YOU

For Discussions vaccine requirements

Anti-infection, anti-disease

How many injections, annual booster?

Dead vs. live vaccine: p27-KO (Attenuated) *L. donovani,* (H. Nakhasi, Fujiwara et al.)

Live challenge? Leishmanization for CL, *L. donovani* (Rescue with Ambisome)???

Therapeutic, vs. Prophylactic

Broad spectrum (Anthroponotic CL, Zoonotic CL).

Can Canine vaccine protect humans. P-27 KO was better than commercial dog vaccine

Cost of development & cost of implementation *vs* other control measures

VL cases	Reported	Estimated	Population at risk/Total (Mil) (fm guesstimate)
L. America	3668	4500- 6800	20-40 / 597
East Africa	8569	29400-56700	15-20 / 214
Mediterranean Region*	875	1200-2000	25-40 / 370
West-Central Asia (M.E.)*	2496	5000-1000	20-40 / 442
Indian Sub- continent	42623	162100-313600	200-350 /1418
Total		200,000	280 / 3041

	TOtal				200,0	00	200 / 3	0041		
for Neglected Diseases initiative	4	Cost of Tre	eatment		\$200 x 200	0,000 P=	= 40 M			
		Cost of vaccination		\$5/	65/dose x 2 inj for 28M = 280 M**					
	*	*L. infantum/chagasi *Assuming 100% protection with 2 injections in 10% of population at high risk					sk			
Drugs	1	Some data adopted from Alvar J, Velez ID, Bern C, et al. PLoS ONE 7(5): e35671.2012						1.2012		
	G۷	/IRF Bethesda I	March 2014						21	