

Design of self-assembling protein nanomaterials as next-generation vaccine scaffolds

Neil King | March 15, 2016 UNIVERSITY of WASHINGTON

Protein self-assembly enables specialized functions; our goal is to design new self-assembling molecular machines

Custom-designed self-assembling protein nanomaterials could facilitate new approaches to next-generation vaccine design

Design allows parts (proteins) to be built for a specific purpose

We have developed a general computational method for designing new self-assembling protein nanomaterials

The designed interfaces have features resembling natural protein-protein interfaces

The method enables the design of novel protein nanomaterials with atomic-level accuracy

"Two-component" materials should be much more versatile for various applications

- Many more potential materials due to the many combinations of building blocks
 - Millions as opposed to hundreds
- Initiation of assembly could be controlled by mixing independently purified building blocks
- Each component could be independently functionalized

We extended the method to accurately design two-component co-assembling nanomaterials

A wide variety of symmetric architectures can be designed using the approach (e.g., 2D layers)

Targeted drug delivery and nanoparticle vaccine design: twin applications for designed protein cages

Additional potential features:

membranes, immune evasion/stimulation, environmental responsiveness, endosomal escape/subcellular localization, allostery, etc.

We have recently designed 12 two-component icosahedra, 10 of which are well-behaved, with large packaging capacities

The 120-subunit, megadalton-scale structures were designed with atomic-level accuracy

J. Bale, S. Gonen, W. Sheffler

Bale J et al., manuscript in preparation

The nanoparticles are highly resistant to thermal stress

Hsia Y et al., manuscript in revision Bale J et al., manuscript in preparation

Our current crop of icosahedral nanoparticles

J. Bale, Y. Hsia, W. Sheffler

Bale J et al., manuscript in preparation

Mixing independently purified components enables simple, efficient, and controlled *in vitro* assembly

Assembly occurs on the timescale of seconds to minutes

Two-component protein nanoparticles: a versatile platform for multivalent display

Functional domain expressed as a genetic fusion to cage component

Adaptor protein mediates attachment to nanoparticle components

Expression, purification, and quality control can be performed independently on distinct building blocks

- Antigen valency/copy number can be controlled by including unmodified components during in vitro assembly
- Distinct antigens/costimulatory proteins can be scaffolded in defined ratios

- Post-assembly labeling
- Rapid prototyping of functional domain/nanoparticle combinations

An anti-CD20 scFv-I53-50A fusion protein can be produced in good yield

Superdex 200 16/600 pg

In vitro assembly allows control over scFv valency

J. Burrows

SpyCatcher-SpyTag is a molecular adaptor capable of selective and stable labeling

Conjugating SpyTag-GFP to purified SpyCatcher-I53-50A enables *in vitro* assembly of nanoparticles with variable GFP valencies

Conjugating SpyTag-GFP to purified SpyCatcher-I53-50A enables *in vitro* assembly of nanoparticles with variable GFP valencies

A pilot immunization study in mice revealed size- and valency-dependent immunogenicity

Antigen: consensus L2 peptide Tyler M, et al. (2014) *Vaccine* **32**:4267-74.

HPV 16: GTGGRTGYIPLGTRPPTATDT
HPV 18: GTGGRTGYIPLGGRSNTVVDV
Consensus: GTGGRTGYVPLGTRPPTVVDV

2 immunizations, 5 μg protein each

Summary and future directions

Summary:

- We have developed a general computational approach to designing self-assembling protein nanomaterials with atomic-level accuracy
- We have recently designed and experimentally validated 120-subunit icosahedral nanoparticles with sizes and molecular weights comparable to small viruses
- We have demonstrated the multivalent display of complex proteins (e.g., scFvs, viral envelope glycoproteins) on the nanoparticles using both direct genetic fusion and molecular adaptors
- The designed nanoparticles boost the immunogenicity of a multivalently displayed peptide antigen comparably to RNA-containing bacteriophage particles in mice

Future directions:

- Need to obtain additional immunogenicity data on nanoparticles bearing antigens of interest
- Further modify antigen-bearing nanoparticles to co-package adjuvants to increase/tailor immune response
- Explore possibilities afforded by two-component nanoparticles to display multiple antigens or combinations of antigens and costimulatory proteins

Acknowledgements

<u>UW</u>	David Baker	<u>FHCRC</u>	<u>AMC</u>
Julia Burrows	Lance Stewart	Colin Correnti	Ilja Bontjer
Kate DaPron	Jacob Bale	Chen Fang	Philip Brouwer
Quinton Dowling	Gabe Butterfield	Ollie Press	Rogier Sanders
Dan Ellis	Steve Haushcka		
Karla-Luise Herpoldt	Yang Hsia	<u>UNM</u>	<u>Scripps</u>
Brian Kim	Marc Lajoie	Julie Peabody	Chris Cottrell
Brooke Nickerson	Una Natterman	Bryce Chackerian	Andrew Ward
Cassie Ogohara	George Ueda		
Phong Ong		<u>Utah</u>	<u>IRB</u>
Adam Wargacki	Betsy Gray	Joerg Votteler	Davide Corti
Sue Yi	Dan Stetson	Wes Sundquist	Antonio Lanzavecchia Laurent Perez

BILL & MELINDA
GATES foundation

