Implementation research needs on malaria vaccine delivery according to epidemiological context

Prof. Halidou Tinto, Pharm.D, Ph.D

Fellow of the African Academy of Sciences

Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé Burkina Faso www.crun.bf

How people can get access to vaccines?

<mark>Usual</mark>

Expanded Program on Immunization

CALENDRIER VACCINAL DE L'ENFANT DE 0 A 23 MOIS

Age	Vaccins	Maladies cibles						
Naissance	BCG	Tuberculose						
-	VPO 0 P	Poliomyélite						
A can per	Нерв	Hepatite B						
02 mois	DTC - HepB - Hib 1 (Pental)	Diphtérie ,Tétanos, Coqueluche,Hépatite B, Hémophilius Influenzae b,						
	VPO 1 🦯	Poliomyélite						
	Pneumo 1 (PCV13)	Infection à Pneumocoques (13 sérotypes) dose						
	Rota 1 🦯	Diarrhée à Rota virus						
03 mois	DTC-HepB-Hib2(Pesta2)	Diphtérie, Tétanos, Coqueluche, Hépatite B, Hémophilius Influenzae b,						
	VPO 2 🖉	Poliomyélite						
	Rota 2 🚬 👔	Diarrhée à Rota virus						
04 mois	DTC - HepB - Hib3 (Pental)	Diphtérie ,Tétanos, Coqueluche, Hépatite B, Hémophilius Influenzae b,						
	VPO 3 🦯	Poliomyélite						
	Pneumo 2 (PCV 13)	Infection à Pneumocoque (13 sérotypes) dose 2						
	Rota 3 🦯	Diarrhée à Rota virus						
	VPI	Poliomyélite						
09 mois	RR1	Rougeole +Rubéole						
	VAA	Fièvre jaune						
	Pneumo 3 (PCV 13)	Infection à Pneumocoques (13 sérotypes) dose 3						
	VPI 2	Poliomyélite						
	RR2	Rougeole + Rubéole						
	MenA (MenAfriVac)	Méningite						

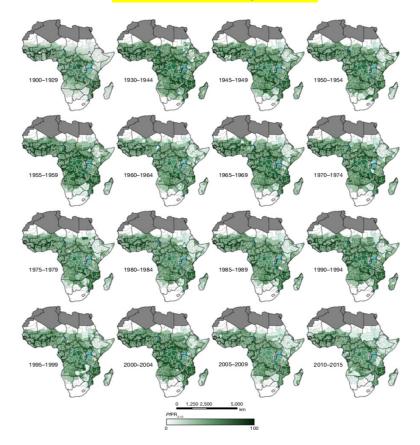
Unusual

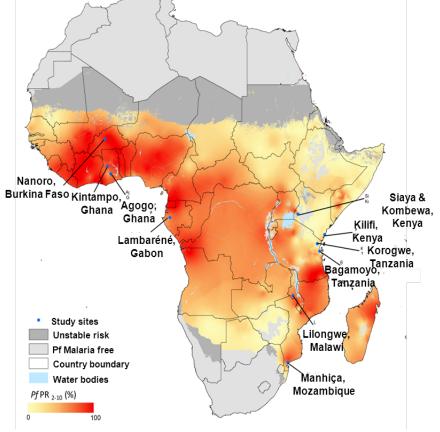
"Warp speed" for Covid-19 vaccination in the US

Unveiling 'Warp Speed', the White House's Americafirst push for a coronavirus vaccine Project aims to have enough COVID-19 vaccines for 500 million by January

