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Abstract The main purpose of this paper is to demonstrate
how a computer model can be used as a decision making tool
regarding vaccination programs. These programs include
vaccination against traditional influenza, avian influenza,
H1N1 (swine flu), or other diseases. Specifically, the proposed
simulation model is used to investigate the impact of herd
immunity, to estimate the vaccination rate for which a given
disease is placed into an endemic state, and to calculate the
overall cost of a vaccination program from a societal
perspective. In addition, the tool can help to define an optimal
vaccination rate which will result in the minimum overall cost
for a vaccination program. The paper demonstrates several
advantages of simulation over other decision making meth-
ods. Simulation is used to “mimic” the behavior of the disease,
test a range of alternative solutions for different scenarios, and
to finely adjust the model and reflect possible vaccination
scenarios.
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Introduction

A recent study from the University of Warwick suggests that
the best way to control the current H1N1 flu pandemic is to
target children and vaccinate them using the limited supplies
of available vaccines [14]. The study concludes that due to
“herd immunity effect” vaccinating children would offer

protection to unvaccinated adults. In this paper, we offer a
simulation model which can be used by healthcare practi-
tioners as a decision making tool to investigate the impact of
herd immunity, estimate the best possible vaccination rate,
and minimize the cost of the vaccination program. The
proposed simulation based template is universal and can be
used for any given vaccination scenario. The model allows
the decision makers to select a disease and its appropriate
reproduction number, i.e. how many people are normally
infected by one infected person. In addition, the decision
maker can estimate the time required to transmit the disease
from one person to another, the cost of the vaccine, the cost
of treatment, and so on.

Once the specific vaccination scenario is created, the
proposed computer model can be used to suggest the best
courses of action with respect to a vaccination program. We
illustrate our approach by creating a hypothetical scenario
using the ProModel®, a simulation package created by
ProModel Corporation. However, other simulation tools,
including those which are MS Excel-based may be used.
Regardless of the software used, the conceptual and logical
design of the proposed vaccination model is based on the
existing theory of vaccination models as described in the
following section.

Theory of vaccination

The proposed simulationmodel is based on the existing theory
of vaccination. Such theory was developed more than
100 years ago, when Lotz [13] developed a basic mathemat-
ical model to clarify the impact of a vaccination program. He
offered two important theoretical concepts in infectious
disease epidemiology: basic reproduction number and herd
immunity. The concept of basic reproduction number is
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further explored [2, 9] and indicates the average number of
secondary cases arising from the introduction of an initial
case. Herd immunity is the population-level consequence of
acquired immunity among certain individuals which will
reduce the risk of acquiring infection among susceptible
individuals. One major goal of a vaccination program is to
take advantage of herd immunity. To further describe the
dynamics in the generation of new cases, the literature also
suggests the so called “generation interval” or the “serial
interval,” which represents the mean time interval between
onset of initial case and onset of secondary cases [3, 9, 10].

Anderson and May [1]; Diekmann and Heesterbeek [9]
came very close to determining the required vaccination
coverage for eradication using a randomly mixing popula-
tion. Based on this research, many models that predict the
impact of vaccination programs have been developed.
These models can be grouped into two categories: dynamic
and static. The major difference between these types is that
dynamic models capture the indirect protection resulting
from immunization, i.e. herd immunity effect. Static models
simply omit this. Currently, most economic evaluations of
vaccination programs use static models [7].

In recent years, several new methodologies have been
introduced. Examples of methodological choices are type of
analysis (cost-benefit, cost-effectiveness, or cost-utility), the
perspective (societal or payer), valuation technique (will-
ingness to pay, standard gamble, multi-attribute utility
scores), and discount rates [5, 6]. Additionally, recent
literature shows many models with parameter uncertainties
[8]. Uncertainties include parameters such as biological,
demographic, epidemiological, medical, and economic.

