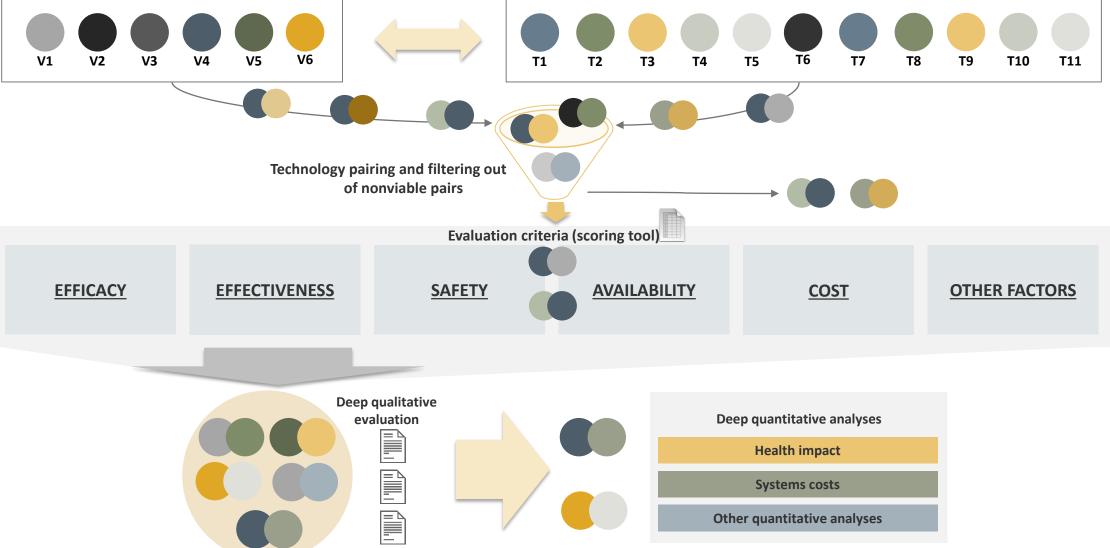
Microarray patch case study: Measles-rubella vaccine Global Vaccine Immunization Research Forum - Johannesburg, South Africa Workshop 3: Total Systems Effectiveness

Darin Zehrung PATH March 15, 2016

Current challenges to vaccine delivery

- Limited availability of trained health care workers.
- Increased number of vaccines and target populations.
- Supply chain complexities (e.g., difficulties ensuring that diluents and immunization supplies match vaccine supplies).
- Different standards used for drug delivery (e.g., autodisable syringes used only for vaccines).
- Need for safe injection technology.
- Needlestick injuries to health care workers.
- Risk to communities from improper disposal of sharps and biohazardous waste.

Technology prioritization: Objectives, approach, and benefits


- Improvement of child health through increased vaccine availability, safety, efficacy, effectiveness, and/or reduced cost.
- **Development of a framework** that can be used by the global health community to identify, prioritize, and deprioritize opportunities to apply new vaccine technologies to vaccines.
- Initial recommendations for advancement of **paired vaccines and technologies**.
- Leverage extensive prioritization and landscaping efforts previously undertaken by leading global health organizations to create an initial set of vaccines and technologies for evaluation.
- Evaluate **priority vaccines against vaccine technologies** using evaluation criteria that reflect the key ways in which the technologies can improve the vaccine.
- Select priority pairings of vaccines and vaccine technologies for further evaluation and advancement.

- Inform investment decision-making.
- Provide guidance to vaccine technology developers and industry to inform development priorities.
- **Deprioritize** technologies.

