WHO Vaccination Coverage Survey Briefing

Responding to Questions re: Steps 1-3

Istanbul, December 2015

Questions from Tuesday

- 1. Could you please describe the relationship between estimation and classification again?
- 2. Lot Quality Assurance Sampling (LQAS) is a method for rapid inexpensive survey to classify coverage – why aren't we listing that as an option here?
- 3. The case study assumes a design effect of 4. That seems too high. Do we see values that high in coverage surveys?

World Health

Questions from Tuesday

Your slide on differences said: "The increase in coverage is estimated to be 4.0% [95% CI -0.1%-8.1%]. ... indicating marginally strong evidence that Penta3 coverage is different..."

But if the CI for the difference includes zero, why are you concluding there is likely a difference?!?

Question 1. Could you please describe the relationship between estimation and classification again?

Estimate and Classify

- The 2015 manual (like the 2005 manual) recommends using survey results to estimate coverage
- The 2015 manual (like the 2005 manual) recommends calculating a point estimate and a 2-sided 95% confidence interval (CI)
- The methods in the 2015 manual are an improvement
 - Point estimate no longer assumes equal weights
 - Confidence interval method is designed for proportions
 - When sample sizes are small and coverage is near 0% or 100%, the CIs will <u>not</u> be symmetric

Estimate and Classify

- Unlike the 2005 manual, the 2015 update recommends also calculating 1-sided 95% upper and lower confidence bounds
- These bounds may be used to classify coverage

99.3 (96.3,99.9) [97.0,100) (0,99.9]

93.5 (87.8,96.7) [88.9,100) (0,96.3]

Classification Conclusion

- we believe the survey is free of important biases:
- Then we can say:
 - "We are 95% confident that coverage is \geq LCB."
 - "We are 95% confident that coverage is ≤ UCB."

When Does Classification Make Sense?

- In a survey with nested strata (e.g., provinces within a nation)
- We have to decide whether to do a large survey in every province or do a smaller survey in each province... accepting wider confidence intervals there...knowing that we will combine all the data to obtain narrow CI at the national level

Big Survey N=1,500 per Province

Text: Point Estimate (95% CI) [1-sided 95% LCB, 100) (0, 1-sided 95% UCB]

Smaller Survey N=150 per Province

Text: Point Estimate (95% CI) [1-sided 95% LCB, 100) (0, 1-sided 95% UCB]

10

Recommendations

- Always report estimation results (point estimate & CI)
- Always report the measures you took to keep bias out of the survey
- Always report places where bias may have crept in to the survey
- If you want to classify and you want to be very likely to "pass" strata with coverage > some upper threshold and "fail" strata with coverage < some lower threshold, the annexes will help you pick a sample size to do that

Question 2. Lot Quality Assurance Sampling (LQAS) is a method for rapid inexpensive survey to classify coverage – why aren't we listing that as an option here?

Why Not LQAS?

- LQAS uses a quota sample
 - Substitutes HH if no one at home
 - Keeps no record of how many substitutions
 - Probably biases coverage upward
- LQAS gives <u>one</u> decision rule, tuned for a pair of thresholds; our method can be used to classify against <u>any</u> threshold without modification
- Clustered LQAS has an <u>assumed</u> design effect built into the decision rule; our method uses the <u>observed</u> DEFF

Why not LQAS?

 Our method encourages graphic display of what we learned from the survey, i.e., how our confidence is distributed; LQAS is a black box...er, ball:

World Health Organization

Question 3. The case study assumes a design effect of 4. That seems too high. Do we see values that high in coverage surveys?

World Health

Drganization

Q: Is DEFF = 4 realistic? If yes, why?

- A: Yes, very realistic:
 - 2012 Ethiopia EPI survey:
 - 31 / 182 (17%) coverage DEFFs were \geq 4.0
 - (11 regions + national x 13 doses + fully vaccinated = 182 results)
 - 2014 Kano, Nigeria EPI survey
 - many of the 585 coverage DEFFs were ≥ 4.0
 - (I didn't take time to count, but it looked like more than 10% of them)
 - Why?!?

Reason 1: There are 2 "Design Effects"

- Recall that DEFF $\cong 1 + (m 1)\rho$
 - where m is avg N / cluster
 - $-\rho$ is the intracluster correlation coefficient
- DEFT = \sqrt{DEFF} (This is what DHS reports.)
- Both DEFF and DEFT are called "the design effect"
- The WHO reference manual uses DEFF
- Maybe the audience members were thinking of DEFT ???

World Health

ganization

Reason 2: DEFF is high when coverage is spatially correlated

Real Data with DEFF = 1.9

Real Data with DEFF = 5.7

Question 4.

Your slide on differences said: "The increase in coverage is estimated to be 4.0% [95% CI -0.1%-8.1%]. ... indicating marginally strong evidence that Penta3 coverage is different..."

But if the CI for the difference includes zero, why are you concluding there is likely a difference?!?

World Health

ganization

How Should We Report Differences?

- First, please read section 6.4.6 on reasons why it may be a bad idea to compare coverage estimates from two surveys using a formal hypothesis test.
- Sections 6.4.7 describes what to report:
 - Estimated coverage in two groups (or surveys)
 - 95% CI for coverage in each
 - Estimated difference & 95% CI
 - Indicate that the CI for the difference is calculated using software that accounts properly for the complex sampling design
 - List the degrees of freedom available for the test
 - List the p-value and your conclusion in words

And if the CI includes zero?

- If the 95% CI includes zero then the p-value will be > 0.05 and we cannot conclude with 95% confidence that there is an underlying difference
- But the data may be suggestive of a difference...and it is fine to say that...
- In my example we can conclude with 94% confidence that there is an underlying difference...the test misses the magic p-value of 0.05 by less than 1%, so I chose to describe the results as showing "marginally strong evidence of a difference"

1-sided or 2-sided test?

- The manual recommends using a 2-sided test unless there is a strong programmatic reason to assume that coverage has increased (or decreased) over time
- If you can justify a strong reason for the 1-sided test, then state the reason, and state the p-value for that test
- I would also report the p-value for the 2-sided test
- If you want to report results of 1-sided tests, it is best to identify that plan <u>before</u> looking at the results (and to say so in the report)

How to describe results?

 If you report all the metrics suggested above then the reader can come to their own conclusion about how to label the difference (weak / moderate / strong evidence for a difference), so report the numbers and then report your interpretation (the Steering Committee's interpretation) of them in words

Questions?

• I'll be very happy to discuss any of these points further

Talk to me here during the meeting, or send me a note

Dale.Rhoda@biostatglobal.com

