

Antibody Engineering: Optimization of Antibodies for Commercialization

Stephen Hadley, PhD 2018 GVRIF 20-22 March 2018 Bangkok, Thailand

ENGINEERING mAbs FOR USE IN HIV PREVENTION IS NECESSARY TO MEET A CHALLENGING TPP

Additional TPP Challenges:

- 1. Mixture of 2 mAbs targeting different epitopes
- 2. SC administration 150mg/mL.
- 3. Robust stability profile.

SOMATIC HYPERMUTATION LEADS TO SPECIFICITY AND ACTIVITY, BUT CAN ALSO DEGRADE STABILITY AND MANUFACTURABILITY

mAbs as products benefit from design and engineering of the variable region to eliminate or reduce potentially problematic sequences:

- Deamidation/Isomerization sites
- Alternate glycosylation sites
- Non-standard cysteines
- Folding/thermal stability

Potentially destabilizing and chemically unstable residues are highlighted in red

Repair of these sites utilizing structure based models and computational analysis is possible while retaining activity

THE PRIMARY DRIVER TO DECREASE COST OF PRODUCTION FOR mAbs IS INCREASING PRODUCTIVITY DURING CELL

Process model developed for Just Biotherapeutics J.Pod (4 x 500L Brx) Facility

SEQUENCE OPTIMIZATION STRATEGY TO IDENTIFY IMPROVED VARIANTS: JUST BIOTHERAPEUTICS J. MOD PLATFORM

BIOPHYSICAL ANALYSIS OF VARIANTS IS USED FOR EVALUATING POTENTIAL BEHAVIOR DURING PRODUCTION AND STORAGE

ROUND 1: SINGLE VARIANTS ALLOW HOT SPOT SITE FILTERING FOR ACTIVITY AND DEVELOPABILITY

Select variants with consideration of maintained activity, positive expression, and biophysical characteristics

ROUND 2: COMBINATORIAL VARIANTS DEMONSTRATE IMPROVEMENTS ACROSS MULTIPLE CHARACTERISTICS

SEQUENCE OPTIMIZATION IMPROVED THERMAL STABILITY IN A PRODUCT FORMULATION

Incubation at 40°C

 20mM Acetate pH 5.2, 9% Sucrose and 0.01% polysorbate 80, 100 mg/mL bNAb

Sub-visible particle analysis after storage

Improved thermal stability allows for time outside the cold chain

NOT ALL mAbs ARE AMENABLE TO SEQUENCE OPTIMIZATION

	# of potentially destabilizing residues	# of residues affecting potency
bNAb 1	18	1
bNAb 2	22	10
bNAb 3	19	2
bNAb 4	19	4

LOW-COST mAb INVESTMENT STRATEGY

Innovation, Risk Level and Time to Impact

Traditional mAb Manufacturing

Where commercial technology is today

CHO Platform Innovation

Innovation in molecule optimization, process intensification (including continuous processing) and facility design to drive production cost to \$10/g

Alternative Hosts

Non-mammalian/nonbacterial hosts offer the potential to transform mAb production leading to low cost

Novel Expression Systems

- Synthetic Biology
- **Nucleic Acid Delivery**

ACKNOWLEDGEMENTS

Just Biotherapeutics

Bruce Kerwin

Randy Ketchem

Rutilio Clark

Christine Siska

Alison Gillespie

Alaina Floyd

Ken Timmons

Jeremy Shaver

Yan Brodsky

Megan McClure

Lisa Connell-Crowley

Dean Pettit

Beth Israel Deaconess Medical Center

Dan Barouch

Mike Seaman