

New technologies for studying human immunity

Lisa Wagar Postdoctoral fellow, Mark Davis lab Stanford University School of Medicine

New strategies: Human immunology is ideal for a systems approach

- We have learned a great deal from mouse models, but they have been only sporadically successful in understanding human diseases
- We need to study the human immune system directly
- While we can't do many of the same kinds of experiments, new technologies present a number of good options

- Cell types and cytokines can be measured in blood and tissue samples using high throughput techniques
- Many perturbations of the system (vaccines, infectious diseases, cancer, drug treatments, environment) involve the immune system

The Stanford Human Immune Monitoring Center: Assisting all stages of translational immunology

Good news: we have technologies for studying correlates of protection

Mass cytometry

→ Measuring immune parameters at single cell level

Single cell TCR sequencing & ligand discovery

→ Identifying relevant T cell targets

Immune organoid models

→ High throughput vaccine/adjuvant testing platform

Mass cytometry to analyze phenotype and function of PBMC samples

Measures 30-50 markers all at once

- -Complex combinations of expression that may be missed otherwise
- -No need to focus on only one cell type or split samples for multiple marker panels

CyTOF: potential for identifying correlates of protection

- Single cell resolution of high dimensional data has provided us with a picture of what cellular changes occur with immune perturbations, age, environment
- Pre- and post-vaccination samples can be compared and analyzed at the individual and group levels
 - Managing human immune variation
- Old (flow-style manual gating) and new (clustering algorithms) analysis tools are available
- Not ideal for detecting very small changes/cell populations

Tools for T cells: a rapid pipeline for going from T cells in any disease to understanding their function and specificity

- -T cell responses are often overlooked during vaccine protection studies.
- -Each person's T cell repertoire is unique; finding identical sequences isn't sufficient.

Han et al. Nat Biotech 2014 Glanville, Huang et al., Nature 2017 Davis et al Nat. Immunol. 2017

GLIPH: Grouping of Lymphocyte Interactions by Paratope Hotspots (Jacob Glanville)

- Groups TCR sequences that likely recognize the same peptide-MHC ligands (convergence groups)
- Find dominant motifs shared by individuals
- Estimate the diversity of a T cell response

• Potential to analyze $\alpha\beta$ T cell responses directly from sequence

A collection of 5700 Mtb specific CD4+TCRs (Huang Huang)

Single T cell seq method from Han et al. Nat Biotech 2014 Glanville, Huang et al., Nature 2017

T cell receptors from an identified convergence group recognize the same Tb peptide

Assembling the influenza TCR-ome

Collect

Clinical response Vaccine metrics Immune metrics

Sequencing

HLA typing
TCR sequencing
TCR Single cell

Compute

TCR specificity groups HLA concordance

Influenza-TCR-ome

Infection status
Probable HLA types
CD4 and CD8 epitope responses
Correlates of protection
100s of other antigens...

Searching for T cell targets is straight-forward when there are a small number (<500) of candidate peptides.

What do we do when the pool of possible T cell targets is large (complex pathogens) or unknown?

Ligand Discovery: going from TCRs of interest to antigen

Classical method: make individual reporter T cell lines and survey

New method: yeast display (Birnbaum et al., Cell 2014)

ightharpoonup en a yeast library

In vitro models of the adaptive immune response

- Candidate vaccines go into clinical trials with limited opportunities to test for responses in humans
- Blood measurements can be misleading or poorly predictive of protection
- Studying the human adaptive response at the site of formation (lymphoid tissues) is challenging

A representative model of the human adaptive immune response could bridge this gap

Organoids for human infection & immunization studies

- Organoid: an *in vitro* model that recapitulates the function, composition, and/or structure of *in vivo* tissue
- Murine cells have been used to make immune organoids (Purwada & Singh, Nat. Protocols 2017) but rely on matrices and cell lines
- 500 000 tonsillectomies are performed annually in the USA and much of the tissue is healthy; tonsils are a good representation of lymphoid tissue

Immune organoids enable mechanistic studies to be performed using human samples

B cells differentiate in response to vaccine stimulation and make microgram quantities of specific antibody

Organoids can be used to identify what cell types contribute to the response

Naive responses against HIV env variant using adjuvants

Technology summary

- An organized pipeline from clinical sample collection to technology and data analysis is crucial to studying human immune responses
- CyTOF can be used to collect high-dimensional data that broadly covers most immune cell types
 - potential for correlates of protection
- Single cell sequencing reveals diversity of the T cell response and can be used to find putative T cell targets
- In vitro organoid models of lymphoid tissues can bridge the gap between animal models and human trials
 - probe the mechanisms of adaptive responses
 - more antigens & adjuvants under development [your vaccine here!]

Acknowledgements

Mark Davis Calvin Kuo

Huang Huang Ameen Salahudeen

Jacob Glanville Scott Boyd

Arnold Han Peter Kim

Tom Scriba Mike Lyons

Alex Sette Holden Maecker & team

Chris Garcia Greg Hammer & team

Marvin Gee Corry Dekker & team

We are grateful to the many subjects who volunteered for these studies

Contact: lwagar@stanford.edu

