Developing Next Generation Rotavirus Vaccines: Prospects from the Pipeline to Address Remaining Public Health Needs

Mary K. Estes, Ph.D.
Cullen Professor of Human & Molecular Virology
Director, TMC Digestive Diseases Center

Rotavirus Vaccine Development

- Based on clear need from global disease burden
- Lack of disease in children > 5 yrs of age indicated immunity develops
- What type of vaccine will best induce protective immunity?
 - Live, attenuated, oral vaccines
 - Less expensive to produce
 - Induce IgA, IgG and herd immunity
 - Non-replicating vaccines
 - May improve efficacy in children
 - in children in some settings
 - Less safety risks

Live Attenuated Rotavirus Vaccine Development

Rationale for More Live-Attenuated Rotavirus Vaccines

- Currently licensed oral live, attenuated rotavirus vaccines offer great benefit to populations in resource-limited countries but are costly and have reduced efficacy in those populations
- Vaccines must provide protection early, be safe and effective in the presence of maternal antibody
- Production of initial vaccines not sufficient to cover all children

New Rotavirus Vaccines in the Pipeline

- ROTAVAC Bharat 116E G9P[11]
 - Licensed in India, 2014
- RV3-BB G3P[6] (from Australia) with Biofarma in Indonesia
 - Phase 1 and phase 2 immunogenicity trials completed and phase 2b immuno/safety trial ongoing with evaluation of neonatal dose
- Lanzhou monovalent G10P[12] licensed and in use in China
- Rotavin-IM G1P[8] licensed in Vietnam
- Live, attenuated reassortant rotaviruses
 - BRV-Hu reassortant (pentavalent G1-4 with G9)
 - Multivalent reassortant lamb rotavirus

Rationale: Next Generation Rotavirus Vaccines

- Subunit protein NRRV candidates:
 - May provide superior efficacy in target populations
 - Projected to be less expensive (<\$1 per dose)
 - May be added to EPI vaccines, facilitating delivery
- Parenteral vaccines can protect against enteric diseases (e.g., polio, cholera, typhoid, hepatitis A)
- Focus on vaccines capable of eliciting a rotavirus neutralizing antibody response as passive transfer of such antibodies can provide protection

Non-replicating RV Vaccine Candidates

- Protein subunit vaccines
 - two VP8 formulations
- Inactivated virus
- Virus-like particle (VLP) vaccines

Characteristics of P2-VP8 Vaccine

- Developed at US NIH, led by Dr. Yasutaka Hoshino
- Truncated VP8 subunit from human Wa strain (G1P[8]) fused to the tetanus toxin P2 CD4 epitope
 - Expressed in E. coli
 - Purified using hydrophobic interaction and anion exchange liquid chromatography
 - Liquid formulation, adsorbed to aluminum hydroxide
- Preclinical toxicity testing in rabbits at doses up to 60 μg
- Non-pyrogenic
- Elicits homotypic and heterotypic antibodies that neutralize
 P[8] and P[4] rotavirus strains in preclinical studies

Rotavirus VP8*

Rationale for Vaccine Construct and Formulation: Preclinical Studies

- Inclusion of P2 T-cell epitope engendered more rapid rise in neutralizing antibody
- Addition of aluminum adjuvant increased overall titer and promoted earlier neutralizing antibody titer
- P2-VP8 subunit vaccine elicited good heterotypic neutralizing antibody response to P4 strains (but not P6)
- Protection from disease in neonatal piglets (delayed onset and shorter duration; trend to decreased shedding)

VAC 009

"A Phase 1 Double-blinded, Randomized, Placebo-controlled Dose Escalation Study to Examine the Safety, Reactogenicity, Tolerability and Immunogenicity of the P2-VP8 Subunit Rotavirus Vaccine in Healthy Adult Volunteers"

- First-in-human testing of the P2-VP8 subunit rotavirus vaccine
- Enrollment: Dec 2012 Feb 2013

VAC 009 Study Schema

Cohort	Dosing Groups	N
1	10 μg vaccine with $Al(OH)_3$	12
	Placebo	4
2	30 μg vaccine with $Al(OH)_3$	12
	Placebo	4
3	60 μ g vaccine with Al(OH) ₃	12
	Placebo	4
	Total	36 vaccine
		12 placebo
	Vaccine Schedule: Days 0, 28 and 56	

Good Safety Profile

- No SAEs during the active vaccination phase
- One SAE identified in long-term follow-up
 - Pneumonia 4 months after final vaccination

Anti-P2-VP8 IgA EIA Titers (IgG also)

Neutralization Antibody Responses to Human Rotavirus VP4 (P) Types at $60 \mu g$ (\geq 4-fold increase 28 days after 3d dose)

Santos and Hoshino, 2004

Conclusions from Phase 1 Trial

- Vaccine safe and well tolerated
- Vaccine elicits a robust antibody response to several homologous P[8] strains of rotavirus
 - Modest response to a P[4] strain
 - Meager response to a P[6] strain
- Response rates lower in those with high levels of preexisting antibody
- May need to add P[6] & P[4] component to assure optimally broad protective responses
- Performance of the vaccine in immunologically naïve subjects remains to be determined

Next Steps

- Descending-age, dose-escalation trial in toddlers and infants in South Africa
 - Safety/tolerability
 - Immunogenicity
 - "Efficacy" against shedding with Rotarix challenge

 Preclinical assessment of additional P genotypes to broaden neutralizing responses

Live Attenuated Rotavirus Vaccine Development

NRRV Vaccine Development: Discussion

- What level of efficacy will be expected/needed in developing country populations?
- Safety will NRRVs reduce the small risk of intussusception observed?
- Pricing will NRRVs be much less expensive?
- Programatic issues: will another injectable vaccine be acceptable in the EPI system?
 - Will the potential for combination vaccines with other enteric pathogens (ST-ETEC, EPEC, Shigella, Norovirus) help address this question?
- Manufacturers: in developing countries?

Acknowledgements

PATH

Jorge Flores

Alan Fix

Stan Cryz

NIAID

Fred Cassels

GATES Foundation

Duncan Steele

WHO

Thomas Cherian