# Workshop 1. Towards the Development of a Universal Influenza Vaccine

Global Vaccine and Immunization Research Forum (GVIRF)

March 4, 2014

David J. Spiro, Ph.D. DMID. NIAID, NIH, DHHS







#### **Panelists**

**Norman Baylor** 

President & CEO, Biologics Consulting Group, Inc.

#### **Ruben Donis**

 Associate Director for Policy, Evaluation and Preparedness, CDC Influenza Division

**Hana Golding** 

 Chief, Laboratory of Retroviruses, Office of Vaccine Research and Review, FDA/Center for Biologics Evaluation and Research

#### **Gary Nabel**

Chief Scientific Officer and Senior Vice President at Sanofi

#### **Peter Palese**

 Horace W. Goldsmith Professor and Chair, Department of Microbiology, Professor, Department of Medicine, Icahn School of Medicine at Mount Sinai

Rino Rappuoli

 Global Head of Vaccines Research, Novartis Vaccines & Diagnostics

- Summary of Key Findings of Narrative Report
- Panelist Introductory Statements
  - Main Promises and Main Challenges
- Panel Discussion
- Questions from the floor
- Wrap up by Panel
  - What is achievable by 2020?

#### The Burden of Seasonal Influenza

- 250,000 to 500,000 deaths globally/yr; 3-5 million cases of severe illness
- ~3,300 to ~49,000 deaths/yr in the U.S. plus substantial medical costs, hospitalizations, and lost productivity
- \$40.2 billion in economic costs/yr in U.S. related to influenza and pneumonia

Sources: CDC, WHO, Am. Lung. Assoc.

#### **Pandemics of the Past Century**

Year Subtype Deaths

**-1918 H1N1** >40 million

**-1957 H2N2 >2** million

**■1968** H3N2 ~1 million

**-2009** H1N1 ~12,000

**Source: WHO** 

#### Vaccines Currently Available

#### **Inactivated Trivalent or Quadrivalent Vaccine**

- Intramuscular injection
- Split virus, whole virion (EU) virosome (EU)
- Indicated for 6 months and older
- Standard Dose or High Dose
- Egg based or Cell based
- Adjuvanted (EU)

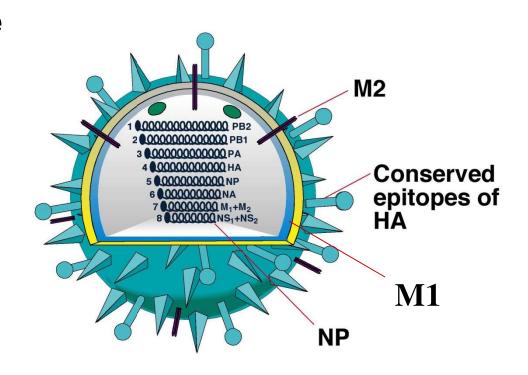
#### Live attenuated vaccine (LAIV)

- Intranasal spray
- Live attenuated virus
- Indicated for 5 to 49 years of age.

#### Recombinant trivalent influenza vaccine

- Intramuscular injection (TIV)
- Indicated for persons age 6 months and older

#### **Current Vaccines: Benefits**


- Manufacturing process is well tested
- Strain change is well accepted
- Dramatically reduce complications from influenza, including hospitalization and death.
- Can reduce the risk for outbreaks by inducing herd immunity

#### **Current Vaccines: Limitations**

- HA protein evolves rapidly so that circulating viruses may escape the protective effect of a vaccine.
- Mismatch between vaccine and virus greatly decreases vaccine efficacy.
- Requires global surveillance and a new vaccine has to be generated every year.
- Emergence of pandemic strain requires months of preparation to mount a response
- Inactivated vaccine has limited efficacy in the elderly

#### **Universal Influenza-Vaccine**

- Universal influenza vaccine needs to:
  - elicit humoral and cellular responses like natural infection
  - provide long-lasting and cross-strain protection



Targets for Universal Influenza Vaccine

# Approaches to the Development of Universal Influenza Vaccines

- HA stem region based vaccines
- Vaccines based on common determinants of the HA head.
- DNA based vaccines (e.g. nucleic acid coding for HA followed by HA protein boost).
- Vaccines comprised of conserved internal proteins (NP, M2e)
- Multimeric universal vaccines (conserved regions from HA and internal proteins)
- Live attenuated influenza vaccines

#### **Opportunities**

- Recent scientific findings demonstrate the potential efficacy of a universal influenza vaccine in vivo; provide support for a universal vaccine strategy inducing antibodies to common proteins and in particular the HA stem.
- Promising results have stimulated significant interest from pharmaceutical companies.
- Increased interest and support from government to improve seasonal vaccine efficacy and address potential pandemics.

- Summary of Key Findings of Narrative Report
- Panelist Introductory Statements
  - Main Promises and Main Challenges
- Panel Discussion
- Questions from the floor
- Wrap up by Panel
  - What is achievable by 2020?

- Summary of Key Findings of Narrative Report
- Panelist Introductory Statements
  - Main Promises and Main Challenges
- Panel Discussion
- Questions from the floor
- Wrap up by Panel
  - What is achievable by 2020?

• What are the outstanding questions in the basic biology of the immune response to influenza antigens that elicit broadly cross-reactive antibodies?

• What gaps need to be filled to facilitate the development of universal influenza vaccines?

- What are the efficacy endpoints for a universal vaccine?
- How do we design pivotal clinical trials?

• What are the regulatory hurdles and what role can governmental and multi-governmental bodies play?

- Summary of Key Findings of Narrative Report
- Panelist Introductory Statements
  - Main Promises and Main Challenges
- Panel Discussion
- Questions from the floor
- Wrap up by Panel
  - What is achievable by 2020?

### Conclusions

What is achievable by 2020?