The objective functions in other proposed models vary from
the willingness-to-pay method to cost-benefit analysis [4].
However, the literature suggests that in spite of the measure,
it is very important that proposed models are consistent with
a coherent theory of the health condition [17]. In lieu of
such requirements, many disease and population specific
studies are conducted to investigate the impact of vaccina-
tion rate on the cost of a vaccination [15, 16].

This paper uses the mathematical foundations of the
vaccination theory to design a complex, yet practical,
simulation model. The proposed model is dynamic, because
it considers the herd immunity effect. It is also stochastic,
because many input variables, such as reproduction
number, transmission period, event outcomes, treatment
costs, are random variables generated using well defined
statistical distribution functions.

The vaccination process model

When an infection arrives in a susceptible population,
the disease is spread based on the reproduction number

and immunization rate. Figure 1 shows that people who
are infected can either self-recover, seek physician help, or
go to the emergency room (ER). The physician or the ER
doctor will provide the necessary treatment. In more
serious cases, the patient may require hospitalization.
After the hospital treatment, patients recover and, in rare
cases, the model assumes that some patients will not
recover.

In our model, we simulate arrivals of infected people in
the “susceptible people” section in Fig. 1. This is a
stochastic feed. Ro is simulated as a random variable the
time between arrivals of the new set of infections is a
random variable. We also assumed it to be exponential with
a mean Rp, where reproduction period Rp represents the
expected time to transmit the disease from one person to
another. Once people are infected and moved to “sick
people” section of our simulation model, there are three
potential outcomes: self-recovered, physician visit, or
emergency room. Our model assigns probabilities for each
of the above three options. Such probability values depend
on the type of decease and population profile, such as age,
insurance coverage, income level, and so on. Further, we
assume that the above three events are both collectively
exhaustive and mutually exclusive. Collectively exhaustive
property requires that when a person is infected, at least one
of the events must occur: the person must either self-
recover, see a physician, or visit the ER. Mutually exclusive
property requires that occurrence of any of the three events
automatically implies the non-occurrence of the remaining
two events: the infected person cannot self recover and see
a physician for the same infection, or cannot see a physician
and visit the ER at the same simulation scenario.

Once a patent has received medical assistance through
a physician or through ER, he or she will have two
possible outcomes: recovered or hospitalized. These two
events are also collectively exhaustive and mutually
exclusive. Probabilities for each of these two options
are assigned based on the historical data of the disease
under investigation. We assume that once patients are
physically recovered or self-recovered, they cannot
become infected again, as such the number of susceptible
people is also reduced accordingly.

Hypothetical example

We illustrate our computer simulation model with a
hypothetical example. Let us suppose that the healthcare
department of a local county (HDC) is trying to identify
optimal vaccination policies for the upcoming season for
disease X. X can be traditional influenza, H1N1 (swine
flu), or any other disease where a vaccination program is
recommended. The county has about 10,000 school-age
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children (under 18 years old) who can potentially receive
the vaccine. The major goal of the program is to
determine an appropriate vaccination rate in hopes of
reducing the overall cost of the disease. HDC believes
that the vaccination rate can be controlled by covering
different amounts of the cost for the vaccine. HDC has
compiled Table 1 which shows the relationship between
HDC payment level and the vaccination rate based on the
records from the last few years assuming a base cost for
the vaccination of $60 per each dose. We assume that the
total cost of the vaccination program is a function of the
vaccination rate. As will be demonstrated, our model will
calculate the total treatment cost and use this information
when identifying the optimal vaccination rate.

Simulation model variables

Data shown in Table 2 can be estimated based on
transaction records of HDC. Using Stat:Fit®, a components
of ProModel®, we can generate statistical distributions
using a series of observed data. Actual values used in the
model, as well as statistical distributions are shown in the
last column of Table 2.

The variables described in Tables 2 and 3, are grouped into
three classifications: controlled variables, decision variables,
and the objective function. The first set, controlled variables
are used to design a simulation scenario. The other two sets,
decision variables and the objective function are used to

optimize a simulation scenario. The decision maker’s
question is: what is the level of the decision variable for
which the objective function is best or optimized?