*PATH

Objectives

Technology prioritization: Overview Priority vaccines Key vaccine technologies

Technology prioritization: Priority vaccines

	BMGF*	Gavi**	WHO [†]	PDVAC ^{††}
Existing schedule			•	
Bivalent oral poliovirus (bOPV 1&3)			\checkmark	
Measles (second dose)		\checkmark		
Pentavalent**	\checkmark	\checkmark	\checkmark	
Trivalent oral poliovirus (tOPV)			\checkmark	
Yellow fever		\checkmark	\checkmark	
Diphtheria, tetanus, whole-cell pertussis (DTwP)			\checkmark	
New introductions				
Human papillomavirus (HPV)**	\checkmark	\checkmark		
Inactivated poliovirus vaccine (IPV)**	\checkmark	\checkmark	\checkmark	
Japanese encephalitis	\checkmark	\checkmark		
Measles-rubella	\checkmark	\checkmark	\checkmark	
Meningitis A	\checkmark	\checkmark		
Pneumococcal conjugate vaccine (PCV)	\checkmark	\checkmark	\checkmark	
Rotavirus (live attenuated oral vaccine)	\checkmark	\checkmark	\checkmark	
Candidate vaccines				
Cholera	\checkmark	\checkmark		
Dengue	\checkmark			
Enterotoxigenic Escherichia coli, Shigella, norovirus				\checkmark
Group A and B streptococcus				\checkmark
Malaria	\checkmark			
Maternal influenza	\checkmark			
Respiratory syncytial vaccine				\checkmark
Typhoid fever	\checkmark			

Notes: *BMGF priorities based on discussions with Foundation personnel, published materials, and public funding priorities. **Gavi has indicated that these vaccines are part of its vaccine road maps; see also http://www.gavi.org/about/strategy/vaccine-investment-strategy/. †WHO indicates the list of vaccines it prioritizes for prequalification filings. ††http://www.who.int/immunization/research/committees/pdvac/en/.

♣PATH

Abbreviations: BMGF, Bill & Melinda Gates Foundation; PDVAC, Product Development for Vaccines Advisory Committee; WHO, World Health Organization.

Page 5

Technology prioritization: Key technologies

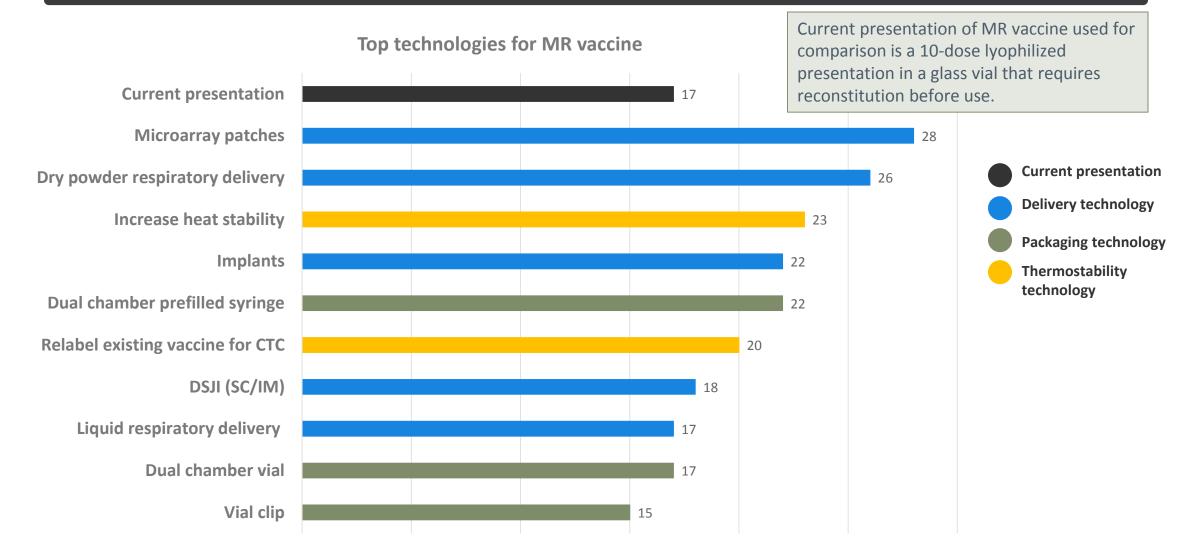
Technology category	Technology examples
	Blow-fill-seal ampoule
Packaging and	Dual-chamber prefilled syringe
presentation	Dual-chamber vial
	Vial clip
	Disposable-syringe jet injectors (SC/IM)
	Cartridge-based injection devices
	Compact prefilled autodisable delivery devices
	Implants
Dolivory	Disposable-syringe jet injectors (ID)
Delivery	ID needle-based (e.g., minineedle, hollow microneedles)
	Microarray (microneedle) patches
	Dry powder respiratory delivery
	Liquid respiratory delivery
	Sublingual (fast-dissolving thin film, thermoresponsive gel, fast-dissolving tablet)
	Increase heat stability
Thermostability	Increase freeze stability
	Qualify vaccine for controlled temperature chain use