20 - BY JON COHEN

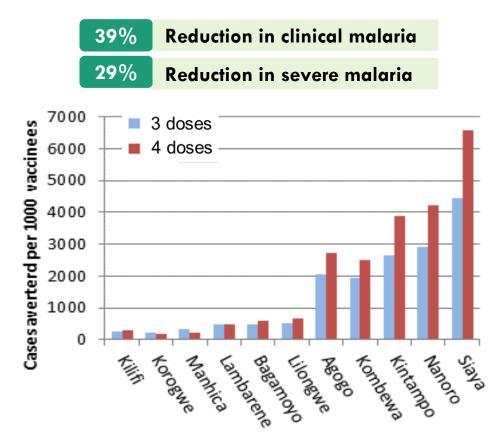
Very unusual

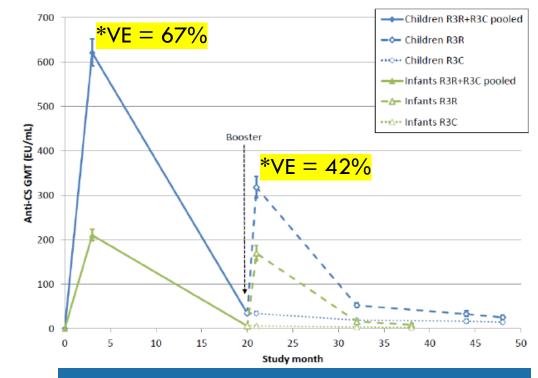

Polio vaccination in Pakistan 2019


Why epidemiological context matters in malaria endemic settings ?

Malaria transmission varies according to time and geography

Almost homogenous


Changing spatial patterns of *P. falciparum* endemicity in sub-Saharan Africa 1900-2015 Snow et al. 2017 : Nature However

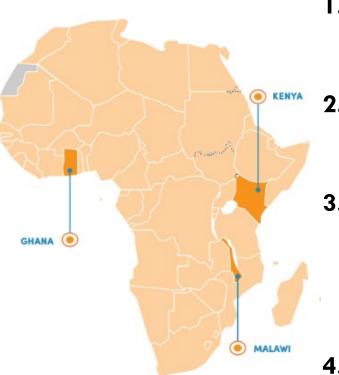

Trial sites of the RTS,S-ASO1 Phase III multicenter efficacy trial

Why epidemiological context matters in malaria endemic settings ?

The case of RTS,S

Number of clinical malaria cases averted with 3 or 4 doses among 5-17 months old children by study

Anti-CS geometric mean titers in phase 3 trial


*VE : corresponding vaccine efficacy 6 months after dose 3 and 4

What about:

- Feasibility of reaching children with 4th doses
- Safety, emphasis on safety signals in Phase 3 trial
- Impact in routine use

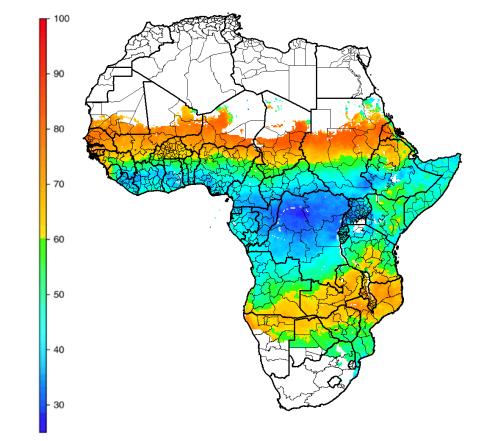
WHO recommended a pilot implementation research in 2016

Summary findings from the implementation research

- 1. Feasibility: The first 3 doses of RTS,S can be delivered through EPI with high coverage (60-70%) though it requires an expanded schedule (month 5, 6, 7, 8, 9)
- **2. Safety:** The vaccine is safe; no safety signals identified after over 3 million doses provided
- **3. Impact:** The vaccine introduction resulted in a substantial reduction in severe malaria and all cause mortality :
 - 30% (95%CI 8%, 46%) reduction in hospitalized severe malaria
 - $\sim 8\%$ Reduction in all-cause mortality
- 4. Equity: the vaccine is reaching children who are not using other forms of prevention such as insecticide-treated nets, increasing access to malaria prevention interventions to > 61-75%