Obviously, the higher the vaccination rate, the more people
are vaccinated, and the less people are infected. However, the
answer to this question becomes more difficult when
considering the “herd immunity” effect. As such, we will also
use the simulation model to calculate the level of vaccination
rate which will trigger the “herd immunity.”While the answer
to this question is mathematically provided for deterministic
models [11], our simulation investigates “herd immunity” in
a stochastic environment, which is more realistic for disease
scenarios.

Running the simulation model

As shown in Appendix A, to initiate the simulation model,
the decision maker is prompted to answer questions about the
size of the population, expected reproduction number, the
vaccination rate, expected time to transmit the disease from
one person to another, and cost of the vaccine. The answers to
the above obviously depend on the type of disease and
population segment being investigated. Each answer set
allows the decision maker to identify a given scenario. After
each scenario is created, the simulation is run using an
appropriate number of replications allowing for statistically
significance results. Harrell et al. [12] provides an approach to
computing the number of replications required to ascertain a
selected degree of accuracy. In our example, each scenario is
replicated 100 times to ensure data reliability. Figure 2 shows
a snapshot of the simulation model in progress.

There are three main areas of the simulation: decision
model display, data display, and graphical display. First, the
decision model display is similar to the vaccination
scenario shown in Fig. 1. However, when the model is
running, the decision maker is able to see dynamic, run-
time interface data. At any time during the simulation run,
the model will display the number of infected patients,
number of patients who are seeing a doctor, are hospital-

Table 1 Cost of the vaccine for HDC and vaccination rate

Cost of vaccine to HDC Vaccination rate

$0–$3 10%

$3–$12 20%

$12–$24 40%

$24–$36 50%

$36–$48 60%

$48–$60 80%

Fig. 1 Basic scenario for
simulation model
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ized, self-recovered, and recovered. Second, the data
display (in the lower right side of the screen) shows
dynamic data of the model outcomes. As shown, the
decision makers can trace results about model parameters,
simulation results, and cost results. Third, the graphical
display (in the lower left side of the screen) shows dynamic
plots of vaccination rate and number of infections. The
graph allows the decision maker to visually see the effects
of assigning different vaccination rate. Since each scenario
is run 100 times, the simulation engine will determine the
mean and standard deviation for each variable. The data
generated by the model can be further analyzed to fine tune
the model and the decisions resulting from the model.

Validating herd immunity

If we denote the initial number of infections by a, the
reproduction number by Ro, and the generation number by
n, the number of infections increases according to the series

a, aRo, aRo
2, aRo

3, ….., aRo
n. Starting with a single initial

infection, the number of cases in the nth generation is equal
to the reproduction number (Ro) to the power of n. This
exponential growth represents the behavior of the disease
when there is no presence of herd immunity. However, as
the disease progresses from one generation to the next, the
infected people are no longer susceptible to the disease. As
such, the infection ratio or the number of people infected in
the next generation from a single case can be calculated as:

In ¼ In�1Ro
Sn�1

P

where:

In number of people infected in generation n
Ro reproduction number for a given disease

and population group
Sn−1 number of susceptible individuals in generation

n−1
P size of population group

Table 2 Major input variables of vaccination model

Variable name Description Notation in the model Random Value in the model

Population size Number of people subjected to a vaccination program. Pop_Size No 10,000

Reproduction ratio Average number of people infected by
one infected person.

Ro Yes Uniform U(4, 1) people

Reproduction period Expected time to transmit the disease from one
person to another.