Page 6

Technology prioritization: Evaluation criteria

Efficacy	Reduction of disease in a vaccinated group of people compared to an unvaccinated group, assuming most favorable conditions.	
Effectiveness	Ability of vaccine to reduce disease in real-world conditions.	
Safety	Ability to reduce risks to patients, health care workers, and communities through use of the technology.	
Availability	The ability to increase vaccine coverage by improving immunization program efficiency or facilitating campaigns or outreach.	
Cost	Ability of the technology to potentially decrease systems cost.	
Other Factors	Other factors that merit consideration.	
		*PF

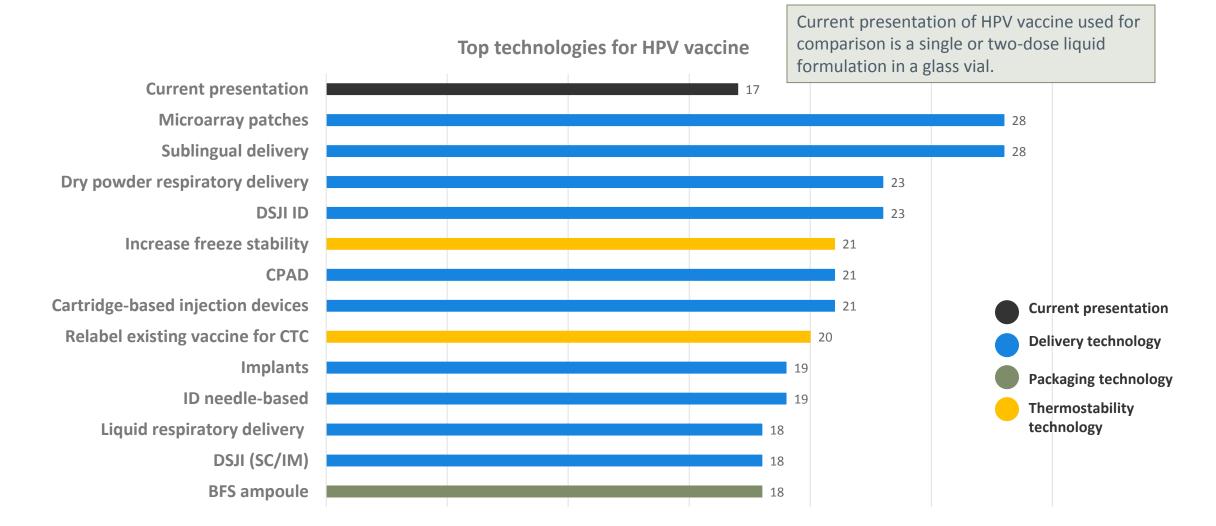
Technology prioritization: Methodology


- Each vaccine technology receives weighted scores (0, 1, or 2) across each of the criteria; each criterion includes guidance to evaluate and determine a score.
- The scoring system is broken down as follows:
 - 0: suboptimal; significant issues, challenges, or drawbacks exist relative to current state.
 - 1: neutral; relative to current state.
 - 2: improves upon current state in significant ways.