WHO recommended the first malaria vaccine (RTS,S) for children: Oct 2021

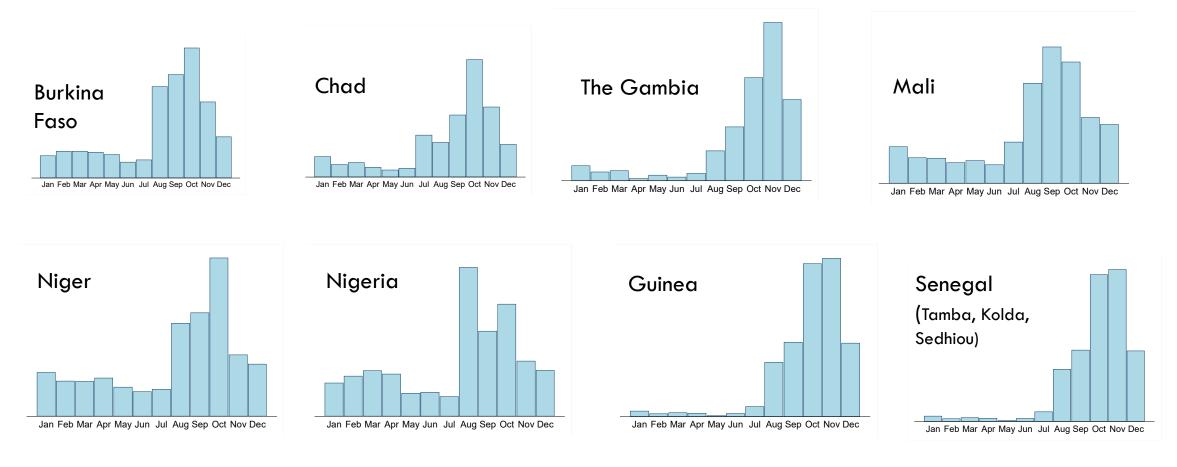
Missing information from the RTS,S pilot implementation


Child Age Vaccine/1	Birth	6 wks	10 wks	14 wks	5 mo	6 mo	7 mo	9 mo	12 mo	18 mo	22 mo	24 mo
BCG	0											
Oral polio	0	0	0	8								
DTP-HepB-Hib (penta)		0	2	8								
Pneumococcal conj.		0	0	8								
Rotavirus		0	0									
Inactivated Polio				0								
Meningococcal A conj.										0		
Measles-Rubella								0		0		
Yellow Fever								0				
RTS,S in Ghana						0	0	8				0
RTS,S in Kenya						0	2	8				0
RTS,S in Malawi					0	0	8				0	
Vitamin A						0			0	0		0
Growth Monitoring	•	•	•	•	•	٠	•	•	•	•	•	•
Deworming												•