R_period Yes Exponential E(5) days

Wait until doctor Average time people wait sick until they decide to
see a doctor in hope of self-recovery

W_until_dr Yes E(2) days

Wait until recovered Average time people have to wait until they are
considered recovered

W_until_re-covered Yes E(5) days

Cost of vaccine The cost to buy and administer a single vaccine Vaccine_C No $60

Physician cost Cost paid to a physician for a single visit Physician_C Yes Uniform U(120, 20)

Hospital cost Cost paid for a single hospitalization case Hospital_C Yes Uniform U(480, 50)

ER cost Cost paid for a single visit in the ER ER_C Yes Uniform U(240, 50)

Table 3 Major decision and derived variables of simulation model

Variable Description Notation in
the model

Type

Vaccination rate Percentage of population vaccinated before the simulation starts. Several values
are used to illustrate different scenarios as well as herd immunity effect.

V_rate Decision variable

Number of infections Number of people who are infected. Infected Derived value

Immunized Number of people vaccinated before the simulation starts. Immunized Derived value

Recovered Number of people infected and recovered or self-recovered Recovered Derived value

Total vaccination cost Total cost of vaccination program. Calculated as a product of number of
people being vaccinated times the portion of cost covered by HDC

Vaccination_C Derived value

Total treatment cost Total cost of treatment. Calculated as a sum of physician cost,
hospitalization cost, and ER cost

Treatment_C Derived value

Total cost Total cost of the disease. Calculated as a sum of total vaccination
cost and total treatment cost. Goal is to minimize this.

Total_C Derived value
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The above formula represents the behavior of the disease
when herd immunity is present. As time passes and n
increases, Sn−1 decreases and so does the number of people
becoming infected In. Validating herd immunity was an

important part of our model validation. As shown in Fig. 3,
we compared two alternatives: (a) scenario model with herd
immunity using the above formula and (b) scenario model
where herd immunity is purposefully suppressed.

Fig. 2 Simulation model in progress

Fig. 3 Impact of herd immunity on the number of infections
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As shown in Fig. 3(a), in a given scenario when
vaccination rate is selected to be 20%, the infection of
population increases until 40% of the population is
infected. After that point, herd immunity will not allow
the spread of further infections. In Fig. 3(b) where herd
immunity effect is removed and the same vaccination rate
of 20% is applied, infection will continue to spread until
80% are infected. This analysis re-enforces the validity of
the model and shows the power of computer simulation as a
decision making tool. The decision maker is able to
evaluate IF-THEN scenarios which would be difficult if
not impossible to generate in a real environment.

Impact of vaccination rate on the number of infections

Without cost considerations, the decision maker might be
interested in defining what percentage of the population

needs to be vaccinated so the number of infected is kept
under a certain level. Our proposed simulation model can
also be used to investigate the impact of different
vaccination rates on the number of infections. Figure 4
shows four different scenarios based on different vaccina-
tion rates.

Scenario (a) has no previous immunization program so
the vaccination rate is 0%. As shown, 60% of the
population is infected and then herd immunity starts to
impact the spread of the disease. Due to herd immunity,
scenario (b) with an immunization rate of 20% will have
40% of population infected, scenario (c) with an immuni-
zation rate of 40% will have 20% of population being
infected, and scenario (d) with an immunization rate of
60% will not have anyone else infected.

Using the above results, decision makers can identify
the portion of population that needs to be immunized so
the impact of herd immunity can be used. Importantly,

Fig. 4 Comparison of different vaccination rates
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the decision maker needs to know the vaccination rate
which will keeps the disease under control. This rate is
defined based on medical considerations. However, the
acceptable level is often defined based on the cost of
vaccination and cost of treating the disease.

Vaccination rate and the cost of vaccination

The model can also be used to investigate the impact of
different vaccination rates and the overall cost of the
treatment of a disease. Further, the proposed simulation
template can be used to identify the optimal immunization
or vaccination rate which minimizes the overall cost. The
total costs included in the model are shown in Fig. 5 and
consist of vaccination costs and treatment costs. As
mentioned earlier, vaccination costs represent the cost of a
single vaccine for HDC (the maximum possible value or
the upper limit as shown in Table 1) multiplied by the
number of people being vaccinated. In general, the lower
the cost of a single vaccine, the more people will be
vaccinated. Treatment costs are randomly generated by the
model and include total physicians, emergency visits costs,
and hospitalizations costs.