ر ا ا	C. 2. :			Final nur	nbers_graphs_v3 with :	simplified names and c	olor coded groups - E	xcel		
ILE HOME	INSERT PAGE LAYOUT FORM	IULAS DATA REVIEW	VIEW	ACROBAT						
aste Clipboard	R I II - S			Alignment	Wrap Text	General - \$ - %	9 .00 Number		Format as Cell Table * Styles * Styles	Insert
Ψ	$\times \checkmark f_x$ Efficacy									
A	8	E	F	G	н	1	J.	к	L	м
Attributes	Evoluation Basis	2	Weight	8F5 ampoule	DSH (SC/IM)	Cartridge-based Injection devices (exi Dusject Vaccject)	CPAD	Implants	Microneedie patches	increase freeze :
faccine efficacy	Does current evidence suggest that the technology will increase the vaccine's clinical efficacy?	Technology could increase vaccine efficacy	2	1	1	1	1	1	1	1
hermostability	Does current evidence suggest that the technology will increase temperature stability?	Yes. Current evidence suggests there is potential to increase temperature stability (e.g., moving from VVM 2 to VVM 7)	1	1	1	1	1	2	2	2
accine effectiveness	Does current evidence suggest that the technology will have an impact on successful delivery of an effective dose?	Positive impact on vaccine effectiveness	2	1	1	1	1	1	1	1
afety	saccessial derivery of an effective dose?									
leedlestick injury risk	Will the technology reduce needlestick injury risk compared to current presentation?	Reduces risk, e.g.: needle- free, passive or active mechanism in place, reduces	1	1	2	2	1	2	2	1
dverse events	What risk does the technology pose for adverse events due to incorrect use by vaccinator or inherent properties of the technology?	Reduces risk	1	1	1	1	1	1	2	1
Ivailability										
Jsability	is the technology easy to use and acceptable to vaccinators?	Requires less skill or reduces fewer steps/less prep time	2	1	1	2	2	1	2	1
contability	Is the presentation likely to be more acceptable to patients and/or parents? Does technology address issues of reluctance to receive vaccine?	Potential to increase acceptability	1	1	2	1	1	1	2	1
	How will the technology impact access to vaccination?	Potential to increase access, e.g.: due to improved presentation enabling alternative outreach settings	2	1	1	2	2	1	2	2
tice per dare		Reduces price/dose compared	2	2		•	0	0	•	-
	syringes)? Inclusive of potential impacts ic graph - HPV Static graph - IPV	to current offering Static graph - MR Stati	* ic graph - Rota			graph - Pentavalent	HPV. Criteria			Criteria F

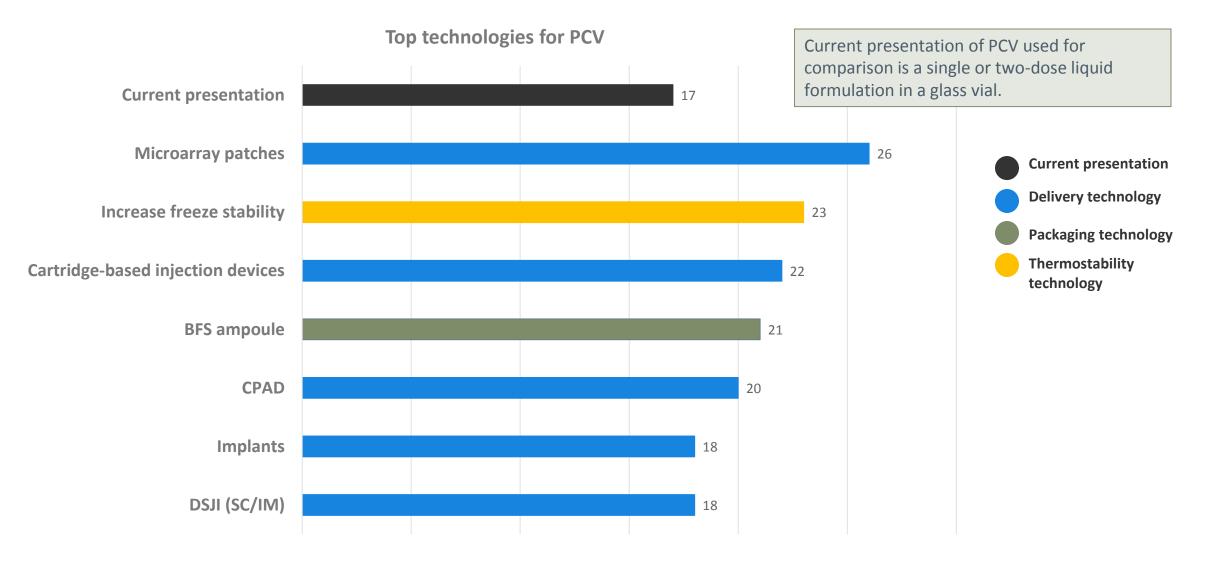
Screenshot showing an example of a tab in the vaccine prioritization tool.