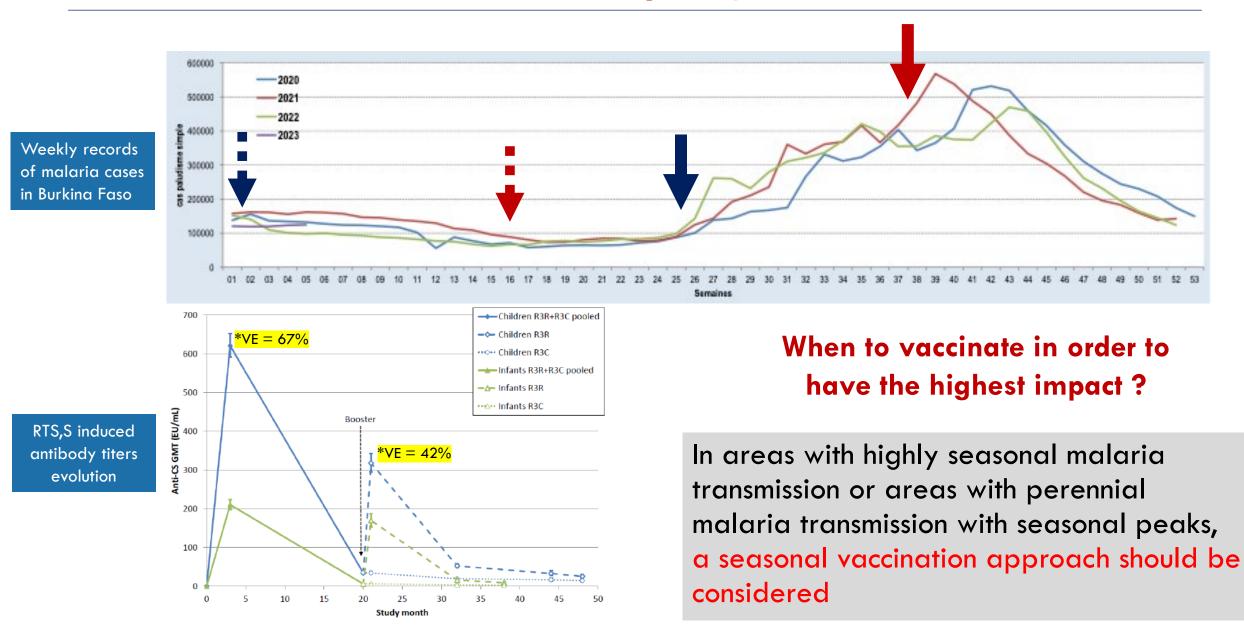
RTS,S was integrated into the childhood immunization schedule

In areas of perennial malaria transmission, vaccine can be given with some flexibility to optimize delivery

• What about areas with low EPI coverage ?


Seasonality of rainfall in Sub-saharan Africa

Cairns et al., Nature Comms 2012;3:881


What about seasonal malaria transmission settings ?

The seasonality of malaria in the African sahel and sub-sahel

Rationale for seasonally-targeted vaccination

How best to deliver malaria vaccine in areas with seasonal transmission or perennial transmission with seasonal peaks ?

Malaria Journal

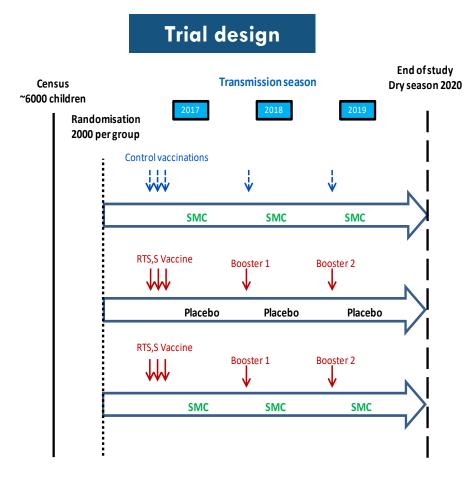
REVIEW

Open Access

Seasonal vaccination against malaria: a potential use for an imperfect malaria vaccine

Brian Greenwood^{1*}, Alassane Dicko², Issaka Sagara², Issaka Zongo³, Halidou Tinto³, Matthew Cairns⁴, Irene Kuepfer¹, Paul Milligan⁴, Jean-Bosco Ouedraogo³, Ogobara Doumbo² and Daniel Chandramohan¹

Abstract


In many parts of the African Sahel and sub-Sahel, where malaria remains a major cause of mortality and morbidity, transmission of the infection is highly seasonal. Seasonal malaria chemoprevention (SMC), which involves administration of a full course of malaria treatment to young children at monthly intervals during the high transmission season, is proving to be an effective malaria control measure in these areas. However, SMC does not provide complete protection and it is demanding to deliver for both families and healthcare givers. Furthermore, there is a risk of the emer-

RTS,S can be delivered in combination with other implemented malaria control tools such as, SMC, IPTi, bed nets distribution, and vitamin A or deworming campaigns