As shown in Fig. 5, there is a certain vaccination rate
(60%) which minimizes the overall cost. Using the data in
Table 1, HDC can achieve a 60% vaccination rate by

offering to cover $36–$48 per vaccine. Any higher
vaccination rate will not reduce the overall cost of the
disease, mainly due to herd immunity effect. In such case,
reduction in the cost of treatment (because more people will
be vaccinated) is not justified because the vaccination cost
will be higher. Any lower vaccination rate will result in a
lower vaccination cost however the cost of treatment will
be higher. So we conclude that it is not necessary for the
HDC to offer any higher coverage in the vaccination cost.
We must note that this is just a hypothetical example
provided here to illustrate the kind of analysis that can be
performed by our model.

Conclusions

This paper proposes a simulation model which can be
applied to any vaccination program. The model can be used
by healthcare practitioners as an effective decision making
tool to identify an appropriate vaccination rate based on
medical and cost-based considerations. The model can also
be used to study the impact of herd immunity on the
vaccination program. The proposed model is illustrated
with a hypothetical example from the perspective of a
healthcare department.

It has been found that simulation has several advantages
over mathematical or other decision making methods.
Simulation uses a logical abstraction of the reality through
a computer model that “mimics” the behavior of the disease
as it arrives in a given population target. Once the computer
based simulation model is validated, the decision maker can
test a range of alternative solutions for different disease
scenarios. Another advantage of the proposed model is its
flexibility. The decision maker is able to recreate scenarios
for a certain disease, a given population target, and different
vaccination rates.

As a final note, one should remember that a
simulation model is only as good as the assumptions
on which it is based. If a model makes predictions which
are out of line with observed results, one must go back
and change our initial assumptions in order to make the
model useful. In future studies, we intend to incorporate
other costs, such as parental time lost, expected costs of
rehabilitation, and long term care associated with
permanent disabilities.Fig. 5 Relationship between vaccination rate and total cost
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Appendix A: Similation code

*********************************************************************
USING PROMODEL FOR VACCINATION PROGRAM

*********************************************************************

This model simulates a vaccination program and is designed to assist you
in the process of deciding the best vaccination rate in order to keep a
disease under control and minimize the overall the cost of a given
disease. The model also illustrates the impact of "herd immunity",
endemic, and epidemic states. 

This is a general template and can be customized for a specific decease,
population group, disease reproduction number, and reproduction period.
You will be able to test several scenarios with different vaccination rate
and see the impact on the disease control.

************************************************************************
Initialization Logic:  animate 40

infected = 1
immunized = POP_size*v_rate
Vaccination_C = immunized*Vaccine_C

activate Sub_DP
activate Sub_setup

*********************************************************************
* Locations *
*********************************************************************

Name Cap Units Stats  Rules Cost 
----------------- -------- ----- ----------- ---------- ------------
Susceptible_people POP_SIZE 1 Time Series Oldest, ,
Sick_people POP_SIZE 1 Time Series Oldest, ,
Self_recovered POP_SIZE 1 Time Series Oldest, ,
Physician_visit POP_SIZE 1 Time Series Oldest, ,
ER_visit POP_SIZE 1 Time Series Oldest, ,
Hospitalization POP_SIZE 1 Time Series Oldest, ,
Recovered_people POP_SIZE 1 Time Series Oldest, ,
Deceased_people POP_SIZE 1 Time Series Oldest, ,
***************************************************************
* Entities *
***********************************************************
Name Patient 150  Time Series 
***********************************************************
***********************************************************
Processing  *
***********************************************************
Process Routing

Entity Location  Operation Output Destination  Rule 
-------- ------------------ ------------------ ---- -------- -------
Patient
Susceptible_people Wait E(w_until_dr)day