Technology prioritization: Measles-rubella (MR) vaccine results

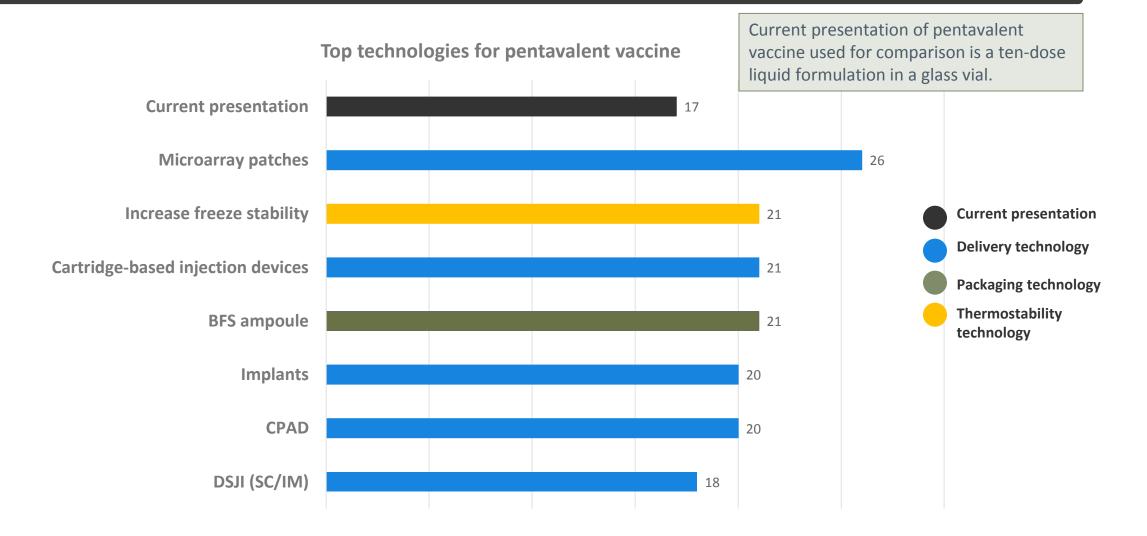


♣PATH

Page 9

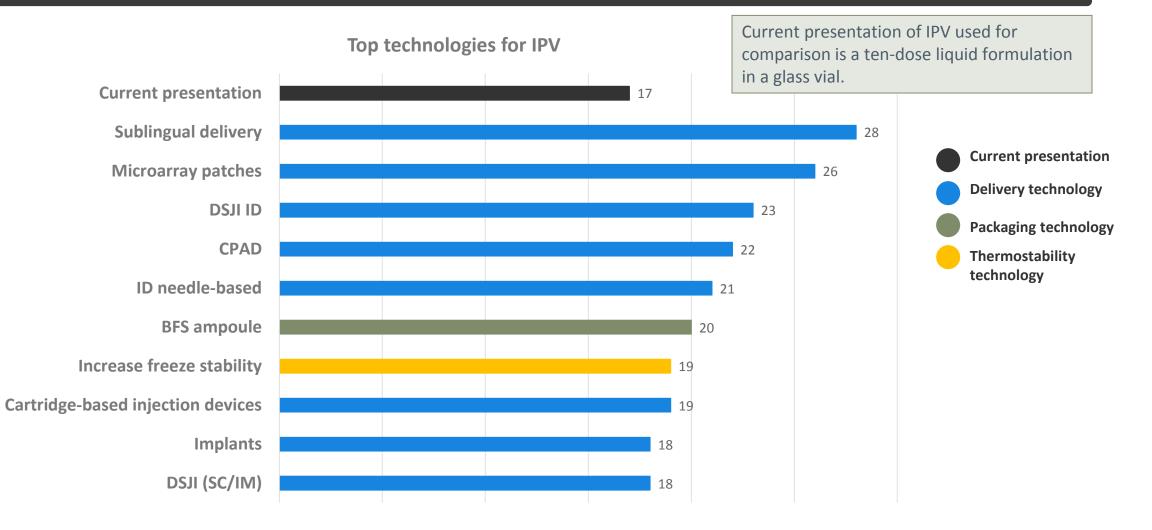

Abbreviations: CTC, controlled temperature chain; DSJI, disposable-syringe jet injectors; IM, intramuscular; MR, measles-rubella; SC, subcutaneous.