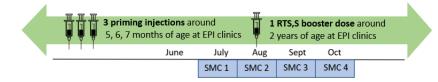
Only the combination of RTS,S-SMC has been evaluated in the context of a controlled trial

Seasonal RTS,S vaccination

RTS,S-SMC trial, in Burkina Faso and Mali between 2017-2019 (Chandramohan et al., 2021)

Countries may consider providing the RTS,S seasonally, with a 5-dose strategy in areas with highly seasonal malaria or areas with perennial malaria transmission with seasonal peaks

Summary results

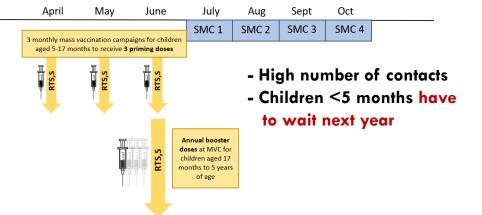

- Compared to SMC with 4 cycles per year, RTS,S provided noninferior protection against clinical malaria
- > A combined intervention of RTS,S and SMC is clearly superior
 - ~ 60% reduction in primary outcome of clinical malaria
 - $\sim 70\%$ reduction in WHO-defined severe malaria hospitalisations
 - $\sim 60\%$ reduction in blood transfusions
 - $\sim 50\%$ reduction in all cause deaths, excluding injuries and surgery
 - ~ 70% reduction in deaths from malaria

BUT the high efficacy of the RTS,S seen in seasonal vaccination trial will not be realized in practice if the delivery approach is not optimal

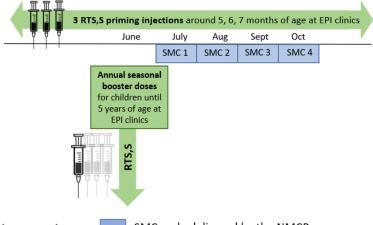
How to optimize the Seasonal Vaccination?

Possible strategies for RTS,S-SMC implementation

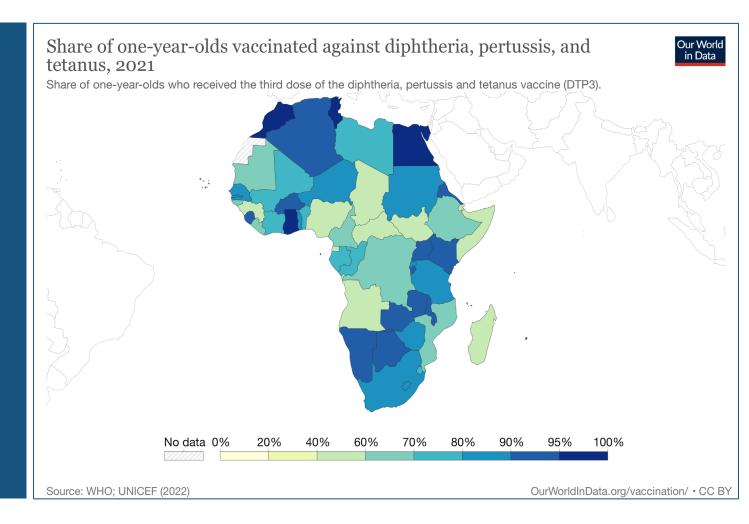
Strategy 1: Age-based routine EPI



Doses are not optimally timed (unless born in the right month !)


Strategy 3: Age-based and seasonal-mixed delivery systems

Strategy 2: Seasonal mass vaccine campaigns



Strategy 4: Age-based and seasonal-routine EPI

Some areas of implementation research?

- 1. How to increase coverage in countries with low EPI coverage, but with high malaria burden ?
- 2. How to reduce the cost of mass campaigns (cost-effectiveness ?)
- 3. How to achieve 4 doses in nomadic populations and insecurity prone countries ?

