

The Next Frontier in Defining Value: Health Economics in LMICs

Alice Chen, PhD

Vice Dean for Research and Associate Professor University of Southern California Scientific Advisor at EntityRisk

March 2023

Researchers have been estimating cost-effectiveness in healthcare since at least the early '70s

But the current approach struggles to explain the value of treating severe illness and treating illnesses in LMICs

A cottage industry has developed to deal with these anomalies

From Use Of Statins Warrants Steps To Improve Adherence And Broaden Treatment

Louis P. Garrison Jr, PhD¹⁺, Peter J. Neumann, ScD², Richard J. Willke, PhD³, Anirban Basu, PhD¹, Patricia M. Danzon, PhD¹, Jaipa A. Doshi, PhD⁵, Michael F. Drummond, Mcom, DPhil⁸, Darius N. Lakdaualla, PhD², Mark V. Pauly, PhD⁵, Charles E. Phelps, PhD, Maß¹⁰, Scott D. Ramsey, MD, PhD⁹, Adrian Touse, MPhil, MA¹⁹, Milton C. Weinstein, PhD¹¹

USC Schaeffer 4

Why does cost effectiveness struggle to value treatment for the most vulnerable patients?

Many health economists have zealously argued that "a QALY is always a QALY," so context never matters

 But in health, context always matters—patients with bleak quality of life place great value on even modest gains

Economists widely agree: goods are more valuable when people have less

Thus, people with less health ought to value QALY gains more than others (i.e., people are averse to health risks

Introducing risk-aversion and diminishing returns into CEA will produce new implications that better match preferences of real patients

Generalized Risk-Adjusted Framework (GRACE) works like the traditional CEA framework QALY

CEAReimburse if: $\frac{\Delta \$}{\Delta QALY} \leq WTP$ Δ \$: Incremental cost of therapy Δ QALY: Incremental QALYs gainedWTP: Willingness-to-Pay

GRACE Reimburse if: $\frac{\Delta\$}{\Delta GRA - OALY} \le RASA - WTP$ Δ : Incremental cost of therapy Δ GRA – QALY: Incremental GRA-QALYs gained RASA – WTP: Risk- and Severity-Adjusted WTP

Many implications follow from one generalization

Traditional CEA	GRACE	Data Needs for GRACE
QoL gains are the same regardless of how sick patients are	QoL gains systematically varies with disease severity	Disease severity (e.g., burden of illness estimates)
Only average treatment outcomes matter (b/c patients do not bear risk)	Entire distribution of treatment outcomes matter (patients are risk averse)	Variance and skewness in QoL outcomes (e.g., clinical trial data)
QoL and survival tradeoffs are fixed , regardless of health status	Patients are allowed to value QoL more than survival when they have less QoL	Literature estimates of risk preferences

Consider patients with Type 2 Diabetes Mellitus (T2DM) in five countries in Sub-Saharan Africa

Prevalence of Diabetes is Growing and Projected to Grow

USC Schaeffer 8

Treatment vs. Comparator Data From Clinical Trials

Three Treatment Options	Change in HbA1C	Change in BMI (kg/m2)	Change in Systolic Blood Pressure (mmHG)	RR of Cardiovascular Event
2 nd Line	-1.63	-0.9	-4.16	92%
3 rd Line	-1.68	0.6	0	100%
4 th Line	-1.31	0.6	0	100%

1. Model lifetime health outcomes	 Data: UK Prospective Diabetes Study Probability of heart attack, stroke, renal failure, and death 	
2. Make country specific adaptations	Data: Global Burden of DiseaseAdjust for relative risk of diseases in each country	
3. Obtain cost and utility parameters	 Data: ICER evaluations and Global Burden of Disease Obtain ICER cost estimates and DALY-derived utilities 	
4. Adjust cost and WTP with country-specific data	 Data: World Bank and US Medical Inflation Obtain country-specific PPP and GDP 	
5. Scale model by cohort size in each country	 Data: Global Burden of Disease Number of incident T2DM cases 	

Novel treatments reduce the time spent in disability

Number of Years Spent in Disability (Post Stroke or Renal Failure)

Treatment Options	Country 1	Country 2	Country 3	Country 4	Country 5
2 nd Line	-43,166	-19,816	-16,953	-59,008	-51,210
3 rd Line	-21,476	-10,054	-8,428	-29,430	-25,415
4 th Line	-17,014	-8,002	-6,675	-23,329	-20,122

Number of Healthy Years (Not Disabled or Dead)

Treatment Options	Country 1	Country 2	Country 3	Country 4	Country 5
2 nd Line	71,901	34,199	27,997	98,512	85,071
3 rd Line	38,124	18,753	14,745	52,351	45,005
4 th Line	30,728	14,965	11,711	41,607	35,716

Relative to GRACE, traditional CEA underestimated the economic value by 8-11% in this context

Percent Difference Between in GRACE ICER and Traditional CEA ICER

Treatment Options	Country 1	Country 2	Country 3	Country 4	Country 5
2 nd Line	10.45%	10.13%	10.56%	10.44%	10.47%
3 rd Line	9.22%	8.65%	9.36%	9.18%	9.28%
4 th Line	9.01%	8.40%	9.15%	8.97%	9.08%

Key Implication: Under GRACE, quality of life improvement rises in value when the initial health state worsens

GRACE prioritizes conditions that cause the greatest burden of disease

USC Schaeffer 14

How to Learn More about GRACE

Four articles in print: (Lakdawalla and Phelps)

Health Technology Assessment with Risk Aversion in Health

Health technology assessment with risk aversion in health Darius N. Lakdawalla^{a,b,*}, Charles E. Phelps^c

A Guide to Extending and Implementing Generalized Risk-Adjusted Cost-Effectiveness (GRACE)

Health Technology Assessment w/ Diminishing Returns to Health: The Generalized Risk-Adjusted Cost-Effectiveness

(GRACE) Model VIH February 2021

ScienceDirect

Contents lists available at sciencedirect.com Journal homepage: www.elsevier.com/locate/jval

y shaalagu Assassmaa

Health Technology Assessment With Diminishing Returns to Health: The Generalized Risk-Adjusted Cost-Effectiveness (GRACE) Approach Darius N. Lakdawalla, PhD, Charles E. Phelps, PhD

The Generalized Risk-Adjusted Cost-Effectiveness (GRACE) Model for Measuring the Value of Gains in Health: An Exact Formulation Journal of Benefit-Cost Analysis Forthcoming, 2023

COMING SOON! (Phelps and Lakdawalla) The Generalized and Risk-Adjusted Cost Effectiveness (GRACE) Model: Overview and Implementation (textbook, scheduled publication in 8/2023)