Technology prioritization: human papillomavirus (HPV) vaccine results


♣PATH

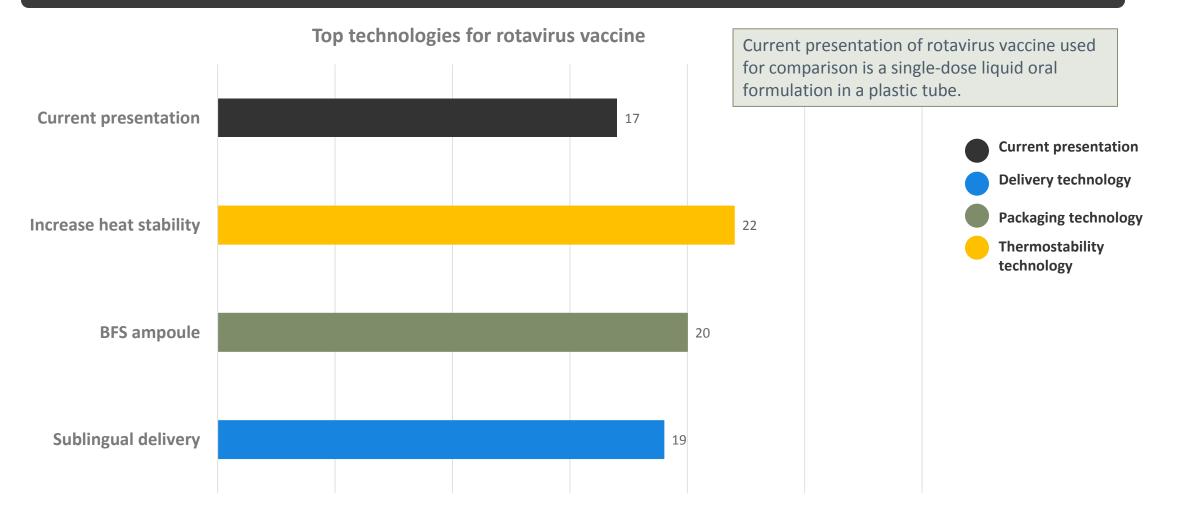
Technology prioritization: pneumococcal conjugate vaccine (PCV) results