Patient Sick_people FIRST 1 
Patient Sick_people
If (Pop_size-immunized-infected)>0
Then
Begin
newly_infected = U(RO,1)*((Pop_size-immunized-recovered-
infected)/Pop_size)
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Order newly_infected patient to Susceptible_people
infected = infected + newly_infected
Route 1
End
else Route 2 

Route 1 Patient Self_recovered
0.500000 1
inc recovered
inc self_recovered_P
Patient Physician_visit
0.300000
inc seeing_dr_P
Patient ER_visit
0.200000
inc ER_P

Route 2 Patient EXIT FIRST 1

Patient
Self_recovered wait E(W_until_recovered)day

Patient EXIT FIRST 1 
Patient
Physician_visit wait E(1) day
T_Physician_C = T_Physician_C+U(Physician_C,20)

Patient Recovered_people
0.800000 1
inc recovered_P
Patient Hospitalization
0.200000
inc hospital_P

Patient
ER_visit wait E(1) day

T_ER_C = T_ER_C+U(ER_C,50)

Patient Recovered_people
0.600000 1
inc recovered_P
Patient Hospitalization
0.400000
inc hospital_P

Patient
Hospitalization wait E(3) day
T_Hospital_C = T_Hospital_C+U(Hospital_C,50)

Patient Recovered_people
0.990000 1
inc recovered_P
Patient Deceased_people
0.010000
dec POP_SIZE
inc dying_P

Patient
Recovered_people wait E(W_until_recovered) day
inc recovered
Treatment_C = T_physician_C + T_ER_C + T_hospital_C
Total_C = Vaccination_C + Treatment_C

Patient EXIT FIRST 1
Patient Deceased_people
accum infected

Patient EXIT FIRST 1
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*********************************************************************
* Arrivals
*********************************************************************

Entity Location Qty Each First Time Occurrences 
-------- ---------- ---------- ----------- ---------- ------------
Patient Susceptible_people 1  0  1

*************************************************************************
*  Variables (global)
*********************************************************************
ID Type Initial value Stats

----------------- ------------ ------------- -----------
POP_SIZE  Integer  10000 Time Series
RO  Real 4 Time Series
infected  Integer  0 Time Series
recovered  Integer  0 Time Series
immunized  Integer  0 Time Series
v_rate  Real  1 Time Series
R_period  Real  5 Time Series
W_until_dr  Integer  2 Time Series
hospital_time  Integer  3 Time Series
W_until_recovered Integer  4 Time Series
newly_infected  Integer  1 Time Series
self_recovered_P  Integer  0 Time Series
recovered_P  Integer  0 Time Series
seeing_dr_p  Integer  0 Time Series
ER_P  Integer 0 Time Series
hospital_P  Integer  0 Time Series
dying_P  Integer  0 Time Series
Susceptible_P  Integer  0 Time Series
Vaccine_C  Integer  60 Time Series
Vaccination_C  Integer  0 Time Series
Physician_C  Integer  120 Time Series
ER_C  Integer  240 Time Series
Hospital_C  Integer  480 Time Series
Treatment_C  Integer  0 Time Series
Total_C  Integer  0 Time Series
T_Physician_C  Integer  0 Time Series
T_Hospital_C  Integer  0 Time Series
T_ER_C  Integer 0 Time Series

*****************************************************************
* Subroutines
*****************************************************************

ID Type  Logic
---------- ------------ ---------- ------------
Sub_DP None  WAIT 4 HR

DYNPLOT "Immunization Versus Infection Rate"

PROMPT "Please enter the expected size of population:",POP_SIZE
PROMPT "Please enter the expected reproduction number:",RO
PROMPT "Please enter vaccination rate:",v_rate
PROMPT "Please enter time to transmit the disease:", R_period
PROMPT "Please enter the cost of the vaccine:", Vaccine_C

***************************************************************** 
*  END
*****************************************************************
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