Technology prioritization: pentavalent vaccine results



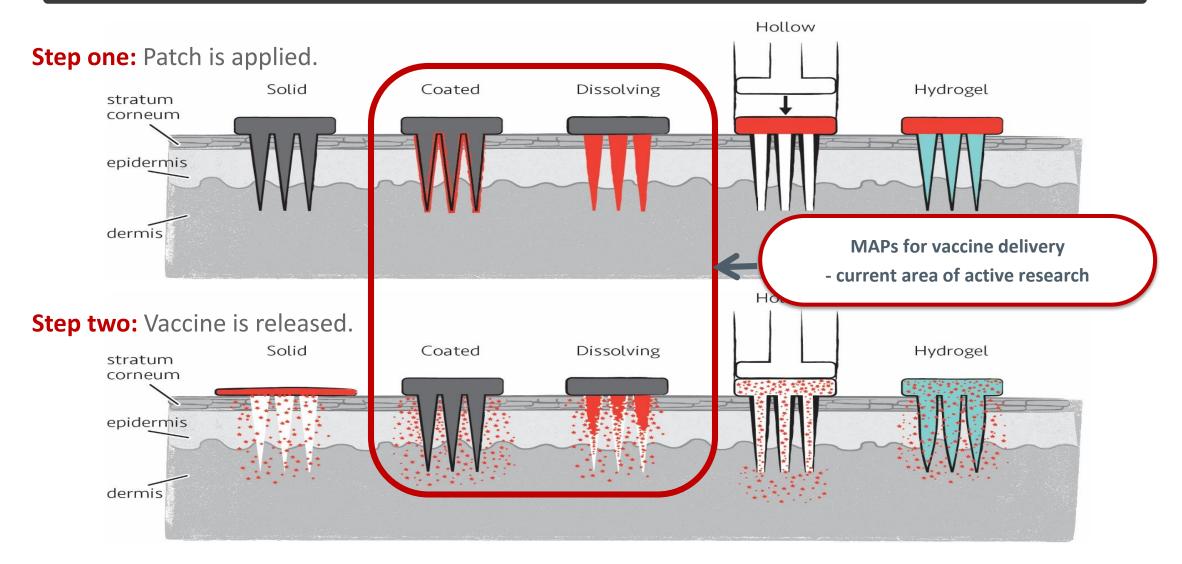
☆PATH

Page 1122


Abbreviations: BFS, blow-fill-seal; CPAD, Compact prefilled autodisable delivery devices; DSJI, disposable syringe jet injector.

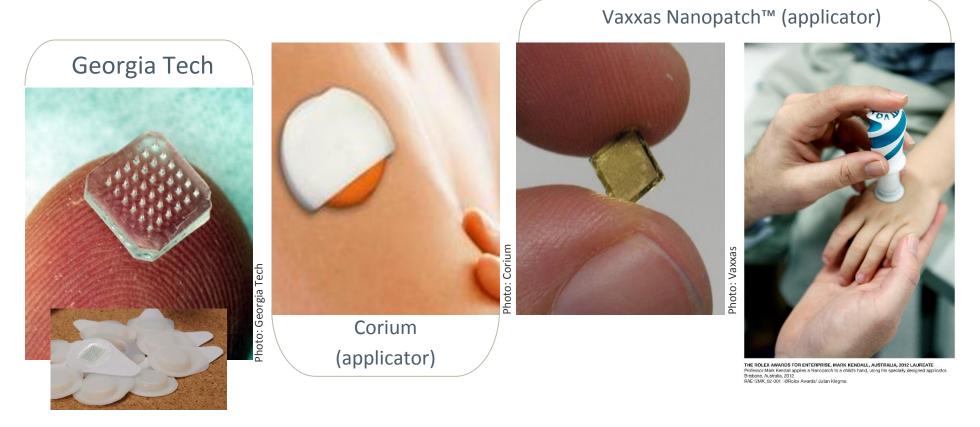
Technology prioritization: inactivated poliovirus vaccine (IPV) results

Technology prioritization: rotavirus vaccine results (live attenuated oral vaccine)



Technology prioritization: Next steps

- Technologies scoring above baseline could be considered for further investigation, starting with the top-scoring technologies.
- Conduct deep-dive qualitative evaluation of selected top-scoring pairings.
- Conduct quantitative analyses (health impact, systems costs, etc.) of selected top-scoring pairings.
- Provide recommendations and map out future strategies to advance development of most promising vaccine technology pairings.
- Identify areas where further technical feasibility analysis is needed.
- Review by the VPPAG Delivery Technology Working Group and IPAC.


Microarray patch (MAP) technologies

Microarray patch (MAP) technologies

Patches consist of hundreds of tiny projections that deliver solid vaccine into the skin. Some platforms require an applicator for delivery (integrated or separate).

Dissolving microarray

Coated microarray

MAPs: Opportunity for measles containing vaccines

Disease	Global health need	Reasons	Opportunity
Measles	 Very high vaccination coverage—95 percent—is required to interrupt and eliminate measles. Global coverage with the measles vaccine has been stagnant at 85 percent. 	 Injectable vaccines currently given in campaigns, such as measles vaccine, are generally limited to fixed-post rather than very mobile, house-to-house delivery. Achieving high coverage has been constrained by the logistical challenges. Vaccine wastage—hesitancy to open a multidose vial. 	 Having a simple patch administered by minimally trained vaccinators could help increase vaccination coverage and achieve the goal of measles elimination.

MAPs: Potential value to global public health

	Near-term benefits	Long-term benefits
Ease of administration	Potential to be delivered by trained volunteers to expand the use in supplemental immunization (campaigns).	Depending on thermostability and regulatory acceptance, potential for at-home use for vaccines, drugs, and diagnostics.
Thermostability	Increased thermostability could allow MAPs to be removed from the cold chain for the last few days during final stages of vaccine delivery in remote areas.	
Waste disposal	Obviates need for sharps disposal. Even if sharps disposal is required, significantly reduces waste disposal quantities, logistics and risks.	No sharps disposal required.
Campaigns	House-to-house campaigns; reduces logistics and cold chain burden for all campaigns.	Enables house-to-house campaigns for most/all vaccines and reduces logistics and cold chain needs for all campaigns.
Dose-sparing	Possibility for dose-sparing, but unknown whether initial vaccines will benefit; potential for reduced costs if dose-sparing is feasible.	Potential for reduced costs through dose-sparing for most/all vaccines.
Page 19		*PA

MR MAP: Preferred product characteristics

Indication: prophylactic vaccination against measles and rubella infection of at-risk infants, children, adolescents, and young adults.

Use case: routine and SIAs including outbreak response.

Dose regimen: two vaccinations: first at 9–15 months, second at 15–18 months or up to school age.

Characteristic	Minimally acceptable target	Optimal target
Target population	9 months-young adults	Addition of ages 6–9 months
Target countries	All countries in EPI	All countries
Safety	AEs comparable to SC route of administration	AEs lower than with SC route of administration
Immunogenicity	Noninferiority with SC	Superiority with SC
Stability	Comparable to current MR (VVM 14)	Enhanced thermostability, CTC
Dosage	Similar quantity of antigen required	Reduced quantity of antigen required

MR MAP: Preferred product characteristics

Characteristic	Minimally acceptable target	Optimal target
Applicator	Single use, autodisable	No applicator or reusable
Packaging	Secondary packaging no more than single-dose vial of SC MR (26 cm ³)	Secondary packaging volume no more than a 10-dose vial of SC MR (3 cm ³)
Skill level	Minimal training required	No device training needed
Wear time	5 minutes for delivery	2 minutes for delivery
Delivery time	Comparable with SC administration	Reduced time compared to SC administration
Delivery indication	Design cue to confirm vaccine delivery	Same as minimum
Cost per dose delivered	Comparable to SC administration	Lower than SC administration
Disposal	Less sharps waste volume compared to SC	No sharps waste; biohazard or ordinary waste disposal

MR MAP: Current status

- Preclinical research phase Georgia Institute of Technology*
 - Immunogenicity:
 - Measles and rubella comparable to SC.
 - Thermostability:

Page 22

- no loss of potency after 6 months at 25°C.
- < 10-fold decrease in potency after nearly 4 months at 40°C.
- WHO MAP Product Development
 Workshop 2015
 - Developers, vaccine manufacturers, global public health stakeholders, regulators.
 - Challenges, resources required, strategy.

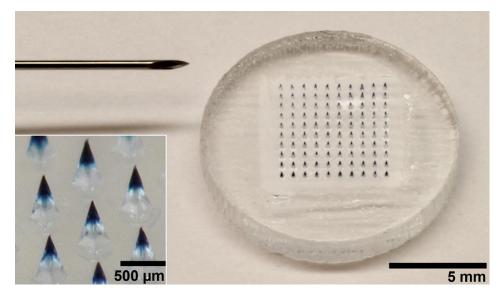


Fig. 1. Microneedle patch for measles vaccination. A microneedle patch is shown next to a 25gauge hypodermic needle. The patch contains 100 solid microneedles made of water-soluble excipients that encapsulate measles vaccine for delivery to the skin. The inset photo shows a magnified view of the microneedles. To facilitate imaging, the microneedles encapsulated dye (trypan blue) instead of vaccine.*

*Chris Edens, Marcus L. Collins, James L. Goodson, Paul A. Rota, Mark R. Prausnitz. Measles vaccination of nonhuman primates using a microneedle patch. *Vaccine*. 2015; doi:10.1016/j.vaccine.2015.02.074.

Darin Zehrung Program Advisor Devices and Tools Portfolio Leader, Delivery Technologies Vaccine and Pharmaceutical Technologies Group dzehrung@path.org

Copyright © 2016, PATH. The material in this document may be freely used for educational or noncommercial purposes, provided that the material is accompanied by an acknowledgment. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. All other rights reserved